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Aes~mcrr: The objective of the study was to determine to what extent perfor~nance levels 
achieved with per-field classifiers with Thematic Mapper (TM) resolution data would exceed 
that of the conventional per-point Gaussian tnaxitnum likelihood ( G \ I L )  classifiers with 
Landsat Multispectral Scanner (MSS) resolution data. The analyses were performed with 
actual T.M data (six reflective bands, acquired for the Washington, DC area on 2 Nove~nber 
1982). The TM data were degraded to approxitnately 90 111 spatial resolution with a pixel 
period of 57 m to sitnulate the MSS data resolution and sa~npling properties. Results obtained 
over four replicates with the per-point G ~ I L  classifier were cornpared to those achieved with 
the per-field supervised ECHO (Extraction and Classification of Homogeneous Objects) clas- 
sifier. A nonparametric discriminant function was also examined. This discriminant employs 
the cumulative bin-wise differences between normalized univariate histograins. These his- 
tograms are defined over each individual surface feature. 

The mean accuracy (78.1 percent) achieved with the per-point GML classifier using 57 m 
data exceeded the levels achieved with the 28.5 In data using supervised ECHO (60.1 
percent) or the per-point GVL classifier (72.0 percent). The accuracy ;~chieved using 28.5 111 
data with the nonparatnetric approach was 94.5 percent (87.0 percent) for classifying polygons 
of mininlum size of 90 (40) pixels or larger. 

INTRODUCTION 

0 NE OF THE PRINCIPAL advances noted for the The- 
matic Mapper (TM) sensor is the decreased 

instantaneous field of view (IFOV). The 42.5 micro- 
radian IFOV of TM and the 710 km nominal orbit 
altitude result in a 30 in nominal spatial resolution 
at the Earth surface. This is a considerable decrease 
in the projected pixel area when compared to the 
79 m nominal spatial resolution of the Landsat Mul- 
tispectral Scanner (MSS). This increased spatial res- 
olution was established as a design specification by 
the TM Working Group (Harnage, 1975; Salo- 
monson, 1978) with the expectation that this would 
greatly facilitate the extraction of information from 
the data, increase the level of information detail pro- 
vided by the data, and improve spatial (or positional) 
accuracy. 

A visual examination of the photographic imagery 
derived from TM data, coinpared to MSS data, con- 
firms these earlier expectations. However, the 
human visual system exploits many properties of the 
scene which are not utilized by currently employed 
image-to-information computational procedures. 
The spatial properties of the scene are prominent 

among those which are not exploited. Since the spa- 
tial properties, in particular, appear to be strongly 
dependent on the spatial resolution of the imaging 
system, visual comparisons of the derived imagery 
are often misleading. 

Fro111 an analytical standpoint, increased spatial 
resolution would be expected to influence the per- 
formance of conventional per-point classifying al- 
gorithms in different ways. Increasing the spatial 
resolution decreases the relative number of pixels 
which occur on boundaries between different cover 
types. The rate at which the relative number of 
boundary pixels decreases with an increase in spatial 
resolution is dependent on the size and shape of the 
surface features. In general, TM data should pro- 
vide a smaller fraction of boundary pixels and, 
therefore, would be expected to provide higher clas- 
sification accuracies. However, increased spatial 
resolution also resolves the variability in composi- 
tion of many of the surface features (e. g.,  individual 
tree crowns and between-crown shadows in forests; 
streets, yards, and houses in residential areas). The 
increased spectral variability resulting from the in- 
creased spatial resolution tends to result in spectral 
similarity between individual pixels of different sur- 
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face cover types. Pixels on individual trees in large 
forests tend to have spectral values similar to pixels 
on individual trees in residential areas. While it may 
be argued that "forest" and "residential area" are 
abstractions unrealistic to be expected of automated 
interpretation of spectral data, it is precisely this 
type of information which is often required by many 
applications. 

Spatial resolution not only affects the magnitude 
of spectral variability, it also influences the shape of 
the distribution of spectral values. The manner and 
extent to which the spectral distribution is influ- 
enced by the spatial resolution are dependent on 
the spatial distribution and spatial frequency of the 
areas of differing reflectance. Surface features with 
regularly spaced, high spatial frequency contrasts 
may be represented by spectral distributions which 
tend from unimodal at low spatial resolution (>1 
times the periodicity of surface variation) to increas- 
ingly bimodal at high spatial resolution (c0.5 tiines 
the periodicity of surface variation). 

While the influence of spatial resolution on var- 
ious properties of the data is fairly clear, the re- 
sulting relationships between spatial resolution and 
the level of accuracy and precision attainable in ex- 
tracting information from the data are less identifi- 
able. Previous investigations conducted with per- 
point pattern recognition procedures concur that an 
increase in spatial resolution does not necessarily 
improve performance, and, in fact, often depresses 
~erformance (Sadowski and Sarno. 1976: Landerebe 
i t  al., 1977; ia t ty  and Hoffer, 1981; ~ a r k h a l i  and 
Townshend, 1981). Considerations regarding the 
fundamental operation of the per-pixel pattern rec- 
ognition procedures relative to the high spatial res- 
olution properties, suggest that improvements may 
be expected through the use of per-field processors 
(i.e., use of the spectral properties over some 
number of pixels of the surface feature in identifjring 
the feature). Therefore, the objecive of the study 
was to determine to what extent the performance 
level observed for the per-point Gaussian maximum 
likelihood (GML) classifier using approximately 90 m 
spatial resolution data could be improved by em- 
ploying per-field algorith~ns designed in accord with 
the data properties of the higher (e.g., 30 m), spatial 
resolution. 

BACKGROUND 

Empirical studies have been conducted to assess 
the influence of spatial resolution on classification 
performance. In particular, some of these studies 
have examined the influence of spectral variability. 
Kan and Ball (1974) found that as the spatial reso- 
lution increased, the spectral variance increased, 
thus reducing the separability of classes in feature 
space. Sadowski and Sarno (1976) found spectral 
classes of differing forest cover types were often 

more statistically similar than spectral classes of the 
same cover class. This was observed to be more 
prevalent at higher spatial resolutions than at lower 
spatial resolutions. Latty and Hoffer (1981) found 
that the sharpest decrease in classification accuracy 
with increases in spatial resolution were observed 
for those classes with higher spectral variability 
(e.g., pine forest, second growth hardwood, and 
cut-over forest). No significant change in perfor- 
mance was observed for classes of lower spectral 
variability (e.g., soil, pasture, and crops). Markham 
and Townshend (1981) observed similar correlation 
between surface feature classes of high spectral vari- 
ability and significant decreases in classification ac- 
curacy with increases in spatial resolution. They ob- 
served, further, that the influence of spectral vari- 
ability was dependent on the relative positioning of 
the classes in rnultispectral feature space. Classes 
which were well separated from neighboring classes 
in ~nultispectral feature space did not vary in clas- 
sification accuracy with increasing spatial resolution 
even though the variance of these classes did in- 
crease with increased resolution. Landgrebe et al. 
(1977) attributed a slight decrease in pure pixel clas- 
sification accuracy with increased spatial resolution 
observed in their study to the decrease in the signall 
noise ratio accompanying the increased spatial res- 
olution. 

Similarly, empirical work has been conducted to 
determine the influence of boundary pixels on the 
relationship between classification performance and 
spatial resolution. Morgenstern et al. (1977) found 
that acreage estimation accuracy decreased in agri- 
cultural areas with decreasing spatial resolution and 
that this relationship was very much dependent on 
field size. They inferred that this was due to the 
higher relative frequency of boundary pixels in the 
lower spatial resolution data. Similar results were 
observed by Thomson and Erickson (1976). 
Markhain and Townshend (1981) observed a de- 
crease in classification accuracy for small surface fea- 
tures (i.e., roads and small water bodies) with de- 
creasing spatial resolution due to boundary pixels. 
More recently Irons et al. (1984) and Williams et al. 
(1984) observed that spatial resolutioll was a nonsig- 
nificant factor as a source of variance in classification 
accuracy when the boundary pixels were included, 
but was a very significant factor when the boundary 
pixels were omitted. For a study site in the Wash- 
ington, DC area, the counter influence of boundary 
pixels mitigated the adverse affect of increased spec- 
tral variability with increased spatial resolution. 
However, for a study site in Clarion County, PA, 
involving small surface features, much higher clas- 
sification accuracies were observed for the higher 
spatial resolution data. A study by Markhaln (1984) 
which focused on detectability of surface water as a 
function of surface area with different spatial reso- 
lutions, demonstrated the strong dependence of 
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performance with variable spatial resolution on the 
size of the targets considered. 

Based on the previous experience with 30 m (and 
higher) spatial resolution data and the more con- 
ventional per-point, or pixel-by-pixel, processing 
strategy, techniques have been sought to exploit the 
advantageous properties of high spatial resolution 
data. Some of the processing strategies attempt to 
exploit the increased spectral variability associated 
with increased spatial resolution in the discrimina- 
tion process. This is the strategy of all efforts to use 
image texture, covariance differences, histogram 
shape, or piece-wise densities in the discrimination 
process. 

The ECHO (Extraction and Classification of Ho- 

1 lnogeneous Objects) classification algorithm is one 
of the earlier integrated attempts to employ spectral 
measurements over a number of pixels to identify 
the surface feature. ECHO is an algorithm which was 
developed during the Large Area Crop Inventory 
Experiment (LACIE) era at Purdue University, 
Laboratory for Application of Remote Sensing. The 
various versions of the ECHO algorithin are dis- 
cussed in Kettig (1975), Kettig and Landgrebe 
(1975), Kast and Davis (1977), and Landgrebe (1980). 
The experimental work and theoretical consider- 
ations which led to the strategy e~nbodied in ECHO 

are found in Wacker (1971), Wacker and Landgrebe 
(1972), and Kettig and Landgrebe (1973). 

Kettig (1975), Kettig and Landgrebe (1975), and 
Wiersma and Landgrebe (1976) observed a higher 
classification accuracy for Landsat MSS data when 
using the ECHO algorithin than when using the per- 
point Gaussian maximu~n likelihood ( c n r ~ )  classifier. 
Landgrebe et al. (1977) observed no significant dif- 
ference between the acreage estimation accuracies 
achieved with ECHO and the per-point C ~ I L  classi- 
fier at each simulated spatial resolution. ECHO per- 
formed slightly better at each resolution than the 
per-point GniL classifier based on percent correctly 
classified field-center pixels. The ECHO algorithm 
perforined increasingly better than the per-point 
GML classifier with decreasing signallnoise levels for 
30 m spatial resolution data. Latty and Hoffer (1981) 
found that the ECHO algorithm performed better on 
the 30 in simulated spatial resolution data than the 
per-point GML classifier on the 30 m data, based on 
percent correctly classified field-center pixels. The 
difference was greatest for cover classes for which 
the highest spectral variability was observed. 

APPROACH 
The overall approach and steps involved in the 

study are sunlmarized in the schematic diagram in 
Figure 1. 

Aerial photography was collected over areas to 
the east of the Washington, DC metropolitan area 

on 13 July 1982. A subset of the 1:40,000 scale color 
infrared photographs served as the ground refer- 
ence base. Each area on the selected photography 
was identified as: water, forest (pine and mixed 
hardwood, of varying canopy closure), pasture, ag- 
ricultural crop lands (primarily corn, soybean, to- 
bacco, bare soil, and crop stubble), and developed 
land (residential, commercial, multifamily dwell- 
ings, and transportation corridors). The boundaries 
of each cover type were digitized. The polygons 
generated from digitizing the cover type boundaries 
were used to generate raster images corresponding 
to each of the selected photographs. Two raster im- 
ages were generated for each photograph: one with 
a pixel frequency every 28.5 m of ground scale, the 
second with a pixel frequency of every 57 m. 

SPECTRAL DATA 
The first TM scene of the Washington, DC area 

which was adequately cloud-free with all six reflec- 
tive bands properly functioning was collected on 2 
November 1982 (path 15, row 33, scene number E- 
40109-151400). While the spatial resolution of TM 
is approximately 30 m, the geometric resampling of 
the data in the Scrounge system (Lyon, et al. ,  1983) 
resulted in a pixel period of 28.5 m. Subscenes cor- 
responding to the areas covered by the selected ae- 
rial photographs were extracted from the TM scene. 
Only the six reflective bands were used. A second 
set of subscenes was generated, from the first, 
which had 90 m effective spatial resolution with a 
pixel period of 57 m (see Williams et a l . ,  1984 for 
details of the procedure used). Each raster ground 
reference image was registered to the  corre- 
sponding subscenes of spectral data. 

DATA SAMPLING 
Each of the two (28.5 m and 57 m pixel frequency) 

images were sampled four times independently with 
two different sampling strategies. Each of the four 
independent samples provided a replicate (i.e., 
gave sensitivity to the statistical tests on the ob- 
served performance differences). The two sampling 
approaches provided two fundamentally different 
types of data on which to perform the experiment. 

Pixel-by-Pixel Sampling. One set of replicates was 
generated by randomly sampling the ground refer- 
ence image without replacement, by class, on a 
pixel-by-pixel basis. That is, each pixel of each class 
is treated as an independent, random event. Each 
selected pixel was then randomly assigned to the 
role of either training or testing (1200 training and 
450 test pixels for each inforniation class for the 28.5 
m data; and 1000 training and 375 text pixels for 
each information class for the 57 in data). 

Polygon Sampling. The alternate sampling ap- 
proach generated a set of replicates where the in- 
dividual polygons of the reference image were ran- 
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EXPERIMENT CONCEPTUAL FLOW SCHEMATIC 
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FIG. 1. Design schematic summarizing the processing steps involved in conducting the study. Those paths labeled 
"A" were followed with both spatial resolutions, while those labeled "B" were followed with only the 28.5 m spatial 
resolution. 
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neity and annexation criteria in Kettig and Land- 
grebe, 1975). 

The line-column coordinate of each selected pixel 
in the reference image was used to direct the ex- 
traction of the spectral values from the coregistered 
spectral data iinage. 

Each set of training pixels for each surface class 
in each replicate of each resolution was indepen- 
dently clustered into three spectral classes through 
the use of an iterative lninimuln Euclidean distance- 
to-the-means clustering algorithm (*(:LUSTER of the 
LARSYS iinage processing system, see Phillips, 1973, 
Vol. 2). The mean vectors and covariance matrices 
of each spectral class of each surface cover class were 
used to classify the test pixels of the sampled spec- 
tral iinage data with a G ~ I L  per-point classifier 
(*CLASSIFYPOIP~TS of the LARSYS image processing 
system; Phillips, 1973, Vol. 2; Swain and Davis, 
1978, p. 150) and the original subscenes with the 
supervised ECHO classifier (*SECHO of LARSYS; 
Kettig and Landgrebe, 1975; Kast and Davis, 1977). 

Similar steps were einployed for the data ob- 
tained through polygon sampling, but practical con- 
siderations led to performance of this segment of 
the experiment on the Landsat Analysis System at 
NASAIGSFC. Clustering was, therefore, performed 
with the ISOCLS algorithm (Minter, 1972; Kan, 1973; 
Kan et al . ,  1973). The parameters employed in 
ISOCLS were set to emulate the algorithm used in 
LARSYS. The sampled spectral data were classified 
with a cna per-point classifier, and the subscene 
data were classified with the supervised ECHO al- 
gorithm. 

An oinission/co~ninission frequency matrix was 
constructed for each classiiied iinage. The overall 
percent correct classification (PCC) accuracy ob- 
served for each replicate of each factor was arc sin 
square root transformed (8 = sin-'-) in order 
to satisfy the assumptions of analysis of variance 
(i. e., equal variances and normally distributed vari- 
ables; see Neter and Wasserman, 1974, p. 426). 

A Nonparaiiaetric Discriminant. Subsequent 
to examining the results achieved with the G M L  
and ECHO classifiers a discriminant function was 
sought to: 

eliminate the dependence of the discriminant on 
restrictive assu~nptions regarding statistical prop- 
erties of the data (i.e., data are unimodal, normally 
distributed, random variables), 
exploit the large number of spatially contiguous 
pixels co~nprising a single surface feature (e.g., for 
feature type clefinitions used in this studx 91 per- 
cent of the pixels in the DC images were contained 
in features of 40 or Inore pixels, 84 percent were 
of features of 90 or more pixels), 
avoid conf~~sion between spectral subsets (clusters) 
of different s~~rface features by providing a tech- 
nique which does not require clusters, 
exploit the distributional properties characteristic 

of spatially intact surface features in their discrim- 
ination, 
stal)ilize the estimate of the spectral lneasurernent 
through an increased number of n~easure~nents 
used in representing each surface feature. 

Nonpararnetric representations avoid the depen- 
dence on a priori assumptions regarding the distri- 
bution of data values, and therefore, tend to satisfy 
the first and third criteria identified above. Histo- 
grams represent the actual distribution of the data. 
Differences between histograins are therefore ex- 
pected to exhibit distributional differences as well 
as differences in the mean and variance of the data. 
Stable estimates of actual histograms, however, re- 
quire a larger number of observations than do stable 
estimates of parametric representations. How inany 
pixels are required over a single feature in order to 
provide sufficiently stable histogra~ns to serve in dis- 
crimination is not known. It was hypothesized that 
the number of pixels occurring in single features is, 
in general, sufficiently large to enable significant iin- 
provements in discrimination success rates. From 
these considerations a histogram-based discriminant 
function was developed. The discriminant can be 
considered as a multi-univariate cumulative bin- 
wise difference (CBD) between norinalized histo- 
grains fro111 a set of known surface features and a 
single unknown sul-face feature. That sulfate feature 
for which the CBD is minimum is the class to which 
the unknown is assigned. The difference between 
normalized histograms is given as: 

where: 

D, = the cuinulative bin-wise difference 
between norlnalized histograms of 
the jth known surface feature and the 
unknown surface feature, 

= the number of dimensions, or spec- 
tral bands, 

= the number of quantization (bin) 
levels contained in the two histo- 
grams, 

hj(i,k) = the normalized frequency of the kth 
bin level. of the ith band. for the ith 
surface feature of known identity," 

H(i,k) = the normalized frequency of the kth 
bin level, of the ith band, of the sur- 
face feature of unknown identity. 

The normalized histogram is computed from the 
original histogram by dividing the frequency of each 
bin by the sum of the frequencies over all bins (i. e., 
the total number of observations over the surface 
feature). 

The CBD approach presented here is only the 
discriminant function component of a complete clas- 
sifier. In order to employ such a per-field approach, 
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the scene must first be segmented into individual, 
or subsets of individual, surface features. Although 
one of the authors (Latty, 1983; Latty, 1984) has 
been engaged in the development of a scene seg- 
mentation algorithm, the results presented here are 
based on the use of the polygons of the reference 
data as the basis for computing the feature histo- 
grams. Thus, the results indicate how well the fea- 
tures can be discrinainated assuming the population 
of pixels belonging to each individual feature have 
previously been correctly defined. 

Four independent sets of polygons were gener- 
ated through the polygon sampling approach for 
each of two minimum sizes (40 and 90 pixels). The 
number of polygons selected for each surface feature 
type varied according to the lninirnuln polygon size, 
due to the number of available polygons in the 
scene. These are presented with the results. 

RESULTS 

I Figure 2 illustrates the mean performance levels 
observed for each set of factor level combinations 
(spatial resolution and classifier) over all four repli- 
cates. Table 1 provides the computed F-statistic and 
a-level for all observed pair-wise differences be- 
tween mean arc sin transformed performance levels. 
The four replicates in each treatment and the two 
treatments per test provide eight total observations 
(n,) per test, resulting in seven (n, - I) degrees of 
freedom for the total sums-of-squares. One degree 
of freedom is associated with the treatment sums- 

, of-squares (r - 1, where r is the number of treat- 
, ments), and six (n, - r) degrees of freedom are as- 

sociated with the sums-of-squares of error. Pair-wise 
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28.5rn DATA 

GMLIPOLYGON 

67m DATA I 
28.5117 DATA 

lEcHo/PoLveoN I 

28.5m DATAICBDI 
140 PlXEL MIN. SIZE I 

28.6m DATAICBDI - 
190 PIXEL WIN. SlZE 

- - - - -p 

FIG. 2. Mean percent of test pixels correctly classified 
over four replicates for each factor combination. 

differences with a probability of falsely regarding 
equal means as being different (Type I error) not 
exceeding 5 percent are considered significant. 
However, while the significance of differences are 
discussed relative to the 5 percent probability, the 
actual probability associated with the computed F- 
value is presented in the following discussion. 

The percent correct classification (PCC) achieved 
with the 28.5 m and 57 m data, employing the per- 
point CML classifier for each replicate generated by 
the pixel-by-pixel sampling are presented in Table 
2. The performance levels attained with the 57 m 
data were significantly greater (by 6.1 percent) than 
that achieved with the 28.5 m data at an a-level of 
0.018 when using the per-point classifier. 

Table 3 provides the PCC levels attained with the 
ECHO classifier using the 28.5 m data generated by 
the pixel-by-pixel sampling approach. The PCC 
levels achieved with the supervised ECHO on the 
28.5 m data were an average of 11.8 percent lower 
than the mean PCC level achieved with the same 
data using the per-point GML classifier. This differ- 
ence was significant below the 0.003 a-level. The 
PCC levels attained with the GML per-point classi- 
fier using 57 m data were, on the average, 17.9 
percent higher than those achieved with the super- 
vised ECHO using the 28.5 m data. This difference 
was significant at the 0.0001 a-level. 

The lower PCC levels achieved with the super- 
vised ECHO classifier are believed to be due in part 
to a magnitude of within-class variance inconsistent 
with the design properties of the supervised ECHO 
algorithm. The pixel-by-pixel sampling results in a 
high &action of nonspatially contiguous pixels com- 
prising the sample. Furthermore, the number of 
individual surface features from which the sample 
pixels are extracted tends to be higher for the pixel- 
by-pixel samples than for the polygon samples. 
These two properties of the sample pixels result in 
high within-class variances. Increasing within-class 
variances in the training statistics increases the ap- 
parent homogeneity of cells. This would be ex- 
pected to increase the frequency of cells which pass 
the homogeneity test which are also comprised of 
different surface feature types. A similar relation- 
ship prevails for the influence of variance on the 
likelihood ratio computed as the test for annexing 
adjacent cells (cells previously determined to be ho- 
mogeneous). 

The selection of complete polygons, or some set 
of spatially contiguous pixels, in the sampling pro- 
vides a closer approximation to what is actually done 
in computer-aided image interpretation applica- 
tions. Analysts normally develop training statistics 
by circumscribing areas of identifiable surface fea- 
tures, or mapping known surface feature locations 
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TABLE. 1. THE F-STATISTIC (a-LEVEL) VALUES ASSOCIATED WITH EACH PAIR-WISE DIFFERENCE BETWEEN THE MEANS OF THE 

ARCSIN TRANSFORMED PERCENT CORRECTLY CLASSIFIED PIXELS OF EACH FACTOR LEVEL COMBINATION EXAMINED 

B C D E F G H I 

A 10.45 23.27 1.05 2.50 6.42 7.54 44.49 210.18 
(.018) (.003) (.345) (. 165) (. 044) (. 033) (. oc'O5) (. 0001) 

B 159.15 7.89 81.01 30.00 30.28 35.24 602.52 
(. 0001) (.031) (.Owl) (. 0015) (. 0015) (. 001) (< .Owl) 

C 2.87 23.15 1.00 0.33 165.90 724.97 
(. 141) (.ON) (. 357) (. 585) (.0001) 

D 0.06 0.70 1.12 27.23 79.23 
(. 813) (. 434) (. 331) (. 002) (.c'@w 

E 3.00 4.02 104.17 702.22 
(. 134) (. 092) (.0001) (.0001) 

F 0.09 65.57 195.67 
(. 779) (. 0002) (. 0001) 

G 64.64 181.61 
(. 0002) (. 0001) 

H 39.88 
(.0007) 

A-28.5 meter/GML /pixel sampling 
B- 57 meter/ GML /pixel sampling 
C-28.5 meter/ECHO/pixel sampling 
D-28.5 meter/ GML /polygon sampling 
E- 57 meter/ GML /polygon sampling 
F-28.5 meter/ECHO/polygon sampling 
G- 57 meter/ ECHOIpolygon sampling 
H-28.5 meter/CBD 140 pixel minimum 
I -28.5 meter/CBD I90 pixel minimum 

into the image coordinate system. Spectral class spa- vised ECHO classifiers are presented in Table 4. The 
tistics computed from such sets of spatially contig- PCC levels observed for the 2 8 . 5 I ~ h l ~  combination 
uous pixels are Inore consistent with the design of were not found to I)e significantly different from 
the homogeneity and annexation tests of the super- those of the 571il~;hl~ combination (a = 0.813). The 
vised ECHO algorithm. 4 . 0  percent difference between the nlean 28.51 

The PCC levels attained with the 28.5 In data and ECHO combination and the mean 2 8 . 5 1 ~ ; ~ ~  combi- 
the 57 In data, using both the per-point and super- nation results was not significant (a = 0.434). None 

TABLE 2. PERCENTAGE OF TEST PIXELS CORRECTLY CLASSIFIED FOR EACH INFORMATION CLASS IN EACH OF THE FOUR 
REPLICATIONS, USING 28.5 METER AND 57 METER DATA WITH A PER-POINT GAUSSIAN MAXIMUM LIKELIHOOD CLASSIFIER, BASED ON 

PIXEL-BY-PIXEL SAMPLING 

28.5 Meter 57 Meter 

Class 1 2 3 4 1 2 3 4 

Water 90.4 90.9 99.1 90. 2 97.1 94.6 94.1 94.1 
Forest 82.2 86.4 78.9 82.9 88.3 81.0 80.0 90.7 
Pasture 55.8 52.9 47.6 59.1 70.7 70.2 70.7 75.6 
Crop lands 67.1 68.7 57.3 70.4 72.2 69.3 80.0 68.3 
Developed 71.3 67.6 48.7 72.4 66.3 69.3 64.4 64.4 

73.4 73.3 66.3 75.0 78.9 76.9 77.9 78.7 
* t ~ . ~  58.7 58.9 54.5 60.0 62.6 61.3 62.0 62.5 

"x.. = 72.0 " x . .  = 78.1 
*tx.. = 58.1 *tx..  = 62.1 

'Arcsin square root transformation (sin-'-, where 0 s PCC s 1). 
a Mean computed over all categories within each replicate. 

Mean computed over all replicate means within each treatment. 
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TABLE 3. PERCENTAGE OF TEST PIXELS CORRECTLY 
CLASSIFIED FOR EACH INFORMATION CLASS I N  EACH OF THE 

FOUR REPLICATIONS, USING 28.5 METER WITH THE SUPERVISED 
ECHO ALGORITHM, BASED ON PIXEL-BY-PIXEL SAMPLING 

Cover 
Class 1 2 3 4 

Water 
Forest 
Pasture 
Crop lands 
Developed 

&x.i 59.9 56.7 60.1 63.9 
*W, 50.7 48.8 50.8 53.1 

" x . .  = 60.1 
*tx.. = 50.9 

'Arcsin square root transformation (sin-'*, where 0 - PCC s 1). 
a Mean computed over all categories within each replicate. 

Mean computed over all replicate means within each treatment. 

of the pair wise daerences between mean overall 
performance levels were found to be significant at 
a-levels lower than 0.05. These results indicate that 
there are no real differences in performance be- 
tween the supervised ECHO and the per-point CML 
classifiers (for either of the spatial resolutions ex- 
amined). Nor are there any real differences in per- 
formance between the 28.5 m and 57 m data. 

NONPARAMETRIC PER-FIELD (CBD) APPROACH 
The CBD approach was tested using only the 28.5 

m data at two different ~ninilnurn polygon sizes. The 
sizes were arbitrarily selected at 40 and 90 pixels. 
The pelforlnance level for each replicate for each 
lninirnuln size are presented in Table 5. The overall 
performance level for the 90 and 40 pixel ~ninilnuln 
size polygons are 94.5 and 87.0 percent, respec- 
tively. That is, of all pixels belonging to polygons of 
90 (40) pixels or larger, an average of 94.5 (87.0) 
percent of those pixels were classified correctly 
using the CBD approach on the 28.5 m data. Pixels 
in polygons of 90 (40) pixels or more constitute 83.9 
(90.8) percent of the total pixels in the subscenes 
examined given the surface feature definitions used 
in this study. Assuming all pixels in polygons of less 
than 90 (40) pixels were erroneously classified then 
the average performance over the entire subscenes 
would be 79.3 (79.0) percent. If the pixels of poly- 
gons less than 90 (40) pixels were assumed to have 
error rates equal to those achieved with the G M L  
per-point approach then the average performance 
over the entire subscenes would be 90.0 (85.2) per- 
cent. 

The observed performance levels for the 90 (40) 
pixel minimum size polygons were an average of 
16.4 (8.9) percent higher than the highest perfor- 
mance levels observed for the 57 m data. These 
differences were significant below the 0,001-a-level. 

The differences are considerably larger between re- 
sults obtained for the polygonal sampling approach. 

SUMMARY AND DISCUSSION 

An experiment was conducted which allowed a 
rigorous test of the influence of classifier design, 
with data spatial resolution of TM (30 m) and ap- 
proximately that of the Landsat MSS (90 m), on clas- 
sification performance for a particular TM scene. 
The experiment involved evaluation of results for 
the per-point G M L  classifier and the supervised 
ECHO classifier with training and test data obtained 
in two fundamentally different ways: pixel-by-pixel 
sampling, and polygon sampling. The capability of 
a nonparainetric per-field discriminant function was 
also examined. The results obtained were compared 
to those of the per-point G ~ I L  and the supervised 
ECHO classifiers. To summarize, the results were: 

G X I L  per-point results achieved with 57 m data were 
sig~lificatltly (a = 0.018) higher than those of the 
28..5 In data based on pixel-by-pixel sampling, 
G ~ I L  per-point results did not differ significantly (a 
= 0.813) between the 57 tn and 28.5 In data based 
on polygon sampling, 
supervised EC:HO results achieved with 28.5 m data 
were significantly (a = 0.003) less than the perfor- 
lllance of the 28.5 in data, using the per-point (;AIL 
classifier based 011 pixel-by-pixel salnpling, 
supervised ECEIO results achieved with 28.5 In data 
were significantly (a = 0.0001) less than the per- 
formance achieved with the per-point GArL classifier 
usi~lg 57 m spatial resolution data, l~ased on pixel- 
by-pixel sampling, 
none of the perfor~nance levels ol)served for 
polygon sampling were significantly (a > 0.05) dif- 
ferent, 
the mean percentage of correctly classified pixels 
using the CBD approach was significantly (a = 
0.0001) greater than the highest performance level 
achieved with either classifier, with either resolu- 
tion data (GXIL per-point, 57 111 data). 

It is clear that the performance of the per-point 
G M L  classifier was not enhanced by the use of the 
30 m as compared to the 90 m resolution data, at 
least for surface features of this particular scene. For 
scenes of surface features which are sufficiently 
large to provide a large number of non-edge pixels 
relative to edge pixels, an increase in the spatial 
resolution of the data with the use of a per-point 
GML approach is not expected to improve perfor- 
mance. The use of the supervised ECHO classifier 
provided lower performance, for both resolutions, 
over the per-point GML classifier. While the ECHO 
may provide a potential for exceeding the pelfor- 
rnance levels attained with the per-point G ~ I L  clas- 
sifier, the  performance is highly sensitive to a 
number of parameters, training class statistics, and 
the distributional properties of the data. 

The specific reasons for the poor performance of 
the supervised ECHO are not clear. The supervised 
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TABLE 4. PERCENTAGE OF TEST PIXELS CORRECTLY CLASSIFIED FOR EACH ~NFORMAT~ON CLASS IN EACH OF THE FOUR 
REPLICATIONS, USING 28.5 METER AND 57 METER DATA WITH A PER-POINT GAUSSIAN MAXIMUM LIKELIHOOD AND THE SUPERVISED 

ECHO CLASSIFIERS. BASED ON POLYGON SAMPLING 

28.5 Meter 57 Meter 

Class 1 2 3 4 1 2 3 4 

Water 100.0 99.8 100.0 100.0 94.0 90.4 86.0 91.8 
Forest 55.0 82.5 55.3 88.0 77.3 66.4 73.1 84.9 
Pasture 44.2 49.3 48.5 45.5 37.6 40.9 66.2 60.4 
Crop lands 29.2 34.8 43.5 71.0 66.2 72.0 60.4 70.9 
Developed 75.5 72.7 66.3 85.3 78.4 60.2 56.0 39.5 

k . 1  60.8 67.8 62.7 78.0 70.7 66.0 68.3 69.5 
*tx., 51.2 55.4 52.4 62.0 57.2 54.3 55.8 56.5 

"x.. = 68.2 
*tx.. = 55.9 

Supervised ECHO 

28.5 Meter 57 Meter 

Class 1 2 3 4 1 2 3 -4 

Water 
Forest 
Pasture 
Crop lands 
Developed 

k.i 
* k . i  

'Arcsin square root transformation (sin-'-, where 0 s PCC 4 1). 
a Mean computed over all categories within each replicate. 

Mean computed over all replicate means within each treatment. 

ECHO performs the per-point G ~ I L  discri~iiinant for 
all pixels which fail the honiogeneity test. In per- 
forming the test for homogeneity, the algorithni 
evaluates the local variance over the cell relative to 
the variance of that spectral class to which the cell 
is most similar. High variances in the training sta- 
tistics will result in a higher frequency of cells 
passing the homogeneity test. Where these cells en- 
compass more than one surface feature type, the 
error frequency will be increased by the increased 
frequency of honiogeneous cells. A similar relation- 
ship prevails for the annexation test. A suggested 
basis for the observed performance is that a larger 
number of spectral classes was needed to adequately 
characterize the spectral properties of contiguous 
pixels of a single surface feature. The lower vari- 
ances would improve the performance of the seg- 

the class statistics and those of the scene. Addition- 
ally, it is suggested that the discri~ninant employed 
in the  supervised ECHO is not entirely ap- 
propriate. The discri~ninaiit employed is the expo- 
nentiated component of the G M L  discriminant 
function su~nnied over all pixels in the field (see 
Kettig and Landgrebe, 1975, p. 32). This is essen- 
tially a weighted vote rule-evaluated indepen- 
dently for each pixel, and summed over all pixels of 
the field. The performance relative to that of the 
per-point GIML approach using 57 m data suggests 
that a simple averaging of the pixel values over all 
pixels of the field would have improved the perfor- 
mance of ECHO. Tests could be devised and con- 
ducted to test these hypotheses and determine 
where the problems exist. However, the problems 
associated with approaches which require: 

mentation component of supervised ECHO. 
data clustering, A lower spatial resolution represents a segmen- kllowledge cluster llulm~~ers, I tation of sorts-the undirected averaging d spa- thlesllolds, and 

tially adjacent - - pixel values. The results indicate that concern over the properties of class statistics rela- 
this mode of segmentation is superior to that em- 
ployed in supervised ECHO, given the properties of 

tive to the soectral 13ro~erties of discrete fields or * 

cells 
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TABLE 5. PERCENTAGE OF TEST PIXELS CORRECTLY CLASSIFIED FOR EACH INFORMATION CLASS I N  EACH OF THE FOUR 
REPLICATIONS, USING 28.5 METER DATA WITH A CUMULATIVE BIN-WISE DIFFERENCE DISCRIMINANT 

40 Pixel Minimurn 

Training Testing 
Class Polygons Polygons 1 2 3 4 

Water 4 6 93.0 94.2 97.3 97.5 
Forest 10 40 99.0 99.3 99.9 99.9 
Pasture 10 40 81.4 81.2 83.8 85.9 
Crop land 10 40 70.7 71.3 65.5 62.7 
Developed 10 40 99.2 69.1 95.7 93.7 

Class 

90 Pixel Minimum 

Training Testing 
Polygons Polygons 1 2 3 4 

Water 2 2 100.0 100.0 100.0 100.0 
Forest 10 40 100.0 100.0 99.8 99.7 
Pasture 10 40 91.9 90.7 89.9 92.9 
Crop land 10 20 87.2 85.3 82.0 83.8 
Developed 10 20 98.5 92.5 99.2 95.6 

a ~ . i  95.5 93.7 94.2 94.4 
* t ~ . ~  77.8 75.5 76.1 76.3 

"x.. = 94.5 
*tx.. = 76.4 

'Arcsin square root transformation (sin-'-, where 0 s PCC s 1). 
a Mean computed over all categories within each replicate. 

Mean computed over all replicate means within each treatment. 

are sufficient in magnitude and number to warrant 
pursuing generically distinct alternatives. 

A large improvement over the GML per-point and 
supervised ECHO, based on use with 57 m and 28.5 
m data, was achieved with a nonparametric, per- 
field CBD discriminant. This discriminant assumes 
that the image has previously been successfully seg- 
mented. Successful segmentation results in an 
image in which each segment contains no Inore than 
one surface feature type, and that each segment is 
sufficiently large to provide enough of the feature 
distribution to render the feature most similar to 
other distributions of the same feature type. Some 
of the other shortcomings of the CBD approach in- 
clude: 

the requirement for a fairly large number of pixels, 
an expected sensitivity to small shifts in bin location 
for sparse histograms, 
failure to characterize the multispectral shape of 
the distril>utions (color analog), and 
disregard for the spatial properties of the spectral 
distribution (texture analog). 

Immediate improvements to such indices as percent 
correctly classified pixels are attainable by attending 

to the above shortcomings. All but the first of the 
above listed shortcomings can be readily mit- 
igated to some degree by approximating the distri- 
bution function, for example, with spline functions 
(Guseman and Schumaker, 1984), and computing 
local texture measures. The CBD discriminant was 
used to evaluate empirically the relative identifica- 
tion and discrimination performance attainable were 
the image to be segmented into component features 
prior to the identification and discrimination pro- 
cedure. The results obtained with the CBD discrim- 
inant demonstrate that successful scene segmenta- 
tion provides a significant opportunity for improving 
the information extraction performance. 

In spite of the performance levels observed for 
CBD and the readily available mechanisms for im- 
proving the approach, the fundamental aspects of 
the approach are regarded as incipient, if not mis- 
guided. The CBD, like nearly all other discrimi- 
nants, employs a one-step evaluation and irrevo- 
cable identification of each feature. Additional evi- 
dence for the identification of a surface feature 
should be pursued according to the level of certainty 
provided by the evidence currently evaluated. Op- 
erating on _segmented scenes provides the oppor- 
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tunity to define not only the statistical distribution 
of spectral values for each surface feature (as in the 
CBD), but also the texture, size, shape, and relative 
position of each feature. The potential for extracting 
detailed and accurate information from digital im- 
agery once we begin to define and operate on com- 
plete surface features, in lieu of pixels, is exempli- 
fied by the performance of our own visualtcognitive 
system. once the resolution and data quality pro- 
vided by the sensor affords the use of complete fea- 
tures, or meaningful facets, the nature of informa- 
tion extraction strategies which can be employed is 
markedly different from the conventional per-point 
techniques currently used. With such algorithms we 
can begin to realize the capabilities provided by 
high spatial resolution data. 
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