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ABSTRACT: Airborne multispectral linear array systems for the remote detection and enu­
meration of rare objects must often employ specialized classification algorithms that allow
fast data processing and accurate discrimination. In some cases, the spectral information
from several bands is inadequate to classify accurately the object of interest from its back­
ground. This limitation leads to objects of interest being undetected and the occurrence of
false counts (errors of commission). If the a priori probability of occurrence of the object of
interest is low, the probability of a false count must be extremely small or the estimated
number of objects will be greatly overestimated. Pixel mixtures frequently result in significant
errors in some classification methods.

A class of multistage classification methods based on capture-recapture sampling theory is
presented to cope with the problems and requirements outlined above. Ratios of the radiant
flux in two spectral bands are the primary basis for classification. Each of these ratios is
compared to a threshold value to discriminate the object of interest from its background. The
threshold values are set conservatively to avoid false counts. However, a substantial fraction
of the objects of interest then remain undetected by each of the ratio classifiers. Capture­
recapture theory is used to estimate the population size of the objects of interest from these
incomplete counts. The classification procedure is illustrated with data from the results of a
Monte Carlo study and with data from a mule deer detection program. These studies indi­
cated that a class of jackknife estimators performs well, especially when heterogeneity among
the pixels and dependence among the classifiers is significant and detection probabilities are
above about 0.3 or 0.4. Relative bias was less than one percent when three classifiers were
simulated and achieved confidence interval coverage was at the nominal level. It is essential
to avoid false counts when using this classification system.

Selection of spectral bands is addressed and a simple algorithm based on spatial infor­
mation is given to further reduce the number of false counts. The entire algorithm can be
implemented with currently available electronic components and can be operated in real
time, as demonstrated with prototype system of field tests.
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INTRODUCTION

SOME REMOTE SENSING APPLICATIONS are concerned with correctly classifying relatively small objects of
interest and counting them by means of instrumentation aboard an aircraft. Examples might include

aerial surveys for biological populations like caribou, deer, kangaroos, or polar bears as well as many
nonbiological inventories. These applications involve several common problems that must be overcome
before success can be achieved.

A high degree of accuracy is not essential in some survey programs. In biological surveys an accuracy
of ± 15 percent is often satisfactory. These objectives are difficult to obtain because the a priori probability
of the object of interest may be on the order of 10-5

. Therefore, unless false counts are essentially elimi­
nated, say a rate on the order of 10-6

, the count will be far too large. Error types and terminology are
illustrated by the following table:



BACKGROUND

The classification procedure described is illustrated by ongoing efforts to develop a system to enumerate
mule deer. Trivedi et al. (1982) presented an optimal single-stage Bayes classifier and the results of con­
trolled field tests relating to a multispectral deer detection system. Classification error rates were estimated
and several different a priori probabilities were considered. Trivedi et al. (1984) presented a sequential or
multistage classification algorithm as a more practical and equally effective alternative. The results of
Trivedi et al. (1982, 1984) support the use of ratios of the radiant flux in two spectral bands as the basis
of classification. Such ratios are easy to implement electronically, and classification of them can be based
on a comparison with a threshold to discriminate the classes "deer" versus "nondeer."

In view of these results, Voorheis (1982) developed a prototype electro-optical system to be used in a
wide variety of controlled tests from the ground and from aircraft. The prototype instrument employs
four 1728-element detector arrays totaling 6912 detectors. Four spectral bands are used (0.725, 0.764, 0.863,
and 0.981 f.Lm, all ± 0.01). The system resolves a lO-cm by lO-cm pixel at about 445 m above the ground
(additional details can be found in Voorheis (1982)).

Experiments with this instrument and the single-stage and multi-stage classification algorithms were
encouraging, but revealed several problems. Spectral data in three or four bands were not sufficient for
accurate discrimination into the two classes "deer" and "nondeer." False counts could not be totally
eliminated, and because of the overwhelming majority of the "nondeer" class, gave greatly exaggerated
counts. Deer were sometimes undetected by the instrument (an error of omission). Finally, the pixel
mixture problem was found to be serious and resulted in many false counts.

The classification algorithm must be very fast because real time data processing is often required due
to the high data rates and small pixel size. The large amount of data prohibits storage in the aircraft until
the data can be analyzed at a later time on the ground.

Various classification methods can be unsatisfactory due to a common and unavoidable measurement
problem that is herein referred to as "pixel mixtures." For example, a given lO-cm by 10-cm pixel contains
a mixture of snow and sagebrush and might be incorrectly classified as "deer." The system is designed
to correctly classify snow as "nondeer" and sagebrush as "nondeer." It is certain mixtures of the snow
and sagebrush scene where classification errors are made. In addition, a pixel might be only partially
"deer," giving rise to classification problems.

Often, data in three or four spectral bands are not sufficient for accurate classification and enumeration.
This is true for certain scenes, even without pixel mixtures. If a system could use information in 8 to 12
spectral bands and limit high atmospheric absorption spectral regions, perhaps the spectral data would
be sufficient for accurate classification. However, current technology often prevents the development of
such systems and, therefore, spectral information can be used with simple spatial information to enhance
correct classification. The spatial data available are the classification outcomes for adjacent pixels.

The purpose of this paper is to explain and illustrate a series of classification algorithms based on capture­
recapture theory (Otis et aI., 1978) that are very fast, are based on a simple method of selecting spectral
bands that minimizes the problem of misclassifying pixel mixtures, are accurate in the face of imperfect
spectral discrimination, incorporate spatial data, and are appropriate for surveying populations of small
objects that are relatively very rare.

These problems and solutions are illustrated by an example involving mule deer (Odocoileus hemionus)
on winter ranges in the western United States and by means of a Monte Carlo study. Based on these
results, the classification algorithm described appears promising for a fairly broad class of remote sensing
applications where enumeration is the objective.
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A method of avoiding large classification errors due to pixel mixtures is the proper selection of spectral
bands. Bands to be selected must be those where reflectance ratios for deer are higher (or lower) than
reflectance values for all nondeer classes (i.e., a boundary constraint is enforced). Mixing of the nondeer
classes does not cause errors if we consider the ratios of the spectral bands that satisfy this boundary
condition. The most common class expected to be mixed with other nondeer classes is snow in wintertime
surveys. Such mixtures often improve the discrimination between deer and nondeer classes. Average
scans of the data collected by Trivedi (1979) were examined for spectral bands that met this boundary
constraint. Six spectral bands were identified: 0.603 J.Lm, 0.672 J.Lm, 0.725 J.Lm, 0.764 J.Lm, 0.863 J.Lm, and

0.981 J.Lm. These six bands allow calculation of (~) = 15 ratios (Table 1); however, only six of the 15 ratios

satisfy the boundary constraint: [0.672]/[0.603], [0.981]/[0.863], [0.863]/[0.725], [0.981]/[0.725], [0.863]/[0.764],
and [0.91]/[0.764] (in addition to inverses of these six). The notation above expresses the value of a spectral
measurement corresponding to wavelength i as Ii]; thus, [i]/U] would represent the ratio of measurements
made in the spectral bands corresponding to wavelengths i and j, respectively.

Mixed Spectral Data. Approximately 2,000 spectral signatures involving 105 classes (e.g., snow; bare
ground; grass, shrub, and tree species; rocks) were collected near Logan, Utah during the winter of 1981
(Trivedi et aI., 1984). A large data base was generated by purposely mixing these spectral reflectance data
to gain information on the problem of pixel mixtures. In general, the various classes were mixed with
snow (the typical case on a winter range for mule deer). Specifically, the data base of mixtures was
generated for each spectral band using Equation 1 (see Conners et aI., (1984) 288-289).

exY,+(l-ex) Yj (1]

where ex = mixing coefficient 0 < ex < 1 values in the increments of 0.1 were considered.
In Equation 1,

ALGORITHMS FOR ENUMERATING RARE OBJECTS

TABLE 1. RATIOS OF FLUX MEASUREMENTS OF THE SIX SPECTRAL BANDS

SATISFYING THE BOUNDARY CONDITION. INVERSES ARE NOT SHOWN AS THEY

CONTAIN SIMILAR INFORMATION (DIFFERENCES IN THE COEFFICIENT OF

VARIATION <3%). FROM TRIVEDI et al. (1984).

Ratio of radiant flux measurements in two bands

[0.672] [0.725] [ .764] [0.863] [0.981] [0.725]
Class [0.603] [0.603] [0.603] [0.603] [0.603] [0.672]

Deer Mean 1.73 2.36 2.63 2.80 1.49 1.36
Coeff. Var. % 9.86 14.22 16.18 19.62 24.75 8.09

Snow Mean 1.41 1.54 1.52 1.26 0.48 1.09
Coeff. Var. % 4.18 5.52 5.71 6.51 18.31 2.73

Juniper
Mean 1.21 6.71 7.89 7.39 3.04 5.57
Coeff. Var. % 9.07 10.96 11.15 12.57 20.20 14.45
Mean 1.59 2.65 2.92 2.82 1.32 1.67

Sagebrush Coeff. Var. % 5.86 10.17 12.00 14.40 21.66 7.27
Rabbit- Mean 1.62 2.30 2.50 2.37 1.06 1.42

brush Coeff. Var. % 7.41 9.11 10.39 13.14 20.53 6.33

Ratio of radiant flux measurements in two bands

[0.764] [0.863] [0.981] [0.764] [0.863] [0.981] [0.863] [0.981] [0.981]
[0.672] [0.672] [0.672] [0.725] [0.725] [0.725] [0.764] [0.764] [0.863]

1.51 1.61 0.86 1.11 1.18 0.63 1.06 0.56 0.53
10.00 12.89 19.13 3.27 7.72 15.87 5.61 14.40 10.66
1.08 0.89 0.34 1.00 0.82 0.31 0.83 0.32 0.38
2.97 4.82 18.64 1.50 3.64 18.27 3.36 18.10 15.61
6.56 6.13 2.53 1.18 1.10 0.45 0.94 0.38 0.41

14.63 15.39 22.15 2.37 4.68 13.89 3.82 13.23 10.49
1.84 1.77 0.83 1.10 1.06 0.45 0.96 0.49 0.46
8.87 11.18 19.28 2.74 5.35 13.00 3.63 14.01 10.85
1.55 1.46 0.65 1.09 1.03 0.46 0.95 0.42 0.44
7.36 8.88 16.70 2.63 5.72 15.06 4.20 14.25 11.06

APPROACH

AVOIDING PIXEL MIXTURE ERRORS
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Yi = snow reflectance data for a particular spectral band, and
Y j = some other class that would "mix" with snow to form a pixel mixture.

Because nearly all other classes could be expected to be measured with snow as a pixel mixture, the
new data base was relatively large (11,466 records) and was used to investigate classifier performance with
pixel mixtures.

Formulating the Decision Rules. Histograms of "deer" versus "nondeer" for each of the six ratios of spectral
reflectance were prepared (the best three are shown in Figures 1 to 3). While these seem to represent the
best ratios of radiant flux, there is considerable overlap between the histograms of deer and nondeer.
Considering the very high a priori probability of nondeer (on the order of 1-10-6

), it is clear that the
probability of a false count must be essentially zero or very serious overestimation will occur. From Figure
1, if threshold T, is established at 0.525, the nondeer class is always < T,. A given pixel is then classified
as "deer" if the value of the ratio for spectral bands [0.981]/[0.863] > T,. When this occurs, a counter c,
is incremented by one. While this classifier avoids false counts, it also fails to count correctly about 4/5 of
the deer (large errors of omission) (see Figure 1) and is hardly satisfactory. A similar argument can be
made for ratios [0.764]/[0.981) and [0.981]/[0.725] (Figures 2 and 3), although the classification rule is
reversed for [0.764]/[0.981].

In summary, the problem of pixel mixtures can be avoided if only ratios of spectral reflectance are
chosen with the boundary constraint. In this way, mixing certain classes actually allows further separation
of the distributions of deer and nondeer. Ratios of reflectance were chosen to allow the greatest separation
of the distributions (all possible histograms and linear discriminate functions were examined to select the
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FIG 1. Histograms of the ratio of spectral reflectance in two wavelength
bands [0.981)/[0.863) for mule deer (top) and 105 nondeer classes mixed
with varying proportions of snow (bottom). A threshold T, is shown and
if the ratio > T1 the scene is classified as deer. This rule avoids false
counts but fails to correctly classify most of the deer.

l.L. 1400
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best ratios). These considerations and the information in Figures 1 to 3 lead to the following simple decision
rules for a given pixel:

If ratio [0.981]/[0.863] > 0.525, classify "deer" and increment the counter C1 (0.525 is a threshold, T1 );

If ratio [0.764]/[0.981] < 1.60, classify "deer" and increment the counter C2 (1.60 is a threshold, T2 ); and
If ratio [0.981]/[0.725] > 0.70, classify "deer" and increment the counter c3 (0.70 is a threshold, T3 )·

In each case, the counts Clf C2 , and C3 are very incomplete (negatively biased) because they are well
below the actual number of deer N.

ESTIMATING THE NUMBER OF DEER FROM INCOMPLETE COUNTS

Consider a system employing three ratios of four spectral bands and three simple threshold classification
rules as presented. We are left with three counts Clf C2 , and C3 , all of which are less than the true total N.
We can say that the counts Ci are incomplete. Magnusson et al. (1978) discussed the use of Petersen's
(1896) method to estimate the total number (N) in a population from two incomplete counts. The example
given dealt with crocodile nests being counted and mapped by two airborne observers. They define Clf

C2 , and n12 (our notation) as the number of nests seen by observer 1, observer 2, and both, respectively.
An estimate of the total N is (from Chapman 1951)
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FIG. 2. Histograms of the ratio of spectral reflectance in two wavelength
bands [0.764]/[0.981] for mule deer (top) and 105 nondeer classes
mixed with varying proportions of snow (bottom). A threshold T2 is
shown and if the ratio < T2 the scene is classified as deer. This rule
avoids most false counts but fails to correctly classify most of the deer.
A smaller T2 would be required to lessen the number of false counts.



N = (c + 1)(c + 1) _ 1.
(n 12 + 1)

More recently, Maxim et al. (1981) dealt with a more extended example involving two or three observers
inspecting photographic images. They, like Magnusson et al. (1978), realized that the assumption that
detection among observers must be independent, and they further emphasized that there must be no
false counts. They made an empirical assessment of the assumption of independence and attempted to
deal with a model allowing some dependence. Both papers fully recognized that the general problem falls
under what is called capture-recapture sampling theory.

The problem of dependence between the two observers carries over to dependence among electro­
optical sensors and mathematical classification algorithms. If the first observer fails to see a crocodile nest
because it is somewhat hidden or partially shaded, then the second observer will also tend to fail to see
the same nest, for the same reasons. Conversely, a large nest on a slight rise in open terrain will have a
marked tendency to be seen by both observers. The principle of dependence is to be expected due to the
heterogeneity of the objects of interest and their spectral information. Heterogeneity is defined here as the
collection of differences in the spectral information for the objects of interest. Conceptually, there exists
a probability density function (pdf) of this variability (see Burnham and Overton (1978) for the analogy of
heterogeneity in capture probabilities in animal trapping studies). Objects of interest exhibit heterogeneity,
and this gives rise to dependence among the classifiers.

Capture-recapture theory now includes a rigorous estimation theory for a wide class of models (Otis et
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FIG. 3. Histograms of the ratio of spectral reflectance in two wave­
length bands [0.981)/[0.725) for mule deer (top) and 105 nondeer
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T3 is shown and if the ratio> T3 the scene is classified as deer. T3
must be larger to avoid all false counts, thereby giving an incomplete
count of deer.



Estimators for Np ' Np • A variety of estimators of N p , denoted as Np , exists depending on the model
assumed. In general, if it is assumed that classifiers are independent, the Chapman (1951) and Darroch
(1958) estimators are appropriate:

II = n I2 ... /'

n. the number of different deer pixels classified as deer by at least one of the t classifiers during the
survey. This statistic is merely the number of nonzero rows in the X matrix. Of course, if NI' - n.
were known, the problem would be solved.

aI., 1978; Seber, 1982; White et aI., 1982). This theory is reviewed briefly and cast in a remote sensing
context. The application covers two or more observers or some sort of detector or electro-optical sensor
system with two or more outputs. The term classifier will be used be it a person, a detector plus a classifier,
or a result of a mathematical algorithm. Consider the number of classifiers j = 1, 2, ... , t (where t~ 2).
Conceptually, the pixels in the class of interest can be numbered from 1, 2, ... , to the last pixel N p ; that
is, i = 1, 2, ... , N p • The detection history of each deer pixel by each classifier can be expressed conveniently
in a matrix X.
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~ ~ ~ ~

{
I if the i'h deer pixel is classified as "deer" by the r classifier, or
ootherwise.

Let

Xll X12 X13 Xlt
X21 X22 X23 X21

X3 ·! X32 X33 X31

[XiJ= [2]
Xn .1 Xn . 2 Xn .3

where Xij

The X matrix contains only zeros and ones, indicating whether a particular deer pixel is "not classified
as deer" and "classified as deer," respectively. Each column details the history of classification as deer
for the j'h classifier (j = 1, 2, ... , t). Therefore, a row in this matrix has at least one I (i.e., deer) in it,
and may have as many as t Is in it (i.e., all t classifiers classified the particular pixel as a deer). The first
n. rows of the matrix relate to the classification history of each deer pixel classified as deer by at least one
classifier. The remainder of the X matrix contains all zeros, because these deer pixels were never classified
deer. Of course, one does not know how many remaining rows there are (because N p is unknown). Note
that, because deer are larger than the lO-cm by lO-cm pixel, we must first estimate Np , the total number
of pixels that are "deer" and later estimate the number of deer N.

Detection Statistics. Several statistics are computed from the X matrix for use in defining estimators of
N p .

cj the total number of deer pixels classified as deer by the r classifier, j = 1, 2, ... , t (where t ~
2). cj is merely the sum of the r column of the matrix X.

nw the number of deer pixels classified as deer for a particular classifier pattern, w. Examples will make
this clear. n2 is the number of deer pixels classified as deer by only the second classifier. n13 is the
number of deer pixels simultaneously classed as deer by only the first and third classifiers. In a
four classifier system n ,234 is the number of deer pixels simultaneously classed as deer by all four
classifiers. nw is a set of counters.

fj The classification frequencies: the number of deer pixels classified as deer exactly j times by the t
classifiers, j = 0, ... , t. For example, f2 = number of deer pixels that were classified as deer by.
two classifiers. The statistic fa is not observable for if we know fa we would know N". Note,

f, = n, + n2 + ... + n,;
12 = n l2 + n13 + n23 + .. + nt_l,t;
13 = n123 + n124 + ... + n t _2 ,t_l,t;



or 1.51 + 12

[~:1]

(C 1 + 1)(c2 + 1)(c1 - n12)(C2 - nd
(n '2 + 1)2 (n 12 + 2)

1 -
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Np is the solution ofFor t > 2

Fort = 2

var(Np ) = [(1 + t ~ 1)2 /1 + 12] - Np

[2.25/1 + 121 - Np •

The procedure is often less than satisfactory in this case because little information is contained in just 11
and 12' In the case t = 3,

, ( 3t - 6) ( 3[2 - 1St + 19) ( (t - 3)2) 5Np = 1 + -t- 1, + 1 - t(t _ 1) 12 + 1 + t(t _ 1)(t _ 2) 13 = 2/, + 6' 12 + 13

var(Np ) = [(1 + 3t ~ 6)2 /1 + (1- 3[2 ~t1~\~ 19)2 /2 ] (1 + t(/~ ~)~;~2»)/3] - Np

[411 + G~) 12 + 13] - Np •

If Pi = 1, all objects of interest are detected (i.e., correctly classified) by the r ~lassifier. The assumption
that classifiers are independent is not likely to be true. If it is false, then E(Np ) < Np , where E is the
expectation operator. This estimator can be expected to be useful even if there is some dependence if the
detection probabilities Pi are near 1 (say> 0.80 or 0.85). When dependence or heterogeneity of qetectability
is encountered, this procedure can give an estimated total less than the number observed (Np < M t + 1 ),

an undesirable situation. This procedure critically assumes no false counts are made. This can be met by
proper selection of each threshold, Ti (Figures 1 to 3) and section on Avoiding Pixel Mixture Errors).

A second model is more generally useful and allows heterogeneity in detectability. A series of estimators
have been developed (Burnham and Overton, 1978, 1979) for this model based on the generalized jack­
knife. This is a nonparametric estimation theory and has been shown to be robust to violations to the
underlying model (see Otis et al. (1978) 123-133).

Regardless of the pdf of heterogeneity, the minimal sufficient statistics are the classification frequencies
Ii (Burnham and Overton, 1978, 1979), and the jackknife estimator is a linear combination of these statistics.
If t = 2 (two classifiers),

c.
where Pi = it is the detection ("capture") probability.

p

Higher order estimators exist for t > 3 and, while they become increasingly complex, they still exist in
closed form (see Burnham and Overton, 1978).

The class of estimators is quite generally applicable. For example, consider a multispectral scanner
employing four spectral bands. Six ratios could be defined resulting in 64 classification patterns nw (Le.,
nv n2, ... , n6 , n12, ... , n56, n,23, ••• , n456, ••• , nl23456). This represents a large amount of informa­
tion, providing the firm basis for the estimation of Np •
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ANALYSIS RESULTS

TABLE 2. RESULTS OF MONTE CARLO STUDIES OF THE PERFORMANCE OF THE DARROCH AND JACKKNIFE ESTIMATORS

FOR Two AND THREE CLASSIFIERS. ALL RESULTS ARE BASED ON 400 REPLICATIONS.

1167
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where

and the percentage of the 400 replications where the 95 percent confidence interval covered the true
parameter, N p •

The estimators of np were evaluated using Monte Carlo methods whereby 400 replications of the Xii

matrix were generated foAr each of 24 cases. For each case, N p was known (e.g., 100, 400, or 1000) and for
each Monte Carlo trial, N p was computed. The evaluation was based on

(aVe(N~p Np)) x 100

MONTE CARLO RESULTS

A Monte Carlo study was performed to indicate the utility of capture-recapture theory in a remote
sensing context. The purpose of this study was to examine the average performance of the estimators
(e.g., bias and achieved confidence interval coverage). The method outlined by Otis et al. (1978:123) and
White et al. (1982:218-221) was used to generate 2,400 data sets according to two different parameter sets,
A and B. Scheme A was similar to the situations depicted in Figures 1 to 3 in that the detection probabilities
Pi of deer ranged from 0.3 to 0.5. Scheme B was more pessimistic in that the detection probabilities ranged
from 0.18 to 0.25. Both schemes reflect the fact that certain ratios of spectral reflectance are better than
others at discriminating deer versus nondeer and that the ratios are partially dependent due to hetero­
geneity of the target and its background.

Moderate heterogeneity was incorporated in the underlying model to generate Monte Carlo data that
would reflect the fact that some deer are more difficult to classify correctly than others because of the
varying quality of the spectral information. This also reflects a moderate degree of dependence among
the classifiers and the Pi" Three population sizes were used: 100, 400, and 1,000. Systems with two and
three classifiers (t = 2 and 3) were simulated and the results appear in Table 2.

Chapman's (1951) and Darroch's (1958) estimators, the traditional capture-recapture approach, have

Number of True Ave!age Percent relative Average c.r.
Estimator classifiers N Scheme' N bias c.r. width coverage (95%)

Darroch ~ 100 A 87 -13 35 56.8
100 B 89 -11 191 72.5
400 A 337 -16 163 58.2
400 B 334 -16 323 70.0

1000 A 839 -16 253 31.2
1000 B 821 -18 483 58.5

3 100 A 87 -13 91 74.0
100 B 88 -12 98 70.8
400 A 343 -14 68 15.5
400 B 335 -16

1000 A 862 -14 109 1.0
1000 B 830 -17 265 30.8

Jackknife 2 100 A 61 -39 19 0
100 B 40 -60 16 0
400 A 248 -38 40 0
400 B 164 -59 34 0

1000 A 622 -38 64 0
1000 B 414 -59 54 0

3 100 A 99 -1 33 92.5
100 B 69 -31 30 6.5
400 A 397 0 68 95.5
400 B 277 -31 61 0

1000 998 0 108 96.0
1000 B 694 -31 97 0

'The probability of correctly classifying a deer for each of the two (or three) classifiers was [0.4, 0.3, (0.5)] for scheme
A, while for B it was [0.18, 0.25, (0.21)].



DETAILED EXAMPLE

'Without spatial constraints. The unexpended counts can be found by division by 5; i.e., 4, 8, and 1, respectively.
2With spatial constraints (i.e., classify as "deer" only if two or more adjacent pixels are "deer").
3Unexpended number of false counts/(I728 elements by 50 scans).

INCORPORATING SPATIAL INFORMATION

Our field experiments have shown that most false counts in the deer detection system occur as single
isolated pixels in a 1 by 1728 scan. In fact, the ratio of single false counts to two or more neighboring false
counts ranged from about 5 to 9. Because the smallest dimension of a deer is larger than the width of a
10-cm square pixel, a simple spatial constraint was incorporated to reduce further the frequency of false
counts. This was done by incrementing the counters cj and n only if two or more adjacent pixels are
classified as deer. Single pixels classified as deer are ignored. Such a spatial constraint is easy to implement
electronically, and it reduced the number of false counts in our small-scale experiments by a factor of 5
to 9. It should be noted that, except for the information in Table 3, a false count will be taken to mean
two or more adjacent pixels incorrectly classified as "deer."

0.000046
0.000093
0.000012

False count
probability3

0.82
0.86
0.68

Deer detection
probability

20 0
40 5
5 0

Expanded No. of False Counts
All counts' Only multiple counts2

41
43
34

No. of deer
detected
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TABLE 3. RESULTS OF A FIELD TEST TO COUNT DEER USING Two RATIOS OF THREE SPECTRAL BANDS.

A brief example will further illustrate the general approach. On 14 October 1982 a test was conducted in
a snowless area near the summit of Sardine Canyon, about 20 miles southwest of Logan, Utah. The
prototype instrument initially constructed by Voorheis (1982) using only two ratios (t = 2) of three spectral
bands, [0.764]/[0.981] and [0.981]/[0.725], was used. The classifiers were set using thresholds of 1.50 and
0.688, respectively. (Note; the first threshold is more conservative than that shown in Figure 2, in a further
effort to reduce the possibility of false counts.)

A deer hide was placed in a vertical position at approximately 445 m, and 50 scans were made to
simulate a population of 50 deer (N = 50). The classification of each pixel by each of the two classifiers
was output by a small thermal printer. This allowed careful interpretation of single, and multiple adjacent,
false counts and deer that were missed. The number of deer (N) could be estimated, rather than only Np ,

by visually examining the pixel patterns from the printed output.
Forty-one of the 50 deer were classified correctly by the first classifier (c, = 41) and 43 of the 50 deer

were correctly classified by the second classifier (c2 = 43) while only 34 deer were detected by both
classifiers (n'2 = 34). Of course, both c, and C2 are substantially less than N, indicating the need for
capture-recapture theory to reconstruct an estimate of N from the incomplete counts.

The thresholds T, and T2 were established empirically in an attempt to avoid false counts, while risking
an incomplete count of deer. In spite of the rather extreme thresholds, one false count was made by the
second classifier (so C2 was actually 44). The single observed false count was expanded to five based on
our knowledge of a priori probabilities of nondeer. With this realism accounted for, the relevant statistics
are

moderate negative bias (-11 to -18 percent) and poor confidence interval coverage (1 to 74 percent when
the nominal value is 95 percent) for both schemes A and B for all population sizes. This is to be expected
because these methods assume independence. The jackknife estimator (Burnham and Overton, 1978) does
very poorly using data from only two classifiers. For three classifiers (t = 3), the performance of the
estimator for data generated under scheme A is excellent (relative bias < 1 percent and 92.5 to 96 percent
confidence interval coverage), but poor for scheme B (-31 percent relative bias and 0 to 6.5 percent con­
fidence interval coverage). This is to be expected from what is known about the magnitude of the capture
probabilities in capture-recapture theory. If these detection probabilities are low, the jackknife estimator
performs poorly. While this simulation study is not exhaustive, three inferences can be drawn from it,
and these can also be supported from what is known about this method in traditional capture-recapture
studies. First, the jackknife estimator is preferable in some cases, especially when heterogeneity and
dependence are significant and capture probabilities are about 0.3 or 0.4. Second, the jackknife can be
expected to perform better if three or more classifiers are used. For example, recall in a four-color system,
64 nw patterns exist and provide significant additional information about the population size. Third,
improved performance is expected of the jackknife estimator as sample size if) increases.

Classifier 1 [0.764)/[0.981)
Classifier 2 [0.981)/[0.725)
Classifiers 1 and 2
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C, = 41, C2 = 48 (i.e., 43 + 5), and n'2 = 34.

TABLE 4. SUMMARY OF RESULTS OF FIELD TEST WHERE THE NUMBER OF DEER WAS 50 AND THREE CLASSIFICATION

ALGORITHMS WERE USED TO ANALYZE THE DATA AND MAKE ESTIMATES OF THE NUMBER OF DEER.

Chapman's (1951) estimator is known to be better than the jackknife for only two classifiers (Table 2).
Thus,
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16

106

-32

-22

Percent
error

39

34

58

103

Estimated
no. of
deer

54 - 62.

o

5

20,404

0,54

No. of
false

counts
(ex­
panded)'

(41 + 1)(48+ 1) _ 1
(34+ 1)

58

)
(41 + 1)(48 + 1)(41- 34)(48 - 34)

(34 + 1)2(34 + 2)

= 2.1

41,43

41,43

34

34

No. of
deer

actually
de­
tected

se(N)

95 percent confidence interval

ALGORITHMS FOR ENUMERATING RARE OBJECTS

Classifier

Multistage'
Multistage and

spatial algorithm3

Multistage with
capture-recapture
estimation

Multistage with
capture-recapture
estimation and spatial
algorithm3

'Expanded by 5 based on an assumption of the a priori probability of a deer of 10-5.
'''Deer'' detected only if both classifiers are"deer."
3Classification as "deer" only if at least two contiguous pixels are "deer" (i.e., single pixels as "deer" are ignored).
4For the first and second classifier (reflectance ratio), respectively.

This represents a !6 percent relative bias, which seems quite encouraging. If the false count could have
been eliminated, N = 52, with only a 4 percent relative bias. This again shows the critical importance of
eliminating false counts.

In this example, the detection probabilities were 41/50 = 0.82 and 43/50 = 0.86 for the first and second
classifiers, respectively. The magnitude of these probabilities is quite sufficient for capture-recapture es­
timates to perform well, in the absence of false counts. This suggests setting the thresholds at even more
extreme levels, reducing the detection probabilities, but further eliminating false counts. Estimation could
be markedly improved if data on a third or fourth classifier were available (our eventual intention in the
deer censusing program).

The counts c" C2 , and n12 were incremented in this example only if two or more contiguous pixels were
classed as deer. The use of this simple spatial constraint eliminated four single false counts by the second
classifier.

Further results are summarized in Table 4. A simple multistage classification scheme is not satisfactory
(22 to 32 percent underestimate). If thresholds T, and T2 are set conservatively to minimize false counts,
then more serious underestimates can be expected (Table 4). Alternatively, if T, and T2 are set less
conservatively, then even more serious error (overestimation) can be expected.

Treating the classification problem in the context of capture-recapture theory is promising when com­
bined with the simple spatial constraint. In any case, false counts must be avoided. In general, N p must
be estimated first. Then N = ~ Np where ~ is a constant, obtained empirically, roughly equivalent to the
inverse of the average number of pixels per deer classified.
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Remote sensing systems for enumerating rare objects in heterogeneous spectral backgrounds must avoid
false counts while providing fast and accurate counts of the objects of interest. The spectral information
in two to four bands can be expected to be less than adequate, causing classification errors; at least several
background objects will be spectrally similar to the object of interest, leading to false counts.

Multistage classification algorithms based on capture-recapture theory have merit, especially when com­
bined with spatial information to further reduce false counts. These algorithms are fast and can be imple­
mented in real time with existing hardware. Ideally, three or four classifiers can be employed to provide
the X matrix data. Proper spectral band selection is critical to avoid the problem of pixel mixtures in some
applications.

The classification algorithm recommended provides an estimate of the number of pixels N p containing
the object of interest, not the number of objects of interest N. Estimation of the constant that links these
N = ~Np has not been addressed here.
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