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Issues Arising from Sampling Designs
and Band Selection in Discriminating
Ground Reference Attributes Using
Remotely Sensed Data

ABSTRACT: Certain issues which relate to sampling and band selection are studied within the
framework of examining spectral bands as surrogate measures of a single ground reference
plane (or combinations of ground reference planes) through the development of classifers.
In particular, the effect upon classification accuracy of (1) the spacings between samples
forming the training set and (2) the commonly used stepwise discriminant method for band
selection, are examined. The analysis was conducted on a multivariate data set of ground
reference attributes for the Parker Quadrangle, Colorado (located southeast of Denver) and
an MSS scene registered to it. Four attributes of the data set-land form, land use, slope, and
vegetation as well as combinations of these attributes--were classified using the MSS bands.
Initially, a set of spectrally djstinct ground-over classes was produced for each combination
of ground-plane attributes using stochastically independent observations. The purpose of
this was to proVide a standard of comparison for the remainder of the analysis. By stand­
ardizing on the sample sizes, the numbers of ground attribute classes, and the class com­
position, the effects upon ground attribute classification accuracy of the number and combination
of spectral bands used and the spacing between training statistics were systematically stud­
ied. It was found that, if training samples were closely spaced, the commonly used Jack­
knife procedure for estimating classification accuracy was optimistically biased due to auto­
correlation in the observations. This bias leads analysts to think they are doing better than
they actually are. This same autocorrelation effect clearly contributes to the well known
inability in remote sensing research to extend signatures developed in one location to other
nearby locations. Thus, simple altering of sample spacing can account for a 25 percent im­
provement in the classification accuracy. In a further analysis, the results of Cover and Van
Campenhout are shown to apply to remote sensing data. These two authors showed that
stepwise procedures may yield suboptimal subsets of features. In a comparison between a
stepwise band selection strategy and an "aU-possible-subsets" band selection strategy, use
of the former almost always resulted in a suboptimal set of bands averaging as much as 10
percent.
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to develop a classifier which includes two related
steps: (1) the selection of bands and (2) the esti­
mation of training statistics. The thrust of this paper
is the examination of the inadequacies of the pro­
cedures commonly used to perform these steps in
a remote sensing analysis. These analysis proce­
dures have been used by remote sensing scientists
in all disciplines; consequently, they have a generic
importance. Because of their close relationship to
one another, the analyses of the two stages are pre­
sented in one paper, although in different sections.
The background for examining each stage is as fol­
lows:

Optimality of bands. What is the optimal set of bands
from amongst all the spectral bands available to discern
a particular phenomenon? To answer this question,
many experimental situations require the researchers
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INTRODUCTION AND MOTIVATION

An answer to this question requires the investigator

FROM A GENERIC or system level perspective, the
investigation of remotely sensed data for the ex­

traction of signatures and the development of the­
matic maps produces a host of correlative issues.

Utility of remote sensing data. How "good" are the re­
mote sensing spectral bands as surrogate measures of
ground attributes, e.g., biomass mapping, crop inven­
torying, and lithologic mapping? If there is more than
one attribute available (particularly if they are regis­
tered to one another), then the initial question has a
combinatorial nature, i.e., are there individual or com­
binations of spectral bands which can be used as sur­
rogate measures of individual or combinations of ground
reference planes.



STUDY LOCATION
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The study area from which the data were ac­
quired is the Parker 7 V2 minute Quadrangle, Col­
orado. The Parker Quadrangle is located southeast
of Denver, Colorado in the Great Plains Physio­
graphic Province. The coordinates of this quadran­
gle are as follows:

Longitude
104°52'30"
104°45'
104°52'30"
104°45'

Latitude
39°37'30"
39°37'30"
39°30'
39°30'

DATA SETS

Upper Left
Upper Right
Lower Left
Lower Right

an underestimation bias (I-I is the determinant opera­
tor). Because (J' and 11,1 are measures of dispersion,
their underestimation means that the population will
be perceived to vary less about its centroid than it ac­
tually does. Use of these biased estimators will lead
the researcher to believe that the populations are more
separable than they actually are. Labovitz and Mas­
uoka (1984) have shown that this bias results in inflated
F statistics values. A third important issue then to be
examined in this paper is the influence of sampling,
training, and testing strategies upon the production of
terrain classifications.

The data sets used can be initially divided into
two types--ground data and remote sensing data.
Each of these types is, in turn, composed of four
properties. The ground data properties are land­
form, land use, slope, and vegetation. The remote
sensing properties are the four MSS bands--MSS 4
through MSS 7. Each property enters the analysis as
a data plane. The data planes are arrays of 272 rows
by 214 columns for 58,208 pixels with each pixel
containing eight numeric value, one for each of the
properties displayed in the data plane. The eight
planes are composed of four ground planes and four
MSS planes registered to one another. This means
that the ith, jth element for each data plane rep­
resents the same ground location. We therefore may
think of each ground location being represented by
a vector (length 8) whose elements are the data plane
attributes. Each element covers an area of about 1.1
acres (802 metres), the size being dictated by the
ground resolution of a Landsat pixel.

ANALYSIS ASSUMPTIONS AND CONDITIONS

For this analysis, the following assumptions have
been made:

• The MSS vectors for a given class i are distributed
normally with mean lLi and covariance matrix 1".

• The classifier used is a Bayes classifier with a 0-1 loss
function, i.e., a Bayes test for minimum error. The
decision rule under this multiclass situation is to as­
sign the individual to the class which maximizes the
negative log likelihood ratio.

• The prior probabilities of the classes used in the anal-

to develop a strategy for selecting bands from the set
of bands available.
Sometimes the selection of the subset of bands is dic­
tated by the prevailing theory. But more often some
type of empirical strategy is adopted. A very popular
type of empirical strategy is the stepwise strategy
wherein an algorithm iteratively adds and/or removes
one band at a time based upon an R' or F statistic
criterion (Draper and Smith, 1981). A stepwise proce­
dure will yield an unambiguous optimal subset if the
bands are independent. If the assumption of indepen­
dence is not true, then, as Cover and Van Campenhout
(1977) have shown, a stepwise discriminant or step­
wise regression may not yield the optimal subset. Fur­
ther, the degree to which the set is suboptimal is not
bounded. For example, under the data structure just
described, the two best individual bands will very likely
not be the best pair, the best pair may not form part
of the best triple, and so forth. The implication of these
results are that a stepwise strategy may yield as the
best subset a suboptimal set whose departure from op­
timality is not bounded (Van Campenhout, 1980). If
the collinearity of independent variables results in the
behavior just described, the only protection against bias
is to pursue an "all-possible-subset" strategy (Cover
and Van Campenhout, 1977). For MSS such a strategy
would require the research to perform an expensive
but tractable 24 -1 = 15 different discriminant analyses.
However, there would be a more severe impact on re­
search using a sensor such as TM, which would require
27 -lor 127 discriminant analyses.
It is known that the degree of collinearity in MSS bands
is high, as evidenced by the results of principal com­
ponents analyses of MSS data where the bands load
almost entirely on the first two components (Land­
grebe, 1978). Therefore, part of this work will examine
whether or not the stepwise strategy for band selection
is a concern for MSS data; that is, how suboptimal is
the subset of bands chosen by this strategy vis-a-vis an
"all-possible subsets" strategy.

Construction of Training Statistics. Any empirically based
analYSiS, whether or not it involves remotely sensed
data, is data limited. This is because the parameters in
any empirical model are not knowable and must be
estimated by statistics. Statistics in turn are good esti­
mates of population parameters only to the extent that
the data are representative or random samples of the
population from which they are drawn. In the present
context, a ground cover, which may be an individual
terrain attribute or combination (through anding, for
example) of terrain attributes, is the population. The
parameters which we wish to estimate are the mean
(f.L if scalar, vector IL if multiband) and variance covar­
iance ((J' if scalar, matrix 1, if multiband). Therefore, in
order to obtain unbiased estimates, a random sample
of pixels must be selected from each ground cover. By
definition (Hogg and Craig 1978), a random sample
must consist of individuals (pixels) which are identi­
cally and independently distributed. A number of au­
thors (see Labovitz and Masuoka (1984) for summary
of relevant research) have shown that (1) Landsat pix­
els are not independent, that the dependence is high­
est for adjacent pixels and approaches independence
with increasing distance between samples, and 2) when
calculated using contiguous pixels use of cP and I~I as
the common estimator of (J' and 11,1, respectively yields
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ysis were estimated as the ratio of the number of
occurrences of a class in the sample to the total num­
ber of observations in the sample.

The following are the conditions under which the
analysis was performed:

• For a chosen combination of the ground reference
planes, a new set of classes was formed by anding
the numeric codes for a given pixel.

• A systematic sampling scheme is used to select sam­
ples for the training set.

• A preselected subset of the MSS values associated
with each pixel is included in the estimate of the
training statistics, i.e., the mean, variance-covariance
and the number of observations per class.

• A preprocessing step is performed to screen out classes
with insufficient samples to estimate the covariance
matrix and its inverse n (per class) ~ 2' bands. The
total number of observations, the number of classes,
the prior probabilities, and the pixels actually used
in the classification step are based on the screened
set of classes.

• Several training and testing strategies are used. These
included (a) training and testing on the whole image
using the "C" and/or jack-knife OAK) methods (Fu­
kunaga, 1972); (b) training on a portion of the image
and testing on the same portion using "C" and jAK;
(c) training on a portion of the image and testing on
other portions of the image; and (d) training on a
portion of the image and testing on the same portion
using "C" and jAK, and then using the same training
statistics testing on other portions of the image (STAT).

• The goodness of classification criterion used is clas­
sification accuracy, (CA). The formula for CA is given
in Fukunaga (1972).

• The stepwise discriminant analysis used the same
algorithm as that used in the BMDP7M program (Jenn­
rich and Sampson, 1979).

EXPERIMENTAL STRATEGY

As a first step, a spectrally distinct set of classes,
estimated using independent observations, needs
to be created. This set of classes and the accompa­
nying classification accuracy serve as a background
against which to compare the results. The classes
used, their number, and the number of observa­
tions in each class affect the training stage, the test­
ing stage, and the misclassification errors. Therefore,
applying this information from the background set
to all other analyses will remove the number of
classes, their composition, and sample sizes as con­
founding factors.

After creating such a group of spectrally distinct
classes for each combination of land cover classes,
variation in CA (and TME) calculated by "C" and jAK

was studied as a function of the combination of MSS
bands, the combination of ground reference plans,
and the spacing of samples used in the training sta­
tistics. For the individual ground reference planes
an additional analysis was performed (1) to relate
the CA to the testing strategy, the spacing between
the training samples, and the number of bands; and
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2) to examine the differences that arise in the CA
when a stepwise band selection strategy versus an
"all-possible-subsets" strategy is adopted.

SELECTION OF SPECTRALLY DISTINCT SETS OF

LAND-COVER CLASSES

In an unpublished preliminary study of the Parker
Quadrangle data base, the land-cover classes used
were formed simply by "anding" the constituent
ground reference planes, and no reduction in the
number of classes based upon their spectral
distinctiveness was attempted. For the combination
of all four ground reference planes the "anding"
resulted in a large number of land-cover classes (46
to 50), many of which could not be distinguished
by the four MSS bands, and a very high TME resulted.
Failing to filter the classes by spectral uniqueness
"overwhelmed" the classifier and did not permit us
to study the influence of the factors described above.
Therefore, as a first step in the analyses, for each
of 15 combinations of the ground reference planes,
a spectrally distinct set of land-cover classes was
created under the following assumptions:

• Independence.-The degree of sample dependence and
the spacing between training samples are related. This
means that the set of spectrally distinct classes created
by dependent observations is a function of sampling
grid spacing. This situation is undesirable because
spacing is one of the factors to be studied. Therefore,
the initial set of candidate classes for inclusion in the
spectrally distinct set was created using samples with
a grid spacing of 10. This spacing follows a suggestion
by Craig (1979) and still leaves enough data to perform
the analysis. Sampling in such a manner has the added
advantage that the specific classes and the number
of observations per class found with a sample spacing
of 10 are very likely to be present in samples from a
denser sampling grid .

• Number of Bands. The membership in the spectrally
unique set of classes is also a function of the number
and type of bands used in the analysis. Therefore, in
the development of these classes, we assumed that
the number of spectrally unique groups would be
maximized by using all four MSS bands. Also, by using
all four bands, we would act to standardize the number
of bands used in developing the unique set of classes.
The analysis was conducted for each combination of
ground reference planes as follows:

(a) Sample the population five times, using a grid
with a spacing of ten and starting points (1,1),
(3,3), (5,5), (7,7), and (9,9).

(b) Combine the ground reference classes to form
new classes, bin the observations, and keep
running totals of sums, sums of squares, and
sums of cross products.

(c) Remove from the list of candidates those classes
possessing insufficient observations to produce
stable estimates of the variance-covariance matrix.
For the remaining classes, convert the running
totals into means and variance-covariances.

(d) Estimate the Hotelling T2 value for each
combination of two of the remaining classes.



TABLE 1. NUMBER OF SPECTRALLY DISTINCT CLASSES AND

TOTAL NUMBER OF OBSERVATIONS

NVALS

H = -2 2: In Pi
;::01

'I = landform, 2 = land use, 3 = percent slope,
4= vegetation.

LEVEL

Sample Spacing (INCR)

2
4
6
8

10

RESULTS

Figure 1 is a plot of mean CA calculated by both
"C" and JAK for the levels of GRC (summed across
MSC and INCR) and the levels of MSC (summed across
GRC and INCR). From these plots, it can be seen that
the program preserves the theoretical relationship
between the "C" and JAK; that is, the accuracy
estimated by "C" is always more optimistic than
that estimated using JAK. In fact, the profiles formed
by the two methods are not significantly different
from one another and estimates made by either
method would vary in similar a manner.
Consequently, results for the remaining section will
be reported for the more conservative JAK method
only.

The interactions effects of the factorial model do
not explain Significant variation. The profiles in plots

(i) Remove a class from the final list if it is not
significantly different (as per g) from all classes
previously included.

Table 1 shows the results of the analyses to develop
sets of spectral distinct classes.

ANALYSIS OF INITIAL RESEARCH FACTORS

The previous discussion yielded three research
factors. Table 2 enumerates these factors and the
levels at which they exist in this experiment.

A factorial experimental design was used to relate
CAs measured by the "C" and JAK methods to the
combinations of the factor levels which parameterized
the classifier. In these models GRC and MSC are fixed
effects and INCR is a random effect. Under each
combination of factor levels, two independently
determined samples were derived and classified. The
resulting two accuracies form the replicates for each
treatment.

588
563
566
586
369
485
550
295
476
535
186
317
349
273
188

LEVEL

MSS Combination (MSC)

1. MSS 4 (M4)
2. MSS 5 (M5)
3. MSS 6 (M6)
4. MSS 7 (M7)
5. M4,M5
6. M4,M6
7. M4,M7
8. M5,M6
9. M5,M7
10. M6,M7
11. M4,M5,M6
12. M4,M5,M7
13. M4,M6,M7
14. M5,M6,M7
15. M4,M5,M6,M7

Number of
Observations

TABLE 2. RESEARCH FACTORS AND THEIR LEVELS
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Number of Classes
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under Ho is distributed as X2
"NVALS

(g) Compare H with the X2 critical value based upon
a value adjusted for the number of pairs examined.

(h) Sort the classes by the number of samples in which
they occur and, secondarily, on the number of
observations per classes.

Combination'

(e) For each pair, compute the probability that F
exceeds the value of For P (F>T/)~ P.

(f) Use test due to Fisher (1954) for combining
probabilities from independent tests. Under the
null hypothesis (Ha), - 2 In P is distributed as X2

with two degrees of freedom. Therefore, for the
multiple (NVALS) F probabilities (see a) associated
with a given pair of classes,

1
2
3
4
1,2
1,3
1,4
2,3
2,4
3,4
1,2,3
1,2,4
1,3,4
2,3,4
1,2,3,4

Ground Reference
Combination (GRC)

LEVEL
1. Land form (Lf)
2. Land use (Lu)
3. Slope (SI)
4. Vegetation (Vg)
5. Lf,Lu
6. U,SI
7. Lf,Vg
8. LU,SI
9. Lu,Vg
10. SI,Vg
11. Lf,Lu,SI
12. Lf,Lu,Vg
13. U,SI,Vg
14. Lu,SI,Vg
15. Lf,Lu,SI,Vg
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A FURTHER EXAMINATION OF SAMPLE SPACING AND

TESTING STRATEGY

The jack-knife procedure is used in order to
maximize the amount of data available for the
estimation of training statistics. This means that if
there are a total of N observations available, the JAK
procedure allows the researcher to perform an
analysis of the same power that would required 2N
observations using separate data sets for testing and
training. The classification accuracy estimated by the
JAK procedure should be an unbiased estimate of
the CA estimated by separate training and testing,
if the samples used to develop training statistics are
independent. Recall however, that samples up to a
fixed distance apart are dependent and that use of
biased statistics in classification will lead analysts to
think they are doing better than they are in reality.
An important question then is how CA differs as a
function of testing strategy OAK versus STAT) and
sample spacing.

For this analysis the data base was divided along
the row dimension into three equal areas of
approximately 90 rows. Training statistics were then
estimated using the data in the upper third, and
with these statistics CAs were calculated using JAK

and classes of the ground reference planes is largely
a function of changes in vegetation types (cultivated
and otherwise) and the presence of bare soil and
barren areas. This conjecture is borne out by
examination of the spectrally distinct classes. Among
these classes changes in vegetation, land use (whose
spectrally distinct classes largely differ by vegetation),
and, to a lesser extent, land form dominate spectral
distinctions.

• Ground Attributes (GRC). Interpreting Table 4 and Figure
3, we see that the results are very consistent. Among
combinations containing single ground reference
planes, the maximum CA is obtained when the
vegetation classes are used. In fact, classifiers based
upon the vegetation ground reference plane alone
are far superior to any other combination of the four
ground reference planes. This result is somewhat
misleading in that of the five spectrally distinct classes,
one of them-natural grass or actively cultivated­
accounts for 85 percent of the observations. Among
combinations of two ground reference planes, the pair
land use and vegetation was globally optimal. It is
clear that the spectrally distinct classes of land use
carry information about changes in vegetation and
are much more evenly distributed than the vegetation
classes. Land use is also globally the ground reference
plane with the second highest CA behind vegetation
and, when the size dominant vegetation class is
removed from the analysis, land use surpasses
vegetation. Using three ground reference planes, the
number of observations per class has evened out and
the vegetation information the classifier uses is
contained largely within the land use classes.

• Spacing Between Samples Used in Developing Training
Statistics (TNCR). Table 5 and Figure 4 show that as
the spacing between samples used in developing
training statistics increases, the CA decreases. This
result is investigated further in the next section.
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of the two-way interactions are parallel.
Consequently, the main effects are analyzed as
follows:

• Spectral Bands (MSC). The analysis of the MSC factor
is aided by Table 3 and Figure 2. Table 3 contains
three sub-tables. The columns for all three sub-tables
are the same and are the levels containing 1, 2, and
3 bands with the maximum CA. The rows of the sub­
tables represent levels of the second factor (either
INCR or GRC) summed over the third factor or a
summation over both of the remaining two factors
(All). When restricted to one band, MSSS followed by
MSS7 does the best at discriminating among classes.
When two bands can be used either MSS4-MSS7 or
MSSS-MSS7 do the best job, and for three bands the
combination of MSS4-MSSS-MSS7 is overwhelmingly
the optimal set. What is interesting is the relative
absence of MSS6 from among the ''best'' combinations.
One may conclude from the dominance of MSSS and
MSS7 that the relationship between remote sensing

MSS COMBINATION/GROUND REFERENCE
PLANE COMBINATION

FIG. 1. Plot of classification accuracy for the combinations
of ground reference planes and the combinations of MSS
bands. Classification accuracies are computed by two
methods (combination indicies correspond to factor levels
given in text).



TABLE 3. SUMMARY OF MSC LEVELS YIELDING THE GREATEST PERCENTAGE ACCURACY FOR LEVELS OF OTHER FACTORS.

3
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7

3
M4M5M7
M5M6M7
M4M6M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7
M4M5M7

3
M4M5M7

CombinatIons

of Three
Bands

2
M4M7
M5M7
M4M7
M4M7
M4M7
M4M7

2
M4M5

M5M6fM5M7
M4M7
M4M5
M5M7
M6M7
M4M5
M5M7
M5M7
M4M7
M4M7
M4M7
M4M5
M4M7
M4M7

2
M4M7

• the spectrally distinct classes previously developed
were used;

• because of the reduction in sample size for the training
set, the maximum sample spacing was reduced to

Combinations
of Two Bands

1
M7
M5
M5
M5
M5
M5

1
M5
M5
M7
M5
M5
M5
M5
M7
M7
M7
M5
M4
M5
M7
M5

1.
M5

NUMBER OF BANDS IN MSC

MSS BAND COMBINATION

2 3 4 5 6 7 8 9 10 11 12 13 14 15

CombinatIons
of One Band
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(a) INCR
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FIG. 2. Plot of classification accuracy as a function of MSS band combination (combination indicies correspond to factor
levels given in text).

and separate data sets from the middle and bottom
thirds of the image. This procedure was repeated
using training samples with increasing sample
spacing and with the added conditions:

(b) GRC
Lf
Lu
SI
Vg
Lf,Lu
Lf,SI
Lf,Vg
LU,SI
Lu,Vg
SI,Vg
Lf,Lu,SI
Lf,Lu,Vg
Lf,SI,Vg
Lu,SI,Vg
Lf,Lu,SI,Vg

(c) All



TABLE 4. SUMMARY OF GRC LEVELS YIELDING THE GREATEST PERCENTAGE ACCURACY FOR LEVELS OF OTHER FACTORS.

Number Ground Planes In GRC Levels

(a) INCR 1 2 3
1 Vg Lu,Vg Lf,Lu,SI
2 Vg Lu,Vg Lf,Lu,SI
4 Vg Lu,Vg Lf,Lu,SI
6 Vg Lu,Vg Lf,Lu,SI
8 Vg Lu,Vg Lf,Lu,SI

10 Vg Lu,Vg Lf,Lu,SI

(b)MSC 1 2 3
M4 1 Vg LU~Vg Lf,Lu,SI
M5 2 Vg Lu,Vg Lf,Lu,SI
M6 3 Vg Lu,Vg Lu,SI,Vg
M7 4 Vg Lu,Vg Lu,SI,Vg
M4M5 5 Vg Lu,Vg Lf,Lu,SI
M4M6 6 Vg Lu,Vg Lf,Lu,SI
M4M7 7 Vg Lu,Vg Lf,Lu,SI
M5M6 8 Vg Lu,Vg Lf,Lu,SI
M6M7 - 10 Vg Lu,Vg Lf,Lu,SI
M4M5M6 - 11 Vg Lu,Vg Lf,Lu,SI
M4M5M7 - 12 Vg Lu,Vg Lf,Lu,SI
M4M6M7 - 13 Vg Lu,Vg Lf,Lu,SI
M5M6M7 - 14 Vg Lu,Vg Lf,Lu,SI
M4M5M6M7 - 15 Vg Lu,Vg Lf,Lu,SI

(c) All 1 2 3
Vg Lu~Vg Lf,Lu,SI
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Figures 5 to 7 are plots by increment spacing of
the CAvalues estimated using JAK, STAT2 (Training
on the top third, testing on the middle third), and
STAT3 (training on the top third, testing on the bottom
third) averaged over all levels of MSS combinations
for two ground reference planes (Lf and Lu) and a
plot by increment spacing averaging CA over both
MSC and GRC levels. In general, these plots show
that the trend in CA reverses as one progresses from
JAK to STAT2 to STAB. CA decreases with increasing
spacing when testing is performed using a jack-knife,
and CA increases with INCR under a STAB strategy.
The plots of CA using STAT2 appear to be a mixture
of the JAK and STAT2 plots .

Several conclusions can be drawn for this analysis:

• The assumption of independence and identical
distribution has not been met for the JAK and, as a
clear consequence, CAs under this procedure are, in
general, far more optimistic than they are under the
STAT procedure which JAK is to estimate.

• It appears that, when JAK is used with smaller spacing,
the effect of the local autocorrelation will yield a higher
CA, In other words, the classifier is incorporating the
autocorrelation information into the classification
process. Samples constructed with wider spacings do
not contain this information available to them and,
consequently, the CA for these samples approaches
that of the STAn. The classifier is in a sense
memorizing the data.

• The information contained in the autocorrelation is
specific to the location of the sample. This information
is an advantage when classifying in the precise area

10 11 12 13 14 15

ISSUES ARISING FROM SAMPLING DESIGNS AND BAND SELECTION

12345678

GROUND REFERENCE PLANE COMBINATIONS

seven, the analysis was performed for GRC levels 1
to 4 (single maps) only, and the number of
observations per class was divided by 3;

• while the spacing between training samples varied,
the testing sets from the middle and bottom thirds
of the quadrangle had randomly chosen centers and
were composed of nominally contiguous pixels
because they had no impact on estimating the training
statistics and ordinarily a researcher would classify
an entire area.

FIG. 3. Plot of classification accuracy as a function of ground
reference plane combination (combination indides correspond
to factor levels given in text).
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TABLE 5. SUMMARY OF INCA LEVELS YIELDING THE GREATEST PERCENTAGE FOR LEVELS OF OTHER FACTORS.

INCR (Spacing Between Samples Used In Developing Training Statistics)

(a) MSC 1 2 4 6 ~ 10
1 1 4 3 2 5 6
2 1 3 4 2 5 6
3 1 2 3 4 5 6
4 1 2 3 4 6 5
5 1 2 3 4 5 6
6 1 2 3 4 5 6
7 1 2 3 4 5 6
8 1 2 3 4 5 6
9 1 2 3 4 5 6

10 1 2 3 4 5 6
11 1 2 3 4 5 6
12 1 2 3 4 5 6
13 1 2 3 4 5 6
14 1 2 3 4 5 6
15 1 2 5 3 4 6

(b) GRC 1 2 4 6 ~ 10
1 1 4 3 2 5 6
2 1 2 4 3 5 6
3 1 2 5 4 6 3
4 1 2 3 4 5 6
5 1 3 2 4 5 6
6 1 2 4 5 6 3
7 1 2 3 4 5 6
8 1 2 3 5 4 6
9 1 4 2 3 6 5

10 2 1 4 3 6 5
11 1 3 2 4 5 6
12 3 1 2 4 5 6
13 3 1 2 4 5 6
14 1 2 4 3 5 6
15 1 4 5 2 3 6

(c) All 1 2 4 6 ~ 10
1 2 3 4 5 6

from which the sample was drawn. However, the
information is in error when the classifier is applied
to samples from a location as close as a third of a
quadrangle away. The result is that the classifier using
training statistics based on closely spaced samples
performs much worse than the classifier using training
statistics based on widely spaced samples when the
classifiers are applied to an area outside of which the
training samples were drawn.

ALL-POSSIBLE-SUBSETS VERSUS STEPWISE BAND

SELECTION STRATEGY

Table 6 shows the results of the analysis comparing
a stepwise band selection strategy with an "all­
possible-subsets" selection strategy. Thirty times a
comparison was made of CAs from the best single,
best pair, and best three bands as computed by both
strategies. For MSC combinations formed of one band,
in 23 out of 30 comparisons the stepwise procedure
selected a suboptimal band with an average
suboptimality in CA of eight percent. Among
combinations consisting of two bands, in 25 out of
30 comparisons the stepwise procedure selected a

10
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FIG. 4. Plot of classification accuracy as a function of
increment spacing (in pixels) between samples forming
training statistics.
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FIG. 7. Plot of classification accuracy as a function of spacing
between samples forming training statistics, using two
methods of testing. Classification accuracies were averaged
over the four ground reference planes.

Through this research I have tried to systematically
examine limitations of MSS data. This has been
pursued through analysis of the relationship between
ground attribute planes and registered MSS data. The
research concentrated on the answers arising from
a series of questions related to performing
classification. These questions dealt with the quality
of MSS bands individually or in combination as

suboptimal bands averaging a 10 percent difference
in CA. Finally, among MSC combinations consisting
of three bands, use of a stepwise strategy resulted
in a suboptimal band selection in 27 out of 30
comparisons with an average of six percent difference
in CA. All three average differences are significant
at any commonly used alpha level.

--e-- Jack-Kn,fed
......... STAT 2

-..- STAT 3

•

•
........

•

ISSUES ARISING FROM SAMPLING DESIGNS AND BAND SELECTION

•

•

•\
\
\
\
\
\ .
\· "-\..... / .............. / .....

..........f/ • "",. •
'~-_%

.05 L---'-_---:-_--:-_-'----'_-'-_--'
4 6

MINIMUM SPACING BETWEEN SAMPLES
FORMING TRAINING STATISTICS

.85

.75

>- .65u«a:
::J
U
U .55«
z
0
>=« .45u
u::
Ul
(J)

:5
u
z
«
:Ii

FIG. 6. Plot of classification accuracy from classifying land
use as a function of spacing between samples forming training
statistics, using three methods of testing.



210 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1986

surrogate measures of combinations of ground
attributes, and the impact of commonly used
sampling, testing, training, and band selection
strategies upon classification results.

II Ground attributes maps generated by the USGS of
Zo

'" the Parker Quadrangle, Colorado and Landsat 2Q<l:oa.. ~.5 cL imagery of the area were examined. It was clear that
Wf--

o ~ ,... "- r') a
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ci a a ::i...... 0 c classification accuracies of widely spaced training
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samples therefore appear to be much better estimatesW (/l
a: :::J of the power of MSS data for the purposes of
;;: ~

*
a a co c: classification. Therefore, a 20 to 25 percent increaseo...w ~ "<t N tn

> c: lei .q< "~.~
"<t in classification accuracy for the signature extension

0>- '"w(9 '" c: scheme can be achieved by just changing thec: li...J W li'" f- Q) E sampling.<i <i Ef-a: Q) - Q) 0
0 _.D bb Finally, it is also clear that an average of 7 to 10f- a.. :l y(J) u

~8
c: percent decrease in classification accuracy is relatedtii

to the use of a stepwise band selection strategy versus
an "all-possible-subsets" strategy. This difference
might be more dramatic with TM data with its greater



ISSUES ARISING FROM SAMPLING DESIGNS AND BAND SELECTION

number of bands and band combinations (less
likelihood that the optimal band subset will be
selected by chance) and greater collinearity among
bands. Alternatives to stepwise band selection should
be examined unless the experimenter feels that the
decrease in accuracy just described is unimportant.
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