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ABSTRACT: A range of single date and multitemporal classification approaches was compared
using Landsat MSS data acquired during the 1979 growing season in the vicinity of Green
Bay, Wisconsin. In addition to evaluating the traditional supervised and unsupervised clas­
sification strategies typically applied in such efforts, an unsupervised multitemporal ratio
approaj:h was developed. This involved the use of multidate ratioed data in a clustering
algorithm sensitive to image texture. A spectral variance threshold for a moving 3 by 3 pixel
window in the image data was used to isolate homogeneous areas for cluster center defini­
tion. A temporal ratio profile for each cluster center was constructed and then labeled ac­
cording to the local crop calendar. The paper highlights not only the ease of this procedure,
but also its superior accuracy and consistency as compared to the traditional classification
procedures tested. The practicality of such multitemporal analyses will be greatly enhanced
by the "on demand" image acquisition features of future satellite systems such as SPOT.

INTRODUCTION

PARTICULARLY in the past decade, remote sensing
employing digital Landsat data has developed at

a rapid pace. It has become a practical tool for mon­
itoring the environment and assessing our natural
resources in a number of application areas. Never­
theless, computer-generated land-cover classifica­
tions require significant improvement in both their
accuracy and specificity in order to be used opera­
tionally in many applications. One facet to the so­
lution of this problem is to improve the quality of
the raw data. This has been initiated with the launch
of the Landsat Thematic Mapper and will continue
with the launch of the forthcoming SPOT satellite.

Equally important is the development of new
methodologies to analyze and classify the data. This
paper deals with the latter issue in the context of
evaluating multitemporal MSS data analysis proce­
dures for agriculturalland-use/land-cover mapping.
The basic need for a multitemporal approach stems
from the fact that single date analyses rarely permit
accurate classification of all cover types of interest
in an agricultural setting over the course of a grow­
ing season. This is especially true when a diverse
agricultural system is monitored.

The processing of multitemporal Landsat data
normally involves two basic elements: techniques
for data compression and techniques for image clas­
sification. Following is a very brief summary of rep­
resentative previous research involving techniques
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for compressing, analyzing, and classifying muIti­
temporal data:

(1) All available channels from various dates have been
used for classification without initial data compres­
sion (Bizzell el aI., 1975; Abotteen, 1977; Wall el aI.,
1979; Bauer el aI., 1979; Chandrasekhar and Maru­
thachalam, 1978; Hixson el al., 1980; Dawbin and
Beach, 1981; Mergerson, 1981).

(2) Selected channels of data have been used for clas­
sification, with the combination of Band 5 and Band
7 producing improved results (Abotteen, 1977; Tan­
akaetal., 1978; Bauerelal., 1979; Hixsonetal., 1980).

(3) Principal component transformation has been ap­
plied to reduce multitemporal data to fewer dimen­
sions, with as much as 99 percent of the original
information preserved along the first four axes
(Abotteen, 1977; Merembeck and Borden, 1978).

(4) Taselled-cap transformation and other measures of
greenness have been employed to emphasize certain
features in the data for analysis or classification
(Richardson and Wiegand, 1977; Malila et aI., 1980;
Badhwar et al., 1982).

(5) Various canonical transformation techniques have
been employed to transform multitemporal data along
the most separable axes, with the first three or four
axes used for classification (Lachowsky and Borden,
1973; Merembeck and Turner, 1979).

(6) Profile modeling procedures have been used to con­
struct a graphic trajectory or curve of temporal data
based on the Tasseled Cap Theory and to fit a ref-
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erence profile for identification. The goodness-of-fit
has been based on either a nonparametric method
or a statistical procedure involving a polynomial curve
fitting (Crist and Malila, 1980; Tubbs, 1980; Crist and
Malila, 1981; Woolford, 1983).

(7) Angular measure classification procedures have em­
ployed the Green Vegetation Index and the Soil
Brightness Index of data plotted in two dimensions.
A simple angular distribution algorithm has been
used for feature recognition, akin to the procedures
used for recognition of handwritten characters (Misra
and Wheeler, 1977, 1978; Wheeler and Misra, 1980).

(8) Delta classifiers have been used to reduce four-chan­
nel data to two-dimensional mean vectors. The tem­
poral trend of the mean vectors has then been plotted
on a triangular graph for classification by means of
a simple decision rule (Engvall el aI., 1977).

(9) A range of transformation algorithms based on var­
ious biophysical principles has also been applied in
image classification (e.g., Bodner,1979).

Some of the classification techniques described above
(6, 7, 8) involve graphical shape, instead of statis­
tical value, as the basis for discrimination. While
these techniques have shown great promise, var­
ious problems have typically limited their accuracy
in comparison to the more "traditional" classifica­
tion approaches (1, 2, 3, 4, 5).

The study described herein evaluated a technique
which merges the concepts of unsupervised classi­
fication and multitemporal profiling. Accordingly,
the procedure can be viewed as the marriage be­
tween a graphical shape approach and a statistical
approach. The method was tested against the tra­
ditional methods of Single-date and multi temporal
classification.

STUDY SITES/DATA PREPROCESSING

Two study sites were used in this analysis, both
located on the outskirts of the city of Green Bay,
Wisconsin. The first site, located west of the city, is
approximately 145 square kilometres (56 square miles)
in size. The second site, with an area of approxi­
mately 458 square kilometres (177 square miles) is
located to the south of the city. Based on a screening
of all available Landsat MSS data of the areas, we
chose to use the images of 20 May, 25 June, 5 July,
and 6 September 1979 for this study. These images
represented different stages of the same growing
season; they were cloud free, and of good quality.
Two aerial photographic missions were also exe­
cuted over the study sites on 23 April and 16 Sep­
tember of the same year. The aerial photographs
served as convenient reference for training and ver­
ification purposes. Additional ground surveys of the
study sites were conducted at various times during
the summer to verify crop development stages.

The farming practices of the Green Bay area of
Wisconsin are typical of the dairy belt. Corn was
planted during the period from mid-May to mid­
June in 1979. It grew to knee height by 4 July. How-

ever, it did not have significant ground cover until
mid-July. The real growth of biomass was from mid­
July to mid-August, which was reflected by the in­
crease in intensity of reflectance of the infrared band.
Alfalfa was the dominant hay crop. Winter survival
was critical to the alfalfa stands. First harvest was
in mid-June, with another harvest in September. In
some fields, three harvests were possible during the
growing season. The extreme high reflectance of
mature stands and the fluctuation of spectral reflec­
tance due to harvesting is the key point in identi­
fying alfalfa. Oats were planted as early as mid­
April, so it would be possible to detect the green­
ness of oat fields in June data. The most active har­
vesting period was from 5 August to 20 August.
Pasturing began in early May and continued well
into fall. Pasturing conditions were best in late May
and during June, when rainfall and temperature were
most favorable for the development of grass. Hotter
and drier weather in July caused pasture conditions
to deteriorate and remain poor during August.

The hardware and software used for the image
analysis reside at the Environmental Remote Sens­
ing Center (ERSC) of the Institute for Environmental
Studies, University of Wisconsin-Madison. The heart
of this facility is a Digital Equipment Corporation
PDP 11/45 minicomputer which runs under the UNIX
operating system. The computer supports a Stan­
ford Technology Corporation (STC) model 70 color
graphic processor, which has memory for three 8­
bit image planes, each up to 512 by 512 pixels in
size. The graphic processor also contains hardware
for onboard array processing of images.

Preprocessing involved the computation of radi­
ance values for each data set and a normalization
of the solar elevation effects present in the multi­
temporal images (Robinove, 1982). A correction for
atmospheric effects proved to be an elusive task.
While much previous work has been done on this
problem in the past (Rogers et al., 1973; Dana, 1976;
Turner, 1978), unfortunately, the correction algo­
rithms proposed by these studies generally dictate
the measurement of parameters concerning atmos­
pheric conditions coincident with image acquisition.
In the absence of such supplementary data, we re­
sorted to a method suggested by Scarpace et al. (1978).
Sample pixels, the reflectances of which are as­
sumed to not change through time (such as airport
runways), were extracted from each band of the
preprocessed images. Any difference in observed
radiances of these surfaces between any two images
acquired at different dates was assumed to be due
to a change in path radiance and/or atmospheric
attenuation. The sample pixel values for the cali­
bration area were averaged for each band of each
image. The image yielding the smallest value of this
average was used as a standard which was sub­
tracted from the average values observed in the same
band on the other dates. The resulting remainders
were considered to be the path radiance present in
each image. These path radiance values were then
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FIG. 1. Preprocessing, feature extraction, and classification proce-
dures for multitemporal Landsat data.
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emphasize the temporal trends in the data and, on
the other, to reduce the dimensionality of the data.
In this study we evaluated a number of biomass
transformations, or vegetation indices, in order to
emphasize the relative greenness of the land-cover
classes of interest. This evaluation was done on a
representative subset of test data, and it was deter­
mined that the ratio of M7/M5 and the Green Vege­
tation Index Transformation (GVI) (Kauth and
Thomas, 1976) provided the most useful temporal
discrimination for our situation. Figure 2 depicts the
M7/M5 ratio and the GVI temporal profile for a sam­
ple of corn pixels on the various dates of imaging.
It was this type of transformed data that we used
in our multitemporal unsupervised and supervised
classification.

The unsupervised analysis we employed involves
moving a 3 by 3 window across the image to search
for homogeneous areas to serve as "training data"
or nuclei for clustering. The means and variances
of these window areas are then computed. The im­
age analyst can define the total number of clusters
to be found, the highest acceptable variance for the
3 by 3 blocks contributing to a cluster, and the sta­
tistical distance below which two neighboring clus­
ters should be merged. The statistical distance (used
in our algorithm) is a "normalized distance between

CLASSIFICATION

subtracted from all the pixels of the respective im­
ages. This procedure represented at least a first-or­
der correction for additive atmospheric effects.
Residual multiplicative effects were necessarily ig­
nored in the subsequent traditional analyses we
performed.

Geometric registration of the various images in­
volved the selection of control points, the compu­
tation of coordinate transformation parameters, and
the resampling of the image data. An affine coor­
dinate transformation was used, and a nearest­
neighbor interpolation program was employed to
resample all images into the location and orientation
of a single master image (6 September). To permit
a visual check on the accuracy of the registration,
the master image and the resampled images were
aligned one at a time on the STC color monitor. If
the two images misregistered by more than one pixel,
the entire registration process was repeated until
sub-pixel registration accuracy of all dates was ob­
tained.

As mentioned earlier, the classification of multi­
temporal data involves techniques for feature ex­
traction and techniques for classification (Figure 1).
Feature extraction allows us, on the one hand, to
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distance between a pixel and a class is computed by
dividing the absolute value of the distance between
the pixel value and the class mean by the standard
deviation. For multiple images, the distance can be
computed as

where N,n = number of images used in the clas­
sification, and
a = class standard deviation.

It was on the basis of the above distance that all
pixels in the multitemporal data set were assigned
to the appropriate land-use/land-cover categories in
our unsupervised analysis.

In addition to the unsupervised multitemporal
analysis, we performed three other classifications
for comparison purposes: (1) an unsupervised clas­
sification of image data from a single date (6 Sep­
tember), (2) a supervised classification of the
multidate transformed data, and (3) a supervised
classification of the same single date.

RESULTS EVALUATION

The classification results were compared to the
aerial photographs taken on 6 September 1979 and
the crop survey records of 28 July and 12 August of
the same year. A total of 768 sample points (462 for
study area II and 326 for study area I) were selected
for this purpose. The number of sample points for
each land-use/land-cover pattern category ranged

May 8 June 4 July 1 Aug 15 Aug 24 Sept 29
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FIG. 2. Ratio and Green Vegetation Index temporal profiles of a corn sample
pixel based on Landsat MSS data of the 1976 growing season. (The 1976 data
are used in this particular figure to give a more complete comparison of the
two profiles.)
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the means" (dnorm), which is the square of the ab­
solute value of the difference between the mean pixel
values of two sets divided by the sum of the vari­
ances of the two sets. It can be written as

dnorm = (u, - U2)2/(3, + 32 )

where the subscripts refer to the respective classes.
This normalized distance is a measure of the statis­
tical separability of the pattern classes. It is identical
to that used in the University of Minnesota FINDSET
program, which is a derivation of the NASA ERL
SEARCH routine.

After some experimentation with the program, it
was determined that the proper number of classes
or clusters to be used was highly dependent on the
type of data under analysis. For example, Green
Vegetation Index data required more classes than
did ratio data to achieve optimal classifications.
Generally speaking, the number of classes required
to produce the best results with any given set ranged
from 30 to 50.

To assist in the analysis and identification of the
large number of clusters, the mean of each cluster
of the transformed data was used to construct tem­
poral profiles of the various ground phenomena
(Figure 3). The image analyst examined the profiles
and grouped them into severalland-use/land-cover
pattern categories according to profile shape. This
was done with the help of knowledge of the local
crop calendar and the general characteristics of the
spectral responses of the individual crop types across
the growing season.

The second step in the unsupervised analysis was
then to classify all pixels in the scene into the class
to which they are nearest. For any single image the
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9. Water

6. Bare Soil

cover. This category primarily represents residential
areas, country roads, and farmsteads mixed with
surrounding vegetation. The impervious surface
category includes urban areas, major highways,
shopping centers, and airport runways. Corn and
alfalfa represent over half of the total area (30.8
percent and 26.0 percent, respectively). The pasture/
grass category also constitutes a large share (18.9
percent) of the area. The overall accuracy of this
classification is 89.8 percent, which is the summation
of the accuracy of each class weighted by the number
of pixels occurring in each class (Table 2).

The discrepancies between the reference data and
the classification can be explained by one (or more)
of the following: (1) inseparability of the temporal
profile of certain resources; (2) misinterpretation and!
or mislocation of the reference data sample points;
and (3) misregistration of the multi temporal images.

The inseparability of the temporal profile of
different land-uselland-cover pattern categories can
be partially resolved by improving the temporal
resolution of the data. This involves increasing the
number and/or changing the timing of the dates of
data used. Of course, the number and timing of
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FIG. 3. The typical temporal profiles used for cluster grouping of 1979 data.

from 30 to 74. The sample points were interpreted
manually with the help of the field survey records.
Then the sample point coordinates were located on
the various image classifications displayed on the
STC color monitor. On the basis of these compari­
sons, we summarize below the best overall classi­
fication result obtained; the performance of multi­
date versus single date classification; the perform­
ance of supervised classification versus unsuper­
vised classification; and the results obtained using
ratio transformed data versus Green Vegetation In­
dex transformed data.

THE BEST CLASSIFICATION RESULT

In terms of overall accuracy, the best result was
produced by the unsupervised classification of the
multitemporal M7fMS ratio data (Plate 1). A total of
nine land-uselland-cover categories resulted from this
analysis (Table 1). They are woods, pasture/grass,
corn, alfalfa, oats, bare soil, water, mixed, and
impervious surfaces. Bare soil includes feed lots and
fields with spotty vegetation. The mixed category
includes pixels containing more than one ground



TABLE 2. AN ERROR MATRIX COMPARING GROUND REFERENCE AND THE UNSUPERVISED CLASSIFICATION RESULT OF
TEMPORAL M7/M5 RATIO DATA OF STUDY AREA II.

REFERENCE
CLASS 1 2 3 4 5 6 7 8 9 TOTAL

Woods 1 46 2 3 51
Pasture/Grass 2 4 59 1 6 2 72
Corn 3 1 72 1 74
Alfalfa 4 4 3 63 2 72
Oats 5 1 1 35 7 44
Bare soil 6 1 25 4 30
Water 7 2 35 1 38
Mixed 8 2 46 1 50
Impervious 9 5 26 31

Class. Total 50 69 77 74 35 39 35 51 32 462
Accuracy % 90.2 81.9 97.3 87.5 79.5 83.3 92.1 92.0 83.9
Weighted Accuracy 89.8%

TABLE 1. UNSUPERVISED CLASSIFICATION RESULT OF THE TEMPORAL M7/M5 RATIO DATA OF STUDY AREA II.
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18.9%
30.8%
26.0%

0.6%
4.4%
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0.5%

100.0%

Percentage of
Total

6,015
21,439
34,842
29,432

651
4,937
1,646

13,648
550

113,160

Area in Acres

cannot be accurately estimated by the sample point
method. For example, some boundary pixels between
water and land were classified as bare soil because
the mixing of forested areas or pasture/grass with
water generates a temporal profile corresponding to
that of soil. It is estimated that about 3 to 5 percent
of the pixels were misclassified because of this effect.
Accounting for these types of boundary pixel errors
and other observable pure pixel errors, it is estimated
that this classification has an .accuracy level of 84 to
86 percent. This is considered quite encouraging in
light of the fact that, for most of the critical period
for crop discrimination (part of July and all of
August), no data were available for our analysis. If
data were available for this period, we believe the
accuracy would be even further improved.

MULTI-DATE VERSUS SINGLE DATE CLASSIFICATION

Again, in order to compare the usefulness of the
multidate data with that of single date data, the
September scene was classified by means of the same
unsupervised algorithm. The classification results
(66 percent) are quite inferior to those obtained with
the temporal ratio data (Plate 2).

To label the single date classification, clusters were

5,468
19,490
31,675
26,756

592
4,488
1,496

12,407
501

102,873

Number of
PixelsName
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Woods
Pasture/Grass
Corn
Alfalfa
Oats
Bare Soil
Water
Mixed
Impervious

dates available is very much a function of the weather
and satellite orbit and viewing parameters.

Another way of potentially improving the
separability of the various cover types is to increase
the number of clusters allowed in the unsupervised
algorithm. There are, however, drawbacks and
physical limitations to this process. It demands
substantially more time of the image analyst to label
clusters and, if too many clusters are used, some
tend to represent artificial classes or noise as well
as true ground classes of interest.

The misinterpretation of reference sample points
and the mismatch of sample points between the
ground references and imagery is always a possibility.
Unfortunately, there is no good way for solving this
problem except by repeating the procedure with
another interpreter. Also, misrepresentation errors
have the greatest influence in areas where fields are
small and fragmented. The significance of this
problem is reduced when the use of TM or SPOT
satellite data is considered.

To further evaluate the accuracy of the
classification, a visual examination of the entire
classified image was made. This enabled the analyst
to pinpoint misclassified boundary pixels, which

Total
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recognized by comparing their distribution with the
reference data-in this case, the aerial photographs.
Without the information on temporal profiles of the
clusters, the process was tedious and time-consuming
and some clusters contained pixels from several land
resource categories. Twenty-four cluster nuclei were
employed in this classification. However, four
clusters dominated the scene and the analyst was
forced to assign them to the major land-cover
categories. It is suspected that it might have been
possible to refine the clusters by increasing the
number of nuclei to 40 or more. It became impractical,
however, to attempt to label so many clusters. More
importantly, certain feature types simply were not
spectrally separable in this single date imagery. For
example, the spectral reflectance of woods is identical
with that of corn at this time period; hence, 30 out
of 51 woods category pixels were assigned in error
to the corn category.

SUPERVISED VERSUS UNSUPERVISED

CLASSIFICATION

Using a supervised classifier, training data are re­
quired to provide statistical representation for the
entire population. Normally, knowledge of select­
ing training data is based on the visual interpreta­
tion of the raw Landsat image, reference to ground
survey records, and/or reference to aerial photo­
graphs collected at approximately the same time as
the imagery. When classifying multitemporal agri­
cultural scenes, visual interpretation of one Landsat
image or supplementary information collected at one
point of time is far from ideal for selecting training
samples. Training samples selected in this way will
often result in some misrepresentation, with the
amount of error dependent on the particular land­
use/land-cover category, the date of the data used,
and the particular growing conditions.

To remedy the above problem, we selected train­
ing sets in two steps. Training area polygon coor­
dinates were first taken from the 6 September data.
The polygon coordinates which registered on the
bit plane of the STC were saved and later remapped
onto the M7IMS ratio temporal data which were loaded
into the three display channels. On the basis of the
color rendition of the different ground covers, the
analyst was able, to some extent, to recheck the
correctness of the training data. The final classifi­
cation result (83.1 percent), was similar to, but not
as good as, the classification generated by the un­
supervised method (Plate 3).

In order to compare the performance of single
date data using the maximum likelihood routine,
the same set of training data were applied to the 6
September 1979 data. The accuracy (72.8 percent),
is far below that obtained with the temporal data
(Plate 4). Nevertheless, this result is better than that
obtained with unsupervised classification of the sin­
gle date data.

As mentioned previously, training data selection

is a Herculean task for multi temporal analysis. Of
course, one can construct temporal profiles using
the means of n-dimensions of the training sets for
verification. The point is that there is always sig­
nificant duplication of information in this process,
and it is virtually impossible to exhaust all the var­
iations of the shapes of temporal profiles existing in
the data. It is an arduous experience for the analyst
to go back to the beginning of the process frequently
to take training polygons for the "missing pieces of
the puzzle."

RATIOED DATA VERSUS GREEN VEGETATION INDEX

DATA

The Green Vegetation Index, which is sensitive
to the vigor of vegetation, is the result of linear
transformation of all four bands of MSS data.
Therefore, in theory, GVI contains more information
and gives a better portrait of the ground vegetation
than do the ratio data for two bands. Visual
comparison of the two types of transformed data
tends to confirm this judgement. The images of GVl
demonstrate greater variation of medium grey tones
within fields and between fields than do those of
ratio data, which tend to polarize toward either black
or white.

Surprisingly, the richness of information of GVI
data created difficulties for the unsupervised
classifier. A larger number of clusters were required
to classify the data, and considerably longer time
was needed to group and label the clusters (Plate
5). It is speculated that the above problem was due
to the use of four bands, especially band 4. Some
information that was included is considered to have
been noise under the unsupervised classification
scheme used. Comparing the classification results
of both ratio and GVI transformed data (85.7 percent
and 83.9 percent, respectively), the number of pixels
assigned to the various land-use/land-cover pattern
categories is very similar (Table 3).

CONCLUSION

Two schools of thought regarding the processing
of multitemporal data are recognized. One advo­
cates the use of conventional classification tech­
niques, the other advocates the use of a graphical
shape matching procedure called "profile technol­
ogy."

The technique described in this paper is intended
to combine the best of both approaches--to merge
the unsupervised classification technique and the
temporal profile concept. This offers a new ap­
proach for classifying transformed multitemporal
remote sensing data which appears to be particu­
larly suited to agriculturalland-use/land-cover map­
ping. The method is simple and the results obtained
are better than those obtained in comparable single­
date and supervised analyses. One might argue that
84 percent to 86 percent accuracy is not adequate
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PLATE 1. Unsupervised classification result of Landsat MSS

ratio transformed temporal data of study area II.

PLATE 3. Supervised classification result of Landsat MSS

ratio transformed temporal data of study area II.

PLATE 2. Unsupervised classification result of single date
Landsat MSS data (6 September 1979) of study area II.

PLATE 4. Supervised classification result of single date
Landsat MSS data (6 September 1979) of study area II.
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PLATE 5. Unsupervised classification results of Green Vegetation Index transformed temporal data
(left) and ratio transformed temporal data (right) of study area I.
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TABLE 3. A COMPARISON OF UNSUPERVISED CLASSIFICATION RESULTS OF M7/M5 RATIO AND GVI TRANSFORMED DATA OF
STUDY AREA I.

Ratio Dates GVI Transformed Data
Number of Percentage of Number of Percentage of

Name Pixels Total Pixels Total

Woods 5,232 16.0% 5,335 16.3%
Pasture/Grass 7,378 22.6% 7,814 23.9%
Corn 10,129 30.9% 9,042 27.7%
Alfalfa 6,218 19.0% 6,524 19.9%
Oats 1,711 5.3% 1,415 4.3%
Bare Soil 1,861 5.7% 2,500 7.7%
Unknown 176 0.5% 75 0.2%

Total 32,705 100.0% 32,705 100.0%

for some applications. We would like to reiterate
that in this investigation we employed only four
dates of data, and no data were available for the
most critical part of the growing season. With the
improvement of the temporal, spatial, spectral, and
radiometric resolution of other data (such as TM and
SPOT) and their improved geometric fidelity, the ac­
curacy of this method will likely improve substan­
tially.
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