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= the focal length at node k,l, and
= the dimension of the rectangular ele­

ment in the x and y directions, respec­
tively.

where

where

g; (f)

suming that each point on the photograph will have
a different focal length, the collinearity condition
equations will take the form:

X"oY,,; = principal point coordinate of the ith
photograph,

f;j = focal length at the jth point of the
ith photograph,

X;j'Y;j = observed photo coordinates of point
j on the ith photograph,

Xj. Yj,Zj = object space coordinates of the jth
point,

X/, y;c,Z;c = object space coordinates of the ith
exposure station, and

M; = unitary orthogonal orientation ma-
trix of the ith photograph.

It was also shown by Munjy (1986) that, by dividing
the image domain into rectangular elements, the
collinearity equations will take the following form:

fu
a, b
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THE FINITE-ELEMENT METHOD has been used in
many engineering fields during the last two and

a half decades. Recently it has been used in digital
terrain modeling (Ebner and Reiss, 1978; Ebner et
al., 1980; Ebner and Reiss, 1981) and in camera cal­
ibration (Munjy, 1982; Munjy, 1986). The current
state-of-the-art techniques reported for analytical
restitution of non-metric cameras include the direct
linear transformation (DLT) (Abdel Aziz and Karara,
1971), the ll-parameter solution (Bopp and Krauss,
1978), analytical self-calibration with either block­
invariant additional parameters or a block-variant
approach (e.g., Faig, 1975), and combined block­
invariant and photo-variant additional parameters.
These techniques have a common starting point;
compensation of systematic image coordinate errors
by analytical models employed directly in the pho­
togrammetric projective equations. The parameters
defining the systematic error models are then re­
covered simultaneously with the projective param­
eters (position, orientation, focal length, principal
point) in a least-squares adjustment leading to the
minimization of the quadratic sum of the residuals
of measured quantities. Most reported analytic
models representing film shrinkage, film unflat­
ness, and radial lens distortion are assumed to be
valid throughout the image plane. In the finite-ele­
ment approach the image plane domain is divided
into subdomains or finite elements and then a
mathematical model for systematic errors is pre­
scribed over the image plane domain in a piecewise
fashion, element by element, thus eliminating the
assumption of symmetry (e.g., Munjy, 1982; Munjy,
1986).

REVIEW OF THE FINITE ELEMENT APPROACH
IN CAMERA CALIBRATION

It was shown by Munjy (1986) that, by dividing
the image domain into triangular elements and as-
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ABSTRACT: A new photogrammetric mathematical model based on the collinearity equation
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(7)Xij = h (X"IZ")ij + X'"iCOSai - Y'Pisinai
Yij = [ij (Y"IZ")ij + x'Pisinai + y'Picosai

CONTROL FIELD

Equation 7 was derived on the basis that the image
plane was divided into triangular elements. If the
image plane were divided into rectangular ele­
ments, Equation 7 would have the following form:

Xij = gi (fJ (X"/Z")ij + x'pi cosai - y' pi sinai (8)
Yij = gi (fJ (Y"IZ")ij + x' pi sinai + y' pi cosai

where

[X"]Y"
Z" ..

'J

Let the symbol Ii; denote the exterior orientation pa­
rameters, the comparartor rotation angle, and the
comparator translation parameters (X, Y,Z, W,

<I>,K,a,x'p,y' p) of the ith photograph, the symbol iii
denote the focal length at point j (fi) of the ith pho­
tograph if triangular elements were used, and the
symbol 'iii denote the object space coordinate (X,Y,Z)
of the jth point. For rectangular elements, the sym­
bol iii denotes the focal length at node k,1 (fk) of the
ith photograph (Munjy, 1986). Note that in the above
parameter vectors there are no lens distortion coef­
ficients as in the self-calibration method. Radial lens
distortion is accounted for by variable focal length.
Equations 7 or 8 are linearized by Taylor's series
expansion about the initial approximations
(it',iio, 'iio) for the unknown parameters. Using the
least-squares method, the above equations can be
solved for the elements of exterior orientation, the
comparator rotation and translation, the focal length,
and the object space coordinates of the points (ASP,
1980; Brown, 1974; Munjy, 1986).

EXPERIMENTAL VERIFICATION OF THE FINITE
ELEMENT APPROACH IN CALIBRATING NON­

METRIC CAMERAS

In order to verify the proposed finite element non­
metric camera calibration technique and also to as­
sess its practicability, an experiment was con­
ducted. The camera system used in the experiment
consisted of two Bronica ETRS non-metric cameras,
each with a Zenzanon ETR 150-mm [13.5 lens and a
120 film magazine. The cameras, which were as­
signed numbers (ONE) and (TWO), were placed LOO­
m apart with their axes parallel to each other. The
photography was taken with an exposure time of 1/
60 sec at fl5.6 and the two cameras were focused at
7.0 m. At [15.6 the depth of field was large enough
so that all image points were in clear focus.

A three-dimensional object space control field was
used. This field has 31 points, 20 of the points lying
in a plane with the remaining 11 points on four
piano wires suspended as plumb lines, each weighted

(3)

(4)SX = M XC + SXP

[

COS a sin a 0] U-] [x:.]- sin a cos a 0 y + y;, .
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CALIBRATION OF CAMERAS WITHOUT
FIDUCIAL MARKS

Gl
SX = M X + SXO

and in matrix notations as

where

= transformed photo coordinates,
= measured comparator coordinates,
= translation elements between the two

coordinate systems, and
= the angle between the photo coordi­

nate and the comparator coordinate
axes of the ith photograph.

Equation 1 can be rewritten as

U] [Xl - Xi] [x
p
]Y = M, YJc - Y, + YP .

'J ZJc Z, 0,
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Normally, the photo coordinates in Equations 1
and 2 are obtained by transforming the comparator
coordinates using the calibrated data for the fiducial
marks. If fiducial marks do not exist, as is the case
in most non-metric cameras, Equations 1 and 2 need
to be modified. Mathematically, the conformal
transformation from the comparator coordinates to
photo coordinates can be expressed as

ai

The transformation matrix M has a rotational angles
equal to a around the [-axis. The transformation ma­
trix M has rotational angles of w, <1>, K between the
x,y,faxes and the X, Y,Z axes. The transformation
matrix M' = MT M has rotational angles w, <1>, K ­

a between the x,y,faxes and the X, Y,Z axes. So M'
is a transformation matrix between the object space
coordinates (X, Y,Z) and the comparator coordinates
(x,y,f!. Equation 6 can be rewritten as

or

where

Substitute for SX, Equation 3 in Equation 4. Then

M X + SXO = M XC + SXP. (5)

Because M is an orthogonal matrix (i.e., MT = M-l),
then Equation 5 can be rewritten as

X = (MT M) XC + MT SXO (6)

X,j'Yij

Xijl "!Iij
XoilYo;
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RESULTS AND ANALYSIS

Precise theodolite surveys were carried out to de­
termine the object space coordinates of the control
points. A Zeiss TH2 theodolite was used to measure
the horizontal and vertical angles to the ends of a
baseline, which was accurately measured by a steel
tape lying flat on the floor. The mean standard error
of X, Y, Z coordinates was 0.084 mm.

IMAGE COORDINATES MEASUREMENTS

Image coordinates were observed on a Kern-MK2
monocomparator. In order to ensure rapid conver­
gence of the camera calibration program, space re­
section solutions were carried out to obtain
reasonably refined preliminary estimates for the
values of the exterior orientation elements at each
camera station.

Each Bronica ETRS camera lens system was cali­
brated individually by assuming that all object space
coordinates of the points that were imaged in each
photograph were free from errors, and by dividing
the image plane into triangular elements. The cali­
bration results are listed in Table 1.

\/
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FIG 2. Configuration of the control field and the camera system.
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with a heavy plumb bob immersed in an oil bath at
one end and fixed to the ceiling by hooks at the
other end. Small seed-beads, approximately 3 mm
in diameter, are fixed on the wires to serve as target
points (Figure 1). The configuration of the control
field and the camera system is illustrated in Figure
2.

FIG 1. Front view for the control field.
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Camera System

TABLE 1. CALIBRATION RESULTS USING THE FINITE­
ELEMENT METHOD.

O.Ollmm

(-O.016mm
to

0.016mm)

(-O.035mm
to

0.076mm)

One Two

One Two

O.006mm 0.007mm

O.014mm

(-0.017mm
to

0.031mm)

(-O.030mm
to

O.082mm)

TABLE 2. CALIBRATION RESULTS USING THE SELF­
CALIBRATION METHOD WITH AN ODD ORDER POLYNOMIAL.

Camera System

Camera System

TABLE 3. A COMPARISON BETWEEN THE RESULTS OF THE
FINITE-ELEMENT METHOD AND THE SELF-CALIBRATION

METHOD.

Abdel-Aziz, Y. I., and H. M. Karara, 1971. Direct Linear
Transformation from Comparator Coordinates into
Object Space in Close Range Photogrammetry. Pro­
ceedings of ASP Symposium on Close Range Photogram­
metry, Urbana, pp. 1-18.

American Society of Photogrammetry, 1980. Manual of Pho­
togrammetry, 4th Edition.

REFERENCES

In addition, the radial lens distortion for each
camera was computed using the self-calibration
method with an odd power polynomial. The results
of this calibration are listed in Table 2. A comparison
between the results of the finite-element method
and the self-calibration method is listed in Table 3.

CONCLUSIONS

The finite-element approach for non-metric cam­
era calibration developed in the previous sections
has been incorporated into the calibration of the
Bronica ETRS non-metric camera. Based on the re­
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FIG 3. Bronica ETRS (ONE) focal length contour lines. Initial
focal length = 153.00 mm. Contour interval = 0.080 mm.

FIG 4. Bronica ETRS (TWO) focal length contour lines. Initial
focal length = 153.00 mm. Contour interval = 0.080 mm.

The focal length contour lines in the image plane
for camera system ONE and TWO are shown in Fig­
ures 3 and 4, respectively. On computing the object
space coordinates by intersection, the root-mean­
square closure error of the X, Y, Z coordinates was
found to be 0.590 mm. This is a closure accuracy of
1/11865 of the photographic distance.
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