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ABSTRACT: The performance of linear least-squares and multiquadric surface interpolation
techmques depends greatly on the expedient selection of the appropriate covariance or dis­
tance function. In processing digital elevation models data, these functions are not theoret­
ically deterministic. They are either derived experimentally or simply assumed. The experimental
deterrrunation of cova~iance and distance functions from observed data proved to be im­
practical, while an arbitrary chosen function may not be suitable for a given data set. This
paper employs an. analytical approach in which the interpolation process is applied to ficti­
tious DEM data WIth known frequency content. Transfer functions are then determined to
evaluate the fidelity achieved when using an a priori selected covariance or distance function.
The frequencies of the generated tr~nsfer function surfaces are used as a measure of fidelity,
an~, hence, a relationshlp IS established between the terrain type and the chosen function
or ItS parameters. This relationship facilitates optimum choice of covariance or distance func­
tions to be used with a given DEM data set. Moreover, it can be used in planning new DEMs
by deterrrurung optimum sampling densities.

Multiquadric surfaces interpolation utilizes a dis­
tance function which does not exactly satisfy the
conditions of a true covariance function.

The objective of this paper is to develop an ana­
lytical-rather than experimental-approach by which
the performance of linear least-squares and multi­
quadric surfaces interpolation techniques can be
evaluated using different covariance and distance
functions for different types of fictitious double
fourier surfaces. This analytical approach is based
on the well known transfer functions (TF) concept.
A transfer function is defined as the fourier trans­
form of the impulse response function (IRF) of a given
process (Chatfield, 1975). The impulse response
functions and transfer functions are two ways of
describing a linear process, in a somewhat similar
way that the covariance function and spectral den­
sity function are two ways of describing a stationary
random set of data, one function being the fourier
transform of the other. Therefore, the impulse re­
sponse function is applied in the spatial domain while
the latter transfer function works in the frequency
domain. The beauty of the transfer functions ap­
proach is that inspection of the diagonal profile curves
of these transfer functions shows clearly which fre­
quency components of the input will be emphasized
or deemphasized by the bivariate process.
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LINEAR LEAST SQUARES INTERPOLATION

DEM data can be considered, after trend removal,

INTRODUCTION

T HE LINEAR LEAST-SQUARES INTERPOLATION
METHOD (LLS) has found its way as a powerful

tool in filtering and processing digital elevation
models data. This method is based on the general
theory of linear prediction which is applicable to
stationary random functions. In the bivariate mode,
a random function is said to be homogeneous and
isotropic if its autocorrelation function depends only
on the distance between points (Schut, 1974). When
the autocorrelation function is presented as a func­
tion of distance only, it is often called a covariance
function (cv) (Hardy, 1977).

In linear prediction theory each observed value is
assumed to consist of two components signal and
noise. The problem of prediction is to separate sig­
nal from noise, which can only be achieved if the
two components are uncorrelated with each having
a known covariance function. However, in practice,
covariance functions are usually unknown and
therefore, the problem of estimating a cov~rianc~
function most appropriate to a given set of data is
extremely important.

Another bivariate interpolation process is that
based on the multiquadric surfaces (MS) technique
presented by Hardy (1977). Although this technique
IS not based on the theory of linear prediction, it is
applied in practice mainly because it does not ne­
cessitate the stationarity of input data, which is
sometimes considered a drawback in the LLS method.
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where

where

Z is the vector of elevations of reference points,
A is the symmetrical matrix of distances, and
F is the vector of coefficients of the conic surface.

The unknown coefficient vector F can then be de­
termined according to Equation 9: i.e.,

F=A-l·Z. (9)

The interpolated elevation at any point Pj is deter­
mined using Equation 10: i.e.,

MULTIQUADRIC SURFACES INTERPOLATION

This method employs an algebraic formulation
which is almost identical to the one used in linear
least squares. The only difference is that a conic or
a hyperboloid function, which is not a covariance
function, is used in this method.

The method of interpolation using multiquadric
surfaces may be geometrically interpreted as a sum­
mation of surfaces of revolution such that each of
them is centered at one of the reference points. In
the case of conic summation, the elevation, zi' of a
new point, Pi' can be represented as follows:

Using Equation 6, it is possible to either estimate
the elevations of new points or to filter the eleva­
tions at the reference points. In this paper, Equation
6, based on linear least-squares interpolation, is used
to densify DEM data in a bivariate mode by estimat­
ing elevations of new points. The values of the ele­
ments of the vector of cross-covariances and the
autocovariances matrix are determined using a co­
variance function which is a function of distance, d,
only and satisfies the following conditions (Kraus
and Mikhail, 1972):

• Its value at the origin must be positive CV(o) > 0

• It must be an even function eV( - d) = eV( +d)
• Its value at any distance must be less or equal to its

value at the origin lev (d)1 :s ev(o)

The covariance functions tested will be discussed
separately in more details.

Zj is the interpolated elevation at point Pj;
ti' i=I,2, .. .,n are coefficients which determine

the properties of each surface; and
dji are the distances between reference points Pi'

i=I,2, .. .,n and the interpolated point (P).

Now suppose that n equations in the form of
Equation 7 are to be written for n reference points.
These equations may be expressed in matrix form
as follows:

(6)

(4)

(1)
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Zi = Si + riO

where
2

(Tv is the variance of Vj;
J is the Jacobian [1 - CTl;

2

where

C is a vector of coefficients [C lI C2 , . •• , C"lT and
Z is the vector of reference elevations [ZlI Z2"

Zn,]T.

is the symmetric matrix of autocovariances
and cross-covariances;

(T / is the variance of Sj;
Bsz = B;s is the vector of crosscovariances be­

tween Sj and each element of Z (each
value is obtained from the covariance
function for each distance between Pj

and Pi); and
A is the symmetrical autocovariance matrix of

the data.

Substituting the values of J and R in Equation 4,
we obtain

2 2

(Tv = (Ts - 2 . Bsz . C + C . A . C. (5)
2

Because it is required to minimize (Tv, the vector of
unknown coefficients C should be selected such that
O(T2oC = O. Therefore, we have

Obviously, there are infinite estimates of Sj de­
pending on the choice of the elements of the vector
C. Of all these estimates it is required to determine
the estimate .which gives minimum variance. The
deviation of Sj from the unknown "true" value, Sj'
at point, Pi' is given by

Vj = Sj - C . Z. (3)

Applying the variance-covariance propagation
technique, (Mikhail, 1976) the variance of Vj can be
written as

The problem of interpolation is to find an esti­
mate, Sj' for the component, Si' at a point, Pj, other
than the reference points. This estimate must be
determined using a linear combination of all the ref­
erence elevations, Zi (Kraus and Mikhail, 1972); i.e.,

Sj = CT. Z (2)

as a random field of reference points Pi' i = 1,2,...,
n, at each of which an observed elevation, Zi' is
given. According to the theory of linear prediction,
Zi is composed of two components, a signal or "true"
elevation, Si' and a noise or "error," ri; i.e.,
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PERFORMANCE EVALUATION OF TWO BIVARIATE PROCESSES

PERFORMANCE EVALUATION USING
TRANSFER FUNCTIONS

Linear least-squares and multiquadric interpola­
tion algorithms are used to densify DEM data by

1215
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FIG. 1. Graphical representation of the six covariance and
distance functions (autocovariogram) used with the bivar­
iate processes.
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interpolating elevations at intermediate points. In
order to evaluate the efficiency and fidelity of these
algorithms, fictitious data are used. The frequency
characteristics of these data must be known, so that
it would be possible to draw conclusions about the
behavior of each method with respect to different
inputs. An efficient way of assessing the perform­
ance of these interpolation algorithms is the use of
the well known concept of the frequency response
functions, usually known as the transfer function
(Laan, 1973). This function shows how a linear sys­
tem responds to sinusoids at different frequencies.
The frequency here can be used as an indication of
terrain undulations. In order to calculate the values
of the transfer function surface in the bivariate mode,
a double fourier series is used as an input. The basic
element of such a series is the term sin (wx + 1jJy),
which is analogous to sin (wx) in the univariate case.
The terms wand IjJ are the frequencies in the x and
Y directions, respectively. Accordingly, the function
z(x,y) may be expressed as follows:

z(x,y) = sin (wx + 1jJy). (17)

This function has unit amplitude and zero phase.
Equation 17 is used to generate input data for the
computation of the transfer function surface. In or­
der to sample this function, a set of points (xq , Ye);
q = 1,2, .. .,n; and e = 1,2, ..., m, is chosen and
the corresponding elevations are computed. To
minimize the computational effort, sampling is taken
in a homogenious square grid with an interval of
~x in both directions. The square ~x by ~x is called
a cell. A patch consists of four cells and has a local
coordinate system as shown in Figure 2.

The sampling density (5) in the X and Y directions
is defined as the number of sampling intervals ~
per period: i.e.,

(16)

(11)
(12)
(13)
(14)
(15)

(Gaussian)
(Exponential)

CV(d) = kW + a)\<'.

CV(d) = k e- ad2

CV(d) = k e-aJdl
CV(d) = k/(ed + e-d

)

CV(d) = k/(2Idl)
CV(d) = k cos (a1Td)

where Bji is the row vector of distances between
point Pj and each reference point Pi' ;=1,2, .. .,n.

Although Equations 6 and 10 are similar in form,
matrices B and A are determined differently for the
two interpolation processes.

In the case of multiquadric surface interpola­
tion, the conic and hyperboloid functions are used.
However, because these surfaces do not qualify as
covariance functions, they are called distance func­
tions. The following equation is tested in this case
(Hardy, 1977):

COVARIANCE AND DISTANCE FUNCTIONS

The covariance function of a stationary random
set of data is defined as the fourier transform of the
spectral density function of these data. The covari­
ance function, CV(d), is a function of the separation
(distance) between two values. The determination
of CV(d) from observed values cannot be performed
accurately if the number of observations is not too
large. Therefore, in practice a covariance function,
which hopefully agrees well with the data, is as­
sumed. In this paper, the performance of the fol­
lowing covariance functions are tested using linear
least-squares interpolation: i.e.,

In all these functions, d denotes the distance while
a and k are the function parameters.

The most commonly used covariance functions
are the Gaussian and the exponential. The Gaussian
covariance function (Equation 11) describes a smooth
surface with continuous first derivatives while the
exponential covariance function (Equation 12) rep­
resents an irregular surface with sharp peaks at the
location of reference points (Mikhail, 1976). Covar­
iance functions represented by Equations 13 and 14
are modifications of the Gaussian and exponential
forms, whereas Equation 15 represents a cosine co­
variance function. The distance function (Equation
16) represents a conic surface if a = 0, or a hyper­
boloid of revolution if a =1= O. Graphs of the six func­
tions using different values of the parameters k and
a are shown in Figure 1. The graph of the covariance
function is sometimes called the autocovariogram.
If the ordinates of points are divided by the value
of the sample variance, the resulting graph is then
called the autocorrelogram.
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FIG. 2. A patch composed of four cells and nine reference
points.

DISCUSSION AND CONCLUSIONS

The fidelity of any bivariate process is based on
the fact that the total loss of information due to
prediction can be represented by the area above the
transfer function diagonal profile. The smaller the
area above the profile, the better would be the al­
gorithm used. Furthermore, the range of frequen­
cies in these diagonal curves may be subdivided
into two or more regions. The smaller the value of
liS, the lower would be the frequencies correspond­
ing to flatter terrain type. The larger the value of 1/
5, the higher would be the frequencies correspond­
ing to more undulating and rougher terrain types.
Accordingly, the diagonal profile curves of the
transfer functions (Figures 3 to 9) resulting from us­
ing the different covariance and distance functions
for the two bivariate processes considered offer an
objective way of assessing their performances.

Linear least-squares interpolation renders opti­
mum results if the input data have the characteris­
tics of a stationary random function, provided that
the proper covariance function is used. The fidelity
of this method depends strongly on the values of
the parameters as well as the chosen covariance
function. Using a Gaussian covariance function
(Figures 3 and 4), it was found that the loss of in-

It is possible, using Equation 20, to determine the
values of T(W,I\I) at each combination of wand l/!,
which results in a surface transfer function. In order
to visually represent these transfer functions, di­
agonal profiles are plotted resulting from different
covariance and distance functions. These curves
would give adequate information about the per­
formance of the algorithm under consideration at
different frequencies. Figures 3 to 9 show the di­
agonal profiles of the transfer functions correspond­
ing to the six covariance and distance functions
expressed by Equations 11 to 16. These curves allow
a quick comparison between the fidelity resulting
from different functions for a certain parameter value
or for comparing the effect of different parameter
values on the fidelity of a certain function. This will
be discussed in more details next. In this research,
transfer functions were obtained by changing the
frequency while maintaining the sampling interval
constant. Needless to say, the same results would
have been obtained by maintaining a fixed fre­
quency and varying the sampling interval. The
physical interpretation of this argument is that the
first case corresponds to having different fictitious
terrain types with one sampling density, while the
later case represents one terrain type with different
sampling densities.

of the sine function (Equation 17), which equals
1/0. Because the value of T(W,l/!) is this case must
be zero, it then follows that the numerical value of
c should be equal to 0. Therefore,

T (w,l\I) = 1 - V2 . e(w,l/!) (20)

(19)

(18)5 = 2'ITlw.6.x.

a - c'e (w,l/!)
T (w,l/!) = __---'-....:....:...c

a

T(W,l/!) is the transfer ratio at frequencies
wand 1\1 in the x and y directions,
respectively;

a is the amplitude of the fourier
function, assumed to be unity;

e(w, 1\1) is the root-mean-square error of
interpolation over the whole area;
and

c is a numerical coefficient.

where

The numerical value of the coefficient c is deter­
mined by taking the case in which 6.x = 2'IT and
w= 1\1 = 1, where the reference points will all have
zero elevations. Therefore, all interpolated eleva­
tions will have zero values and the error of inter­
polation will thus be equal to the value of the function
Z(x,y) at the desired points. The root-mean-square
error of interpolation will be equal to the integration

This sampling density depends on the value of the
product w.dx. Therefore, when 6.x is kept constant
for all surfaces, the sampling density becomes in­
versely proportional to the frequency. The transfer
ratio T at frequencies wand l/! are determined at
intervals of liS. Fictitious elevations at reference
points as well as points within each patch are com­
puted based on Equation 17. Meanwhile, interpo­
lated elevations at these points are computed using
the methods of linear least-squares and multiquad­
ric surfaces techniques (Equations 6 and 10, respec­
tively). The difference between the interpolated and
fictitious elevations is known as the error of inter­
polation. The root-mean-square error of all errors
over the area is used to determine the transfer ratio,
T, of the used algorithm. Generally, the transfer ra­
tio, T, represents a relationship between input and
output of a dynamic system (Schwarzenbach and
Gill, 1979), indicating the fidelity of interpolation.
This transfer ratio is calculated for all frequencies
up to the Nyquist frequency 'IT/6.x as follows:
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formation due to least-squares interpolation in­
creased rapidly as the numerical value of parameter
a was greater than 1 or less than 0.5. However, at
very low frequencies (Le., flat terrain), the transfer
ratio improved with a < 0.5. A value of a = 0.1 is
thus recommended for use with flat surface digital
elevation models (Figure 4).

The exponential covariance function (Equation 12)
gave results which are generally inferior to those
obtained from the Gaussian function (Figure 5). This
observation is obtained by comparing the diagonal
profile curves of the transfer functions of Figures 3
and 4 with Figure 5. This behavior agrees with the­
oretical expectations, because the exponential func­
tion leads to surfaces that exhibit discontinuous slope
changes and peaks at reference points (Mikhail, 1976).
However, using a value for a in the vicinity of 0.5,
the process gives improved results comparable to
those obtained with the Gaussian function. With
lower values of a, the fidelity of the process slightly
decreased, but the stability of the model was still
maintained.

The covariance function represented by Equation
13 gave excellent results with K = 2 (Figure 6). The
fidelity using this function approaches and some­
times exceeds the fidelity resulting from the Gaus­
sian function, particularly at medium frequencies.
This similarity is attributed to the resemblance be­
tween the graphical representation of the covari­
ance functions of Equations 11 and 13 shown in
Figure 1.

The covariance function represented by Equation
14 showed a clear deterioration in the fidelity of the
process by increasing the frequencies (Figure 7). This
function may thus be recommended for low fre­
quencies only, corresponding to flat or slightly un­
dulating terrain.

The use of the cosine covariance function (Equa­
tion 15) should be considered with some care. Good
results were obtained only when the numerical value
of the parameter a ranged between 0.3 and 0.5. Be­
yond these limits the behavior of the function seems
to be unstable (Figure 8). In some cases, the inter­
polation algorithm failed completely when the value
of a exceeded 0.6, and thus this function should not
be recommended for use.

Finally, the hyperbolic distance function used with
the multiquadric surfaces interpolation algorithm

resulted in the diagonal profile transfer function
shown in Figure 9. With values of a equal to 1 and
2, these curves behaved nearly similar to the Gaus­
sian covariance function shown in Figure 3. With
frequencies less than 0.2, the fidelity using the hy­
perbolic function was even slightly superior.

In all cases, the use of the concept of transfer
functions proved to be readily applicable in the bi­
variate mode. It provides an objective tool for as­
sessing the performance of different interpolation
algorithms with different covariance and distance
functions. The use of this approach with real DEM
data could lead to the development of several di­
agonal profile transfer function curves using differ­
ent covariance function with different terrain types.
Such curves could facilitate the choice of the most
appropriate covariance function for a given DEM data
set. They could also serve as a planning tool, where
the sampling density could be determined to meet
the requirement of an a priori specified transfer ra­
tio.
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