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ABSTRACT: A geological example of two useful improvements of ordinary (Bayesian) discrim­
inant analysis of Landsat MSS data is reported upon. The first improvement considers the
value of augmenting the number of variables with linear (factor scores) and non-linear trans­
formations (ratios). Second, a hierarchical procedure that utilizes a prior knowledge on a
hierarchical structure in the populations considered is introduced. Finally, it is demonstrated
that the use of the augmented set of variables with the hierarchical scheme reduced the rate
of misclassification of hydrothermally altered rocks from 8.98 percent to 0.55 percent. Based
on these results, it was decided to use schemes like the one described in regional mappings
of color anomalous zones in central east Greenland.

hydrothermal alteration is a distinct, color-anoma­
lous zone in the quartz sericite pyrite zone. Nearest
to the ore body this zone is intensely, homoge­
neously altered with red and yellow iron-oxide
staining colors (predominantly stemming from
goethite, limonite, and jarosite). In the sequel this
hydrothermally altered zone is called the rust zone.

It is of obvious interest to investigate the possi­
bility of an automatic recognition of areas similar to
the rust zone. Due to the climatic conditions, the
application of remote sensing techniques is/will be
of great importance in mineral exploration in the
arctic. A main objective is, of course, to delineate
areas with a higher potential for mineralizations.
The procedures described in the sequel were de­
veloped as a tool in a regional mapping of rust zones
and other color anomalous areas in Central East
Greenland.
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THE DISTRIBUTION OF THE DATA

It is a well established fact that hydrothermal al­
teration zones may be enhanced on a color com­
posite plot based on ratios between the MSS channels
as well as on factor score plots (see, e.g., Rowan et
al. (1977) or Conradsen and Harp0th (1984». There­
fore, it is quite natural to base a classification on
these variables as well as on the original MSS bands.

In this presentation we use a factor analysis based
on the correlation matrix. First, we give the basic
statistics in Table 1.
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A Geological Example of Improving
Classification of Remotely Sensed
Data Using Additional Variables and a
Hierarchical Structure

INTRODUCTION

T HE PRESENT WORK is a part of a major study on
the applicability of remote sensing methods to

mineral exploration in arctic areas. A full descrip­
tion is given in Conradsen et al. (1982) and most of
the geologic results are given in Conradsen and
Harp0th (1984).

The data analyzed in the present paper are Land­
sat MSS data. The area investigated is the environ­
ments of Malmbjerget situated south of Mestersvig
in the central part of East Greenland. The test area
is of size 9.3 km by 11.4 km giving a total of 23,400
pixels. The data were taken from a Landsat-2 scene,
path 248 and row 9. The center of the scene is at
25.4° west longitude and 71.7° north latitude. The
date of data collection was 18 September 1978.

The area is dominated by mountainous terrain
with glacier-dissected alpine regions and peaks
nearing 3000-m above sea level. Generally, the land
surface is very well exposed. The climate is arctic,
with an average yearly precipitation of 400 mm, and
with average temperatures for July and January of
5°C and - 20°C, respectively.

Geologically the area is a part of the Werner Bjerge
Alkaline complex. At Malmbjerget there is a stock­
work (porphyry) molybdenite deposit containing
150 x 106 t ore grading 0.23 percent MoS2 . The ore
body is associated with a multiple intrusive alkali­
granite stock. Widespread alteration is connected
with the mineralizing events. The most conspicuous



TABLE 2. THE GROUPS IN THE TRAINING SET AND THEIR

SIZES.

TABLE 1. MEANS, STANDARD DEVIATIONS, AND

CORRELATIONS FOR THE FOUR MSS BANDS BASED ON

23,400 PIXELS AROUND MALMBJERGET.

Standard Correlation

Variable Mean deviation 64 65 66 67

64 77.1 40.5 1.000
65 101.0 62.6 0.991 1.000
66 89.1 59.4 0.985 0.997 1.000
67 63.6 43.3 0.974 0.990 0.995 1.000

An unrotated principal factor analysis based on
the correlation matrix gave the following formula
for computing the factor scores (F1, F2, F3, F4) from
the channel values (64, 65, 66, 67):

~
F~ ~ 0.250 0.252 0.252 0.25~ ~~F2 4.482 0.593 -1.345 - 3.717 B5
F3 = -6.432 8.844 6.032 -8.528 B6
F4 2.655 -14.105 16.474 -4.998 B7

The variance explained by each factor is 99.15 per-
cent, 0.70 percent, 0.10 percent, and 0.05 percent,
respectively. Thus, almost all variation is explained
by the first factor, which is simply the average of
the four MSS bands. Factor 2 measures the differ­
ence between the longer and shorter wave-lengths,
and factor 3 measures the difference between the
extreme channels 64 and 67 on one side and 65 and
66 on the other side. Finally, factor 4 gives the dif­
ference between 65 and 67 on one side and 64 and
B6 on the other.

The aim is to distinguish between the rust zone
and other types of pixels. In order to investigate the
possibility of this, six groups of training areas were
chosen. They are given in Table 2.

In Figures 1 to 3 the cumulative distributions for
the six training sets of the values from channel 5
(B5), of the ratios between the values in channel 4
and channelS (64165 = Q4I5 for short), and of the
factors scores from factor 3 (F3) are given. It is im­
mediately seen that the variables are very different
with respect to distinguishing between the groups
(training sets). 6and 5 shows rather low values for
shadow, rust, and rock and very high values for
glacier and snow. The distribution of the ratio Q4/
5 shows a very little difference between rock, rust,
glacier, and snow, but these are very different from

the shadows. Finally, the distribution of factor 3 is
very similar for shadow, rock, and glacier, but these
distributions deviate a lot from the distributions for
snow and rust. The distribution for snow has an
enormous range, whereas rust is characterized by
high values of factor 3. The distributions of the -re­
maining variables show a similar pattern.

THE DISCRIMINATION PROCEDURES

We now present four different procedures. The
main idea in the hierarchical procedure is to utilize
a priori information on a hierarchical structure in the
groups. The augmentation of the number of varia­
bles consists of adding non-linear functions of the
MSS bands (ratios) as well as linear functions (factor
or principal component scores). The basic discrim­
ination procedure is a stepwise linear discriminant
procedure, where the variables are entered or de­
leted from the discriminant function according to
the partial F-value for the variable. It is assumed
that the groups considered only differ with respect
to their means. Thus, the covariance matrices (dis­
persion matrices) are assumed to be equal from a
computational point of view.

In order to investigate whether the addition of the
ratios and the factors really improves a subsequent
classification, a set of classification functions were
computed on the basis of the four original variables
64, 65, B6, and 67 and on the basis of all variables.
In the last situation the variables are linearly de­
pendent wherefore the dispersion matrix is singu­
lar. Therefore, one must choose a subset of the
variables, and then perform a stepwise discriminant
analysis with the program 6MDP7M (Dixon and
Brown, 1979). In the stepwise analysis the variables
entered were (in order) B5, Q4I6, F2, Q6/7, Q4I7,
Q4I5, F3, Q5/7, F4, and Q5/6.

Based on the two sets of variables, the appropri­
ate classification functions were determined. In Ta­
ble 3 an evaluation of the classification function is
given. Here the 876 pixels from the calibration areas
are classified by means of the classification func­
tions found. I-Band corresponds to discrimination
based on 64, 65, 66, and 67 whereas I-All corre­
sponds to a procedure based on the ten variables
mentioned earlier. The results for 2-6and and 2-AlI
correspond to procedures that will be described later.
The so-called jackknifed classifications are giving
classifications where the pixel classified is not used
in the computation of the classification functions. If
there is a great discrepancy between the ordinary
and the jackknifed classifications, the results from
the classifications are not reliable. This can be due
to inhomogeneity within the groups (in relation to
the difference between groups), or to overfitting,
i.e., to the inclusion of too many variables relative
to the number of observations. In the literature the
term cross-validation is sometimes used instead of
the present use of the term jackknifing.

From Table 3 we see that, for the classification
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Type

Rock
Rust
Shadow Rock
Shadow Ice
Snow
Glacier

Total, abs. & reI.
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FIG. 1. The cumulative distribution functions for MSS band 5 (85) for the six groups in the
training set.
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FIG. 2. The cumulative distribution functions for the ratio 04/5
in the training set.

FIG. 3. The cumulative distribution functions for factor 3 (F3) for the six groups in the training
set.
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TABLE 3. EVALUATION OF ONE-STEP AND TWO-STEP CLASSIFICATIONS INVOLVING THE ORIGINAL VARIABLES (BAND) AND

THE AUGMENTED SET OF VARIABLES (ALL, I.E., INCLUDING RATIOS AND FACTOR SCORES). THE ORDINARY As WELL As THE
JACKKNIFED CLASSIFICATION RESULTS ARE SHOWN.

Population, Percent Number classified into
method and correct
number of Rock Rust Shadow Rock Shadow Ice Snow Glacier

observations Ord. Jack. Ord. Jack. Ord. Jack. Ord. Jack. Ord. Jack. Ord. Jack. Ord. Jack.

I-Band 86.9 86.9 226 226 34 34 0 0 0 0 0 0 0 0
Rock I-All 96.2 95.8 250 249 10 11 0 0 0 0 0 0 0 0

2-Band 94.2 93.8 245 244 15 16 0 0 0 0 0 0 0 0
260 2-All 98.8 98.5 257 256 3 4 0 0 0 0 0 0 0 0

I-Band 89.2 89.2 4 4 33 33 0 0 0 0 0 0 0 0
Rust I-All 89.2 89.2 4 4 33 33 0 0 0 0 0 0 0 0

2-Band 97.3 94.6 1 2 36 35 0 0 0 0 0 0 0 0
37 2-All 83.8 83.8 6 6 31 31 0 0 0 0 0 0 0 0

I-Band 89.3 89.3 0 0 0 0 75 75 9 9 0 0 0 0
Shadow I-All 84.5 83.3 0 0 0 0 71 70 13 14 0 0 0 0
Rock 2-Band 90.5 90.5 0 0 0 0 76 76 8 8 0 0 0 0
84 2-All 92.9 91.7 0 0 0 0 78 77 6 7 0 0 0 0

I-Band 93.4 93.4 0 0 0 0 4 4 57 57 0 0 0 0
Shadow I-All 93.4 93.4 0 0 0 0 4 4 57 57 0 0 0 0
Ice 2-Band 100 100 0 0 0 0 0 0 61 61 0 0 0 0
61 2-All 96.7 93.4 0 0 0 0 2 4 59 57 0 0 0 0

I-Band 100 100 0 0 0 0 0 0 0 0 188 188 0 0
Snow I-All 99.5 99.5 0 0 0 0 0 0 0 0 187 187 1 1

2-Band 99.5 99.5 0 0 0 0 0 0 0 0 187 187 1 1
188 2-All 99.5 99.5 0 0 0 0 0 0 0 0 187 187 1 1

I-Band 100 100 0 0 0 0 0 0 0 0 0 0 246 246
Glacier I-All 100 100 0 0 0 0 0 0 0 0 0 0 246 246

2-Band 100 100 0 0 0 0 0 0 0 0 0 0 246 246
246 2-All 100 100 0 0 0 0 0 0 0 0 0 0 246 246
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pixels that were removed, but also many of the pix­
els that were known to be rusty.

In order to investigate this problem further, we
have in Figure 4 given the projection of the 876 sam­
ples from the training sets on the plane determined
by the first two canonical variates (canonical dis­
criminant functions) based on 84, B5, B6, and B7.
The canonical plot is a mapping of the points on
the plane that maximizes between group variation
as opposed to the within-group variation. In other
words, the canonical plot gives the 'best' separation
of the groups. For a more thorough discussion of
this plot, see, e.g., Seber (1984). We see that there
is a good distinction between shadow, rust + rock,
and glacier + snow, whereas the differences be­
tween the subgroups are much smaller. This is in
good accordance with the results obtained in the
evaluation of the classification functions given above.

The distributions given in Figures 1 to 3, how­
ever, show that it should be possible to construct a
discriminant function that could distinguish be­
tween the 'combined' groups. Therefore, a group
of new classification functions was determined. First,
functions were determined in order to discriminate
between three merged groups: rust + rock, snow
+ glacier, and shadow ice + shadow rock. Second,
functions were determined in order to discriminate
between rock and rust, between snow and glacier,

based on the four original variables as well as the
one based on the augmented set of variables (1­
Band and I-All), there are no misclassifications be­
tween the 'combined' groups: rock + rust, shadow
rock + shadow ice, snow + glacier. On the other
hand, there are misclassifications within the com­
bined groups. The major difference between the
'original' and the 'augmented' analyses are that the
classifications of the rock pixels are better for the
augmented set of variables, whereas the results for
the shadow-on-rock pixels are slightly inferior with
the augmented set. The jackknifed classifications do
not differ significantly from the ordinary classifica­
tions.

In Plates 1 and 2 we show the classifications of
the total area, i.e., a classification of the 23,400 pix­
els by means of the two schemes. The major differ­
ence between the two images is that many more
pixels are classified as rust instead of rock when
only the four MSS bands are used. According to field
geologists working in the area, the bulk of those are
misclassifications. They should have been classified
as rock pixels. Another difference is that the clas­
sifications based on the four bands show a more
irregular pattern with less homogeneous areas. An
adjustment of the prior probabilities for the rust group
did, of course, remove many of the rust classified
pixels. However, it was not only the misclassified
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FIG. 4. The first two canonical variates for the six calibration groups, and
the contribution of the standardized variables to the canonical variates
shown as vectors. Overlaps of different groups are shown by x.

and between shadow on rock and shadow on ice.
These functions have been determined by stepwise
discriminant analyses in two situations, namely, one
where only the original variables were allowed to
enter the classification functions and one where all
variables were allowed to enter.

The variables selected and their order of entering
are given in Table 4. We see that there are substan­
tial differences in the relevance of the variables in
the different situations. When discriminating be­
tween snow and glacier for instance, the two most
important variables are the same, namely band 5
and band 7. In the rock-rust discrimination the five
most important variables are either ratios or factor
scores.

After having determined these classification func-

tions, a classification procedure was set up in the
following way:

• Determine to which of the three merged groups­
'rust + rock', 'snow + glacier', and shadow on ice
+ shadow on snow-a pixel belongs, by means of
the first set of classification functions.

• After having determined the merged group, another
classification is performed by means of the second
set of classification functions in order to find the rel­
evant subgroup.

The evaluation of these hierarchical classifications
are shown in Table 3 under the headings 2-Band
and 2-All. It is seen that the hierarchical procedures
are giving results that generally are better than the
one-step procedures. However, a better measure of
the quality of the classification schemes is again found

TABLE 4. THE VARIABLES USED IN THE CLASSIFICATION FUNCTIONS IN THE ONE-STEP AND THE TWO-STEP PROCEDURES,
AND THEIR ORDER OF ENTERING. THE VARIABLES ARE DETERMINED BY MEANS OF STEPWISE DISCRIMINANT ANALYSES WITH

F-TO-ENTER = F-TO-REMOVE = 0.01.

1 step class. 2 steps classification
Rock, Rust, Rock + Rust,

Sh. Rock, Sh. lee, Sh. Rock + Sh. lee,
Snow, Glacier Snow + Glacier Rock, Rust Snow, Glacier Sh. Rock, Sh. lee

Variables Band All Band All Band All Band All Band All

B4 2 1 2 4 1 1
B5 1 3 3 1 1 3 2
B6 4 4 5 2 3 4 4 9
B7 3 2 1 6 2 2 2

Q4/5 6 8 6 8
Q4/6 2 1 5 7
Q4/7 5 9 4 7 3
Q5/6 10 10 8 5 5
Q5/7 8 6 7 3 4
Q6/7 4 4 1 10

Fl
F2 3 3
F3 7 2 8
F4 9 7 3 6
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PLATE 1. Classification of the entire test area by means
of the procedure based on bands 4-7 (1 Step-band). (Leg­
end: white = snow, blue = glacier, grey shadow ice,
black = shadow rock, green = rock, red = rust).

PLATE 3. As in Plate 1, but based on a hierarchical scheme
with four bands (2 Steps-Band).

PLATE 2. As in Plate 1, but based on ten variables (1 Step­
All).

PLATE 4. As in Plate 1, but based on a hierarchical scheme
with ten variables (2 Steps-All).
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TABLE 5. THE NUMBER OF PIXELS FROM OUTSIDE THE

TRAINING SET THAT ARE MISCLASSIFIED AS RUST.

Number of pixels
misclassified as 2023 1204 573 126
rust

As percentage of
the total number 8.98% 5.35% 2.54% 0.55%
of classified
pixels

I-step
band

I-step
All

2-step
Band

2-step
All

troduce new variables as ratio and factor scores in
classification functions, and that a hierarchical pro­
cedure utilizing an equivalent structure in the pop­
ulations to be classified also can give very substantial
improvements in the classifications. In the present
case the hierarchical procedure based on all varia­
bles permitted in the classification functions gave
by far the best result. Thus, it is concluded that such
schemes represent a useful supplement to ordinary
Bayesian classifications.

by classifying not only the 876 pixels in the training
sets, but also the whole test area (i.e., 23,400 pixels).
The results of these classifications are shown in Plates
3 and 4. We see that the two-step procedure, based
on all variables, gives the smoothest segmentation
of the image that is found to be in good accordance
with ground truth knowledge. From an exploration
point of view, it is obvious that a classification pro­
cedure should 'find' all alteration zones and have
as few rock pixels as possible erroneously classified
as rust. The four different pocedures 'found' all
known color anomalies in the area. But, they dif­
fered very much with respect to the number of rock
pixels that were classified as rust. These numbers
are given in Table 5, and they show very clearly the
very different performance of the four analyses. Better
results are definitely obtained by augmenting the
number of variables. In cases, as the one studied
here, where there is hierarchical structure in the
groups between which one classifies, as hierarchical
procedure where different variables are used in dif­
ferent steps is superior to an ordinary discrimina­
tion procedure.

Classification schemes based on the principles de­
veloped here were subsequently used in a regional
reconnaissance mapping of color anomalous zones
in central east Greenland. Some more detailed geo­
logical conclusions are reported in Conradsen and
Harpcbth (1984).

CONCLUSION

In the present study we have shown that in geo­
logical applications it may be advantageous to in-
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Errata
The description of the photograph on the cover of the April 1986 issue of PE&RS should have stated

that it was a combination of a Landsat TM image and a 1:25,000-scale topographic map and that it was
reproduced on the cover at approximately 1:50,000 scale.


