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Radarclinometry for the Venus Radar
Mapper

ABSTRACT: A mathematical theory and a corresponding algorithm have been developed to
derive (in principle) topographic maps froom radar images as photometric arrays. Thus, as
radargrammetry is to photogrammetry, so radarclinometry is to photoclinometry. Photocli­
nometry is endowed with a fundamental indeterminacy principle even for terrain homoge­
neous in normal albedo. This arises from the fact that the geometric locus of orientations of
the local surface normal that is consistent with a given reflected specific intensity of radiation
is more complicated than a fixed line in space. For a radar image, the locus is approximately
a cone whose half-angle is the incidence angle and whose axis contains the radar. The
indeterminacy is removed throughout a region if one possesses a control profile as a boundary
condition. In the absence of such ground truth, a point-boundary condition will suffice only
in conjunction with a heuristic assumption, such as that the strike-line runs perpendicularly
to the line-of-sight. In the present study a more reasonable assumption, which I call "the
hypothesis of local cylindricity," is implemented.

First, a general theory is derived, based solely on the implicit mathematical determinacy.
The theory produces topography by an area integration of radar brightness, starting from a
control profile, without need of additional idealistic assumptions. But we have also theorized
separately a method of forming this control profile, which method does require an additional
assumption about the terrain. That assumption is that the curvature properties of the terrain
are locally those of a cylinder of inferable orientation, within a second-order mathematical
neighborhood of every point of the terrain. While local strike-and-dip completely determine
the radar brightness itself, they combine with the terrain curvature to determine the bright­
ness gradient in the radar image. Therefore, the control profile is formed as a line integration
of brightness and its local gradient starting from a single point of the terrain where the local
orientation of the strike-line is estimated by eye.

Second, and independently, the calibration curve for pixel brightness versus incidence
angle is produced. I assume that an applicable curve can be found from the literature or
elsewhere so that our problem is condensed to that of properly scaling the brightness axis
of the calibration curve. A first estimate is found by equating the average image brightness
to the point on the brightness axis corresponding to the complement of the effective radar
depression angle, an angle assumed given. A statistical analysis is then used to correct, on
the one hand, for the fact that the average brightness is not the brightness that corresponds
to the average incidence angle, as a result of the non-linearity of the calibration curve; and
on the other hand, we correct for the fact that the average incidence angle is not the same
for a rough surface as it is for a flat surface (and therefore not the complement of the
depression angle).
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with Rindfleisch (1966), and independently with
Watson (1968), who devised a theory which was
implemented by Lambiotte and Taylor (1967). This
process is as elaborate compared to the former ap­
proach of Van Diggelen as photogrammetry is com­
pared to basic trigonometric parallax. Accordingly,
the term "photoclinometry" was invented by Jack
McCauley in 1965, from the greek roo~s "photos"
and "klinos," in reference to this process.

For a given illumination and normal albedo of a
terrain point under consideration, the photometric
function enables the prediction of a measurable sur­
face brightness as seen from any direction through
the specification of three angles: g, the phase angle,
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INTRODUCTION

T HE USE OF the photometric function of a surface
for the purpose of translating image variegation

into slope and relief information dates back at least
to the work of van Diggelen (1951), who applied it
to lunar maria when near the terminator; a condi­
tion for which a uniquely simple limiting form of
photometric function was inferred through the
Helmholtz reciprocity principle (Minnaert, 1941).
Based on the constancy of surface brightness near
the bright limb of the Moon, this inference has since
fallen into disrepute (Wildey, 1978).

The development of a method for producing a
topographic map from a photometric image begins
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e, the emergence angle, and i, the incidence angle.
While the first angle can be independently known,
the latter two depend on the orientation of the local
surface normal (equivalent to knowledge of local
strike-and-dip). Thus, a knowledge of the local ori­
entation of the terrain is essential to the prediction
of surface brightness. In the inverse problem, where
one has a measured surface brightness instead of
known values of e and i, one degree of freedom
remains in the form of an implied functional relation
between e and i, rather than unique values thereof.
That is, the measured surface brightness imposes a
constraint on the local normal vector, without
uniquely determining it. Its range of possibilities
generates a surface. This is the fundamental inde­
terminacy of photoclinometry. In the case of Wat­
son's theory, uniquely applicable to the lunar surface,
the indeterminacy could be ignored by confining
the process to a one-dimensional rather than two­
dimensional topographic mapping (an ordinary
topographic map, while inherently three dimen­
sional in information content, is two dimensional in
the sense that it represents height as a scalar func­
tion of two independent variables). The lunar pho­
tometric function, when particularly evaluated to
correspond to the brightness of a single terrain point,
generates a locus of surface normals that is a plane
perpendicular to the phase plane. The measured
surface brightness serves to specify the angular
placement of the intersection of these two planes as
a direction, as seen from the surface, algebraically
between the direction to the illuminator and the di­
rection to the observer. Watson showed that the
intersection of the phase plane with the true sur­
face, as a topographic profile, was uniquely deter­
mined by the variation in surface brightness along
the corresponding line in the image. Unfortunately,
no grounds exist for adjusting the relative range to
two such profiles, which cannot intersect, taken from
parallel data traverses in the same two-dimensional
image.

In order to produce a two-dimensional topo­
graphic map purely by photoclinometry, the math­
ematical constraint imposed by an additional
assumption is essential. There is no such thing as a
completely reasonable assumption. But some as­
sumptions are more absurd than others. One method
of extending Watson's approach to two dimensions
would be to adjust each parallel profile for a mini­
mum of the integral of the square of height above
an adopted lunar ellipsoid. While obviously not ob­
eyed by the lunar surface, this assumption is never­
theless clearly superior to the assumption that the
initial point on each profile is located precisely on
the lunar ellipsoid. But only bodies of lunar-like re­
flective properties would qualify for this treatment.
The photometric functions characterizing most of
the various Martian terrain types are distinctly non­
lunar in character. Thus, the first generalized two­
dimensional photoclinometry was developed by

Wildey (1974, 1975) in which the auxiliary assump­
tion took the form of the Eulerian equations from
the calculus-of-variations for the minimization of the
total surface area. The analysis was mathematically
interesting, the result plausible, and the algorithm
eminently impractical.

An altogether different type of limitation on pho­
toclinometry arises from the fact that planetary sur­
faces that are homogeneous in normal albedo are
rare. Progress toward the alleviation of this diffi­
culty has recently been made by Eliason et al. (1981),
who used multi-color image sets of the same terrain
in an operations-research approach to separate to­
pography from albedo variation. Though repre­
sentative of the greatest utility achieved to date to
extract information in images due to topography,
the auxiliary assumption used to render the pho­
toclinometric portion of the study tractable was that
the normal vector was confined to a plane contain­
ing the terrain point, the planetary center, and the
sun. The mathematical independence of parallel
down-sun lines of integration of the topography then
produces, after filtering, a two-dimensional result
with slopes in all directions, rather than merely
toward the sun. A Lambertian photometric function
was also assumed. Thus, at the level of fundamental
assumptions, the metric integrity of true photo­
grammetry was not approached. The separation of
insolation and albedo variations is the important
contribution of that work.

The primary goal of the present study has been
the adaptation of photoclinometry to radar imagery,
whether it be the type in which the reflected pulse
generates all of a down-range raster in the final im­
age ("brute-force" radar imaging systems, herein­
after referred to as SLAR), or the type in which the
reflected pulse, as complex electric amplitude, is but
part of a contribution to a large synthesized aper­
ture used to form the final image (SAR). The first
application of the present technique has been pub­
lished (Wildey, 1984). The present paper documents
the underlying mathmatical theory. Its develop­
ment occurs in response to a need for topographic
information during the nominal mission of the Ve­
nus Radar Mapper, when radargrammetric results
will be still unavailable.

The radar image as a candidate for photoclino­
metry offers both advantages and disadvantages
when compared to ordinary optical images. The most
obvious advantage is the simplicity of the photo­
metric function. The radar becomes both the sun
and the camera, so that g = 0 and i = e. Any
tabulated function of the single resulting angle, i,
can be readily accomodated. This, combined with
the fact that radar imagery is essentially "strip-cam­
era" in nature, causes the surface brightness to have
a dependence on the azimuthal component of slope
that is zero to first order, as will be shown. Thus,
the consequences of ignoring this slope component
in a down-range integration of topography are less
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severe. At the same time, however, the relative height
adjustment of two such profiles adjacent to one an­
other is made more uncertain by what is essentially
poor photometric leverage. An additional advan­
tage of radar stems from the subjective impression
that terrain homogeneous in radar albedo (normal
back-scattering cross-section density) is more com­
mon than at visual wavelengths. For an objective
evaluation of this, see Schaber et al. (1976) and Birrer
et al. (1982). A powerful advantage of radar arises
from a: canonical (independent of terrain type) factor
in the dependence of image pixel signal on terrain
orientation, discussed in the' next section. Hence,
the adjective, "quasi-photoclinometric."

Radar imagery presents one distinct complication
over traditional optical imagery with respect to the
physical nature of image coordinates. Photoclino­
metry is usually given serious consideration only
when photogrammetry is impossible. That is, if the
ratio of surface relief to camera range is so small
that the relative parallax of features in all possible
stereo-pairs is exceeded by image resolution, then
photoclinometry offers the only possible source of
topographic information. In the ensuing photocli­
nometric processing for the extraction of topogra­
phy, no consideration need be given to a correction
for mapping of a feature from image coordinates to
coordinates on the mean datum (mean-datum plane)
because of the feature's height. Such mapping sim­
plicity can never exist in radar imagery because one
image coordinate is essentially range itself. Probably
the greatest disadvantage of radar in comparison to
visual imagery lies in the area of the quality and
uniformity of photometric (radiometric) calibration
and the signal-to-noise ratio of a given digital ele­
ment of surface brightness. At the very outset, rel­
ative photometric accuracy is limited by the
repeatability of total transmitted pulse energy, an
aspect of radar imagery not comparable to ordinary
photographic imagery. Image photometry (radi­
ometry) has not been a traditional consideration in
the design of radar imaging systems, nor in their
corresponding signal-processing algorithms, espe­
cially when of an analog nature. In this connection
SLAR possesses great advantage over SAR. On the
one hand, the power allocation to a final pixel is
more generous in SLAR. But most especially, be­
cause SAR must preserve the electromagnetic wave's
phase, it suffers from "speckle," a direct enhance­
ment of the random error of pixel photometry, which
can only be alleviated, from an engineering point
of view, through the use of an unacceptably large
number of "Iooks." Low-pass filtering of the image
is the only alternative for dealing with this problem.

Throughout the sections which follow, it will be
assumed that terrain homogeneous in "radar al­
bedo" is being processed.

43

RADIATIVE TRANSFER

Consider the following argument, which assumes
perfect geometrical optics. Let a telescope form an
image in the usual WdY of a terrain viewed obliquely.
Let the telescope be sufficiently distant that the rays
coming from the object are nearly an orthographic
projection. Let the image plane in the telescope oc­
cur at the receiving surface of a uniform array of
radiation detectors of equal sensitive area. Then the
total radiative power received by each sensor is the
integral of the focal-plane flux over the intercepting
area of each sensor. Next, consider the mapping of
all the rays from the boundary of an arbitrarily cho­
sen sensor, through the telescope, to their intersec­
tion with the terrain. In the immediate vicinity of
the ground, the locus of these rays is a mathematical
closed cylinder; and its intersection with a plane
perpendicular to the rays forms a closed curve
bounding an area of integration for contribution to
the total radiative power received by the sensor.
The quantity to be integrated will be the specific
intensity, or surface brightness (watts/metre/ster­
adian), emerging from the terrain into the direction
of the telescope, multiplied by the solid-angle sub­
tended at a point in the area of integration by the
area of the telescope aperture. Given the constancy
of the aforementioned solid angle, energy conser­
vation dictates that the image-plane flux is directly
proportional to, and a mapping of, the specific in­
tensity distribution over a plane perpendicular to
the line-of-sight near the ground. Given also that
the sensors have equal receiving areas and are dy­
namically identical and linear, the DN (data number)
value in the resulting digital image will be directly
proportional to the specific intensity in the proper
direction at the corresponding point of the viewed
surface.

If the foregoing picture is replaced by one in which
a microwave CW (continuous wave) transmitter and
receiver pair, of very narrow and symmetric main
lobe in the antenna pattern, operates by serially po­
sitioning itself at points in a two-dimensional raster
of equally spaced angular directions whose spacing
is at least as l<;lrge as the antenna pattern, then a
digital image results about which the same conclu­
sion can be made. Here it depends on the constancy
of transmitter power, the ability of the receiver to
measure power accurately, and, of course, the con­
stancy of effective antenna area.

The situation is rather more complicated when
one examines radar images. The "doubly brute-force"
equivalent of any radar imaging system, neglecting
speckle, will be considered to be one in which the
azimuthal resolution is not only directly the width
of the antenna pattern, but the range resolution is
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~n three dimension.s, the topography can be viewed
In terms of an eqUlpotentIa1 surface

V(x,y,z) = z - z(x,y) = 0, (1)

(3)

(4)
(5)

cos e = e . it
cos i = s . it

The unit normal vector that will always have a
positive z component is then

dz~ dz~ ,
--/--j+k

(fx By

where z appears in the dual context of independent
variable and name of a function: The gradient of
this potential function will point perpendicularly to
the equipotential surface, i.e., the topography.

dz, dz, ,
VV = - - i - - j + k. (2)

(fx By

Let unit vectors eand s point toward the observer
and the illuminator, respectively. They mayor may
not be nearly constant vectors in an image, but they
are in any event known functions of no more than
x and y. The same may be said of the phase angle,
g. Now we will have

If we now let the given specific intensity of the image,
transformed if necessary, be b(x,y), then
photoclinometry consists in solving the equation

C/J(g,i,e) = C b(x,y) (6)

for the function z(x,y). Herein, C is a calibration
constant dependent on the illuminating flux and the
normal albedo. Because g, i, and e depend on x, y,

dz dz (dz)2 (dz)2
(fx' By' (fx ,and ay through Equations 3, 4,

and 5, Equation 6 is a non-linear first-order partial
differential equation with a driving function, Cb(x,y).
In the corresponding numerical analysis, an equation
involving both first derivatives is a triangular three­
point condition on a corresponding integration mesh
of discrete values of x and y. If a single profile in z
is given for all x at a constant value of y, profiles in
x for the adjacent values of y may be generated,
assuming an axial orientation does not correspond
to a singularity. Thus, the fundamental
indeterminacy of photoclinometry reduces to the
requirement of a one-dimensional boundary
condition.

Let us now direct ourselves specifically toward
radarclinometry. Because 4J = C/J(e) for a given C,
the image may be readily conceived directly as cosine
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also directly the length of the transmitted radar pulse,
and the matched dwell-time of the receiver detect­
ing the returned waveform. In this view, the power,
or more precisely the energy, that is allocated to the
DN number (datum corresponding to signal strength)
of a given image pixel all comes from a range inter­
val, approximately also the range resolution, that is
a constant of the image frame. The width in azimuth
of this resolution-cell is also a constant of the frame.
The difficulty in identifying the DN value of a pixel
in a radar frame as proportional to the specific in­
tensity of reflected radar radiation back-scattered from
the corresponding point on the ground is thus seen
to be a result of the fact that an image resolution
cell does not map into a constant area in the plane
near the ground that is perpendicular to the line-of­
sight. Thus, the emergent specific intensity, though
always multiplied by a constant solid angle, is mul­
tiplied by a variable area in forming the energy that
is transduced into the DN value of a pixel. In fact,
the geometry of the situation reveals that the
boundaries of the integrating area for the specific
intensity that correspond to the range-resolution­
interval, .1r, are separated by the distance .1r cot i,
where i is the local incidence angle of the terrain.
These boundary lines are perpendicular to the plane
containing the local normal to the terrain and the
line-of-sight from the radar to the terrain point. If
the constant azimuthal interval, .1y, corresponding
to azimuthal resolution, is bounded by two loci of
constant azimuth, they will cut the two range-re­
lated lines so as to form a small parallelogram as
the area for specific-intensity integration. The azi­
muth-related lines will have separation, .1y. But this
makes the area of the parallelogram .1r .1y cot i sec
4J, where 4J is the position angle of the local normal
with respect to the local vertical as seen from the
radar. While .1r .1y is a constant, cot i sec 4J is not.
Insofar as sec 4J is never far from 1, it can be ne­
glected. In that case, a backscatter-intensity versus
incidence-angle curve, obtained from cw active mi­
crowave measurements as proposed to provide a
photometric function for radar photoclinometry, need
only be multiplied by cot i in order to provide an
effective curve that may be applied as though the DN
values in the radar image were proportional to
"specific intensity." This approximation is adopted
for the present, and noted that it allows the image
to be converted directly to an array of values of the
cosine of the incidence angle.

DIFFERENTIAL GEOMETRY

Photoclinometry is quite generally described by
an inhomogeneous nonlinear first-order partial
differential equation in the topography, considered
in the form of height-above-mean-datum, z, as a
function of Cartesian coordinates x and y on the
mean datum. Consider any photometric function,
<P(g,i,e). Let the topography be given by z = z(x,y).
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(10)

(11)

1
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az
1 + e)e, ax

az
e)e, ay

az
+ e)e,_ ax
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ax' az
ax = 1 + e)e.,_ ax

ax
Btl

ax'

ax' az
-=de ­ay _xiJy

Btl
ax

0/
(A)

ax

y' = y
x' = x - z(x,y) tan IX

where IX is the depression angle of the radar, and
tan IX = - e)ex ' It is implicit in Equation 10 that
the radar wavefront is approXimately planar over
the relief range expected. The elements of the
Jacobeans for the direct and inverse transformations
are

One integrates in the domain of the image,
accumulating the necessary transformation to ensure
that each new value of z is put in proper
correspondence with x and y. The sign ambiquity
in Equation 9 can be resolved by making the rather
reasonable assumption that the local isophote
describes a surface line-element along which the
normal vector is locally unchanging. If the isophotic

direction is compared with the sign of az as foundax
az

from the current profile, a reasonable sign for ­
Bt)

can be found. For example, if the isophote trends
az

from ( - , -) to ( + , +) in the x', y' plane, and ax is

az
locally positive, then - should be negative.

Bt)

The foregoing analysis represents an operationally
complete scheme, in principle, and emphasizes the
requirement for one-dimensional ground truth. It
seems reasonable to suppose that, if one can supply
such a boundary profile, one has sufficient

J.L (x,y),

az az
eo e - - e -

- X ax Yay

±
az
Bt)

of incidence angle, rather than specific intensity. Let
J.L = cos i. Then equation (6) becomes

e . ft = J.L(x,y) , (7)

or

A further simplification is possible, with a proper
choice of coordinates, due to the inherently "strip­
camera" nature of radar imagery. Let us choose the
x-axis positive directly down-ground-range from the
sub-radar position in the zero-Doppler direction. Let
the positive y-axis point co-parallel to the direction
of motion of the radar platform. It will then always
turn out for all x and y that e" = O.

Equation 8 quickly solves to yield

which is more readily useable in the standard
quadratic form

{[fL(X,y)j2 - e/} (:;)2
- 2 e (e az - e ) az (8)

Y x ax z ay

+ {[fL(X,yW [1 + (:;)2]
- (e, :: - ez )2} = o.

Let fT and IJ be integers identifying the numerical
lattice of integration. If one is at point (xif yJ on a
boundary profile or the profile of an immediately

preceding integration, az is formed from (z -ax (T+l,v

za.v)/(xa+! - xa ), while J.L, ex, ez are known. Formula
az

9 then yields -; and the value of z at the mesh point
Bt)

(xif Yv+ l) is then increased over the value at (xif yv )

by 6.y times this amount.
As mentioned earlier, x and yare the true

coordinates of features on the mean datum. They
are the ultimately preferred coordinates. In terms
of image coordinates, x' and y', we must use the
transformation
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a2z
= 0ay"2

a2z
= 0

(14)
ax"ay"

( aZ)2 (aZ)2 -3/2[1 + - + - ]ax ay

{(
az ) az (j2Z

ey ax - ez ay ay2

alJ. =
ay

We do not expect that merely looking at the
gradient introduces determinacy, and that is surely
the case, for by adding the two gradient equations
we have introduced three unknown second
derivatives not present in our original Equation 7.
Thus, instead of promoting determinacy, we have
now, on the contrary, a theory with two remaining
degrees of freedom instead of one. The "hypothesis­
of-local-Cljlindricity" will now be invoked. The second
derivatives now involved in the argument describe
fully the local curvature properties of the topography.
We will assume the curvature is locally cylindrical
in nature, of arbitrary orientation. That is, there exists
a direction in space in which the curvature is
maximum and another direction perpendicular to
the first in which it is zero. This defines a local tangent
plane to the topography. The local curvature in all
other directions in the plane is a projection of the
maximum. Thus is defined a local tangent cylinder
of equivalent local curvature as well. I emphasize
that this is a local and not a global assumption about
the topography. To be reasonable, it is only necessary
that local curvature possess a fairly dominant
direction. Aside from such features as granite domes
and the summits of mountain peaks, local cylindricity
(LC) seems to me to be fairly consistent with
topography on the Earth, probably due to the
dominance of down-slope movement in the erosion­
transport process. If the hypothesis tends to fail the
more as curvature of any kind becomes slight, there
is compensation in the fact that it means local slope
is changing negligibly from an already established
value.

What are the consequences of LC for the equations
at hand? Consider an alternative set of locally
definable x and y axes, say x" and y", that are rotated
about the z axis with respect to x and y. Assuming
that LC prevails, let the axis of the local tangent­
and-equivalently-curved cylinder be parallel to the
y"z plane. It may have an arbitrary axial elevation
angle. The following facts then follow from LC:

az

ax"2
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(
az)2 a2z az a2z}- e [- + 1] - - e --

x ay ax2 z ax ax2

alJ. (aZ)2 (aZ)2]_3/2- = [1 + - + -ax ax ay

{(
az ) az a2z

ex ax - ez ay axay

technology at one's disposal as to make reliance on
photoclinometry unnecessary in any event. yve
therefore need to consider auxiliary mathematIcal
assumptions that will enable the generation of such
a boundary profile from initial point conditions
photoclinometrically. Assuming that all slopes along
a line of constant yare either directly toward or
away from the radar seems unacceptable. One does
not obtain the correct down-radar slope to the
exclusion of the cross-radar slope when one does

this. az and az are not mathematically separable in
ax 81j

the equations of photoclinometry. One simply obtains

the wrong value of az. Mental reflection regardingax
radarclinometry performed on a hemispherical
convexity, employing such a simplistic assumption,
reveals that the profile which bisects the structure
will be correct. For all parallel profiles, the slopes
down-radar will be underestimated (effectively
rotating n about e into the vertical plane) so that
the derived structure will have a ridgeline oriented
down range with depressed sides. A bilaterally
symmetric ridge, or convex mathematical cylinder,
trending obliquely, would be scaled down non­
linearly in the vertical dimension, and the flat terram
on the opposite sides would separate in elevation.

The search for a reasonable auxiliary assumption
begins by examining the significance of information
expansion in the form of not only the value of J1. at
each x' and y' in the image but of the two­
dimensional gradient of J1. as well. The components
expressed in terms of the coordinates on the mean­
datum will be needed. By the chain-rule,

alJ. alJ. ax' alJ. ay'
-=--+--ax ax' ax ay' ax
alJ. alJ. ax' + alJ. ay' (12)
ay ax' ay ay' ay

In Equations 12, the derivatives with respect to x'
and y' are directly the pixel differences in the image,
and other derivatives are from EquatIOns 11.
Equations 12 represent the transformed
measurements which apply. On the other hand, the
theoretical equivalents of the left-hand-sides of
Equations 12 are obtained by differentiating Equation
7 with e set to zero: i.e.,y
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(19)

(20)
A

and a second equation which turns out to be none
other than Equation 21 multiplied on the left-hand­
side by the factor:

iJJL I iJJL az
iJI/ + eze., ax' iJy'

This follows from the requirement that dJL = °along

the line-element for which dy = ~, the isophote di-
dx A

rection. In terms of the directly measured gradient
in the image, using the chain rule and Equations
11,

With the appearance of Equation 20, the illusion is
created that we have finally arrived at complete de­
terminacy of all first and second derivatives. One
extra equation has been found to account for the
remaining degree of freedom. Such is not the case.
If we combine Equations 11, 12, and 13, and sub­
stitute for the mixed derivative and the second de­
rivative with respect to y from Equations 18, thereafter
eliminating the parameter A thus introduced by sub­
stitution from Equation 20, and finally eliminating
the radical by substitution for it from Equation 7,
we extract the following two equations for the two
components of the image gradient:

W3 (;:)2 (eo _ e, :)3 (1 + eze,.-J :)2
iJJL ( az) az iJ2z aJL (az) 2

+ iJI/ eo - e,. ax iJI) ax2 + e,.-J ax' [ez
2

ax

+ (az)2J a
2
z + iJJL (e. + 2 e_ az) a

2
z = ° (21)

iJy ax2 ax" - ax ax2

Hence, Equation 21 does not have a companion that
is linearly independent in the three second deriva­
tives. Thus, the LC hypothesis does not result in a
set of equations which are algebraically determi­
nant. It does, however, result in a set of equations
which are one-dirnensionally integrable starting from
a point boundary condition. They therefore comple­
ment the earlier set of non-LC equations which are
two-dimensionally integrable starting from a line
boundary condition.

In principle, then, the integration of an entire to-

(15)

(16)

(
COS 8 sin 8)

-sin 8 cos 8

a2 z a2z
- ,1,-

(18)axiJy ax2
iJ2z iJ2z

and ,1,2_

atl' ax2

'YUII =

a2z iPz
ax2 cos2 8 --;;;

ax-
a2z a2 z

- sin8cos8- (17)
axay ax"2

a2z . 2 a2z
atl' sin 8 ax"2

Let the angle of rotation into the (x,y,z) system from
the x", y", z) system be 8. The transformation matrix
for two-dimensional vectors defined in the (x,y)
plane, is, thus,

If we let IT and fJ each refer to the (x", y") system
and ~ and 77 each refer to the (x,y) system, applying
Equation 16 using the values shown in Equations
15 and 14, we have

Now the topography certainly has a physical meaning
independent of the coordinate system used to
represent it. Its functional representation is a true
scalar in the group-theoretic sense. Its second
derivatives, therefore, have a second-rank tensor
character, and the appropriate transformation laws
may be used to re-represent the set of values shown
in Equations 14 in terms of x and y: i.e.,

,'''''1

the essential importance of which is that it leads to
the conclusion that there exists a parameter A, which
we may identify as tan 8, such that

In Equations 18 one quickly sees that the three
unknown second derivatives have been traded for

iJ2z
two unknown values of Aand -. Equations 18 can

ax2

be used to substitute into Equations 13. Thus, we
have reduced two remaining degrees of freedom
back to one.

The parameter A deserves deeper inquiry. It is the
tangent of the angle, as we have seen, between the
y axis and the projection of the local cylindrical axis
onto the mean datum. The line in the surface that
is in the cylindrical-axial direction must be a locus
of constant iI. As such, its image must be an iso­
phote. In terms of the image mapping in x and y,
we therefore conclude
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The process can now be repeated. An important
acknowledgment is necessary in order that a local
strike-line may evolve successfully through the plane
containing the local vertical and the radar line-of-

where the second order term is available because
topographic second derivatives have been deter-

. dN' h ax. f . fiJz'Emme. ohng t at - IS a unction 0 - In qua-
ax' ax

tions 11, one writes by way of the chain-rule

a2x 1 (a2 z ax
ax'2 ( iJz)2 e)e

x ax2 ax'
1 + e)ex ax (25)

+ a2
z 81J )

81Jax ax'

The overall calibration may be read for signal, (b
= p(JL) ~ @ (i) ~ cot i <p(o,i,i), or for cosine of inci­
dence angle, JL ~ U((b), which defines the function,
U. The starting value of ( is p(e,)/(b). The averages
are frame averages.

A small correction to the value of ( determined
above is now made, based on the departure of (JL)
from ez for a rough surface. Let A be any locally
defineable property of the terrain. Thus, A may be
considered a function of x and y (or x' and y' for
that matter). We shall subsequently want A to rep­
resent JL and JL2 Let A also be functionally deter-

whose parameters are known every step of the way.

CALIBRATION

The combined radar transfer characteristic and
applicable reflectance function provides all the in­
formation corresponding to Equation 6 except C.
We first evaluate ( under the assumption that the
average value of JL equals ez , according to the con­
vergent iterative equation for corrections to C, 6(,
based on Newton's method: i.e.,

sight. It will be noted that ~ is not updated through
a differential formula, but from new values of the
slope components that are thus linearized individ­
ually and updated. It would not otherwise be pos­
sible for ~ to pass through the perfectly meaningful

discontinuity (+ 00 ~~ - (0). While iJz and iJz are
ax ay

continuous variables, ~ is simply a discrete set.
When the boundary profile is complete, one pro­

ceeds according to the non-LC approach described
in the first part of this section. Presumably the in­
tegration mesh is constant in x' rather than x, so
that one operates pixel-to-pixel in the image. The
value of 6X in the foregoing is therefore given by
the Taylor expansion,

ax 1 a2 x
6X = - 6X ' + - - (6X ')2 (24)

ax' 2 ax'2

(23)

(22)

o

az az a2z
-~- + -6X
ax ax ax2

az ~ az + a
2
z 6x

ay ay axay

az a2z A- + --ux
ay axay

T] ~ az a2z
-+-6x
ax ax2

az 1 a2z
z~ z + - 6x + - - (6X)2

ax 2 ax2

For a given value of ~ that is either the starting value
or the current value from the last integratioIl.-step,
one solves Equation 22, using the immediate image

datum, JL, for iJz. Discrimination between the two
ax

roots of the quadratic is on the basis that no slope
steeper than the incident wave plane of the radar
has been admitted into the processing (terrain ino­
bedient to this condition must be avojded in both
radarclinometry and radargrammetry). With ~

known, iJz immediately follows. These two slope
81J

components together with the immediate pixel dif-

f aJL d aJL b' d . E .erences, - an -, can e Inserte Into quation
ax' 81/

a2 z
21 which is then easily solved for -. One then uses

ax2

Equation 20 to find A, and one of Equations 18 to

f· d a2

z W h'"In --. e now step to t e next Integration POint
axay

as follows:

which must be specified initially by eyeball esti­
iJz

mate. Equation 7 may be rewritten in terms of ax

and ~ as

[JL2 (1 + ~2) _ e'/] (:)2

iJz
+ 2 ezex ax + (JL2 - e,z)

pography can now proceed as follows. We may de­
fine the basic quantity which is stepped in the
integration producing the boundary profile, aside
from z, as the ratio of the slope components

~ = (Z)/(:),

48
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The Jacobean of the foregoing equation is the recip­
rocal of the determinant whose elements are the
second derivatives of the surface function, z; and
its behavior in anyone domain is independent of
its behavior in all the others, so that it can properly
be given a subscript, 11. Equation 29 interidentifies
with Equation 27 and would constitute the empirical
basis for the probability distribution, P, whose form
we have assumed. The original integration relating
to P is defined on the mean datum. We may find
P' by combining this result with the result of the
same procedure applied to mapping the integration
over the radar image frame into the space of z, and

z". Remember that Zx and Zy still represent=and

~ ~ ~ .
-' not - nor -. The repeat performance yields
ay' ax' ay'

(A)' = (yz' - y,') I(xz ' - x,') t f f"2" f'2"
/I I ::'.'1'111 ZX'III

I [iJ(x' ,y')]P,: = (Y2'-y',)-1 (XZ'-x l ') r7(z,.,zy) ,,'

iJ(y',y')
A(z" z,,) [~.--)L dx,.dz", (30)

. ij(Zx,ZII

which interidentifies with Equation 27 written with
P' substituted for P. If the Jacobeans for the trans­
formations between (x,y) and (x'y'), both direct and
inverse, vanish nowehere in the regions of interest
(there are no terrain slopes steeper than the radar
wavefront), then the topological relations between
the slope domain and the mean datum are the same
as between the slope domain and the image frame.
Therefore N' = N, and the individual domains in
Equation 29 can be interidentified with those of
Equation 30 on a one-to-one basis.

Now the probability, P, under discussion, can be
interpreted as a sum of individual probabilities, P",
each one of which is a joint probability of (1) being
in the domain n, and (2) the slope probability dis­
tribution applicable to the particular domain. This
enables the detailed interidentification between
Equations 27 and 29: i.e.,

and, similarly,

We assume that the frame is sufficiently large that
there is negligible difference in overall integration
ranges: i.e., yz' - y I' = Yz - Y I and xz ' - x,' = x2 - X I'

And, therefore,

(26)

Accordingly, we will have alternative prescriptions
for the average value of A.

az az
mined by the local components of slope, - and -,

ax iJIj
which we shall temporarily refer to as z,. and z", in
order to avoid some unweildy expressions. We will
assume that the probability distribution for slopes
is isotropic and gaussian as related to sampling that
is uniform on the mean-datum.

(A) = 1::J:: P(zx, Zy) A(zx' zy)dzx dzy (27)

(A) = f,2 L:2 A(x,y)dxdy!r(Y2-y,)(X2-X ,)] (28)

If we take an average over a radar picture-frame
we do not have the kind of average indicated in
Equations 27 and 28, because we are not sampling
uniformly on the mean-datum. We know that slopes
toward the radar are rendered in diminished du­
ration compared to slopes away from the radar. If
we let P'(zx' z,,) be a corresponding probability dis­
tribution for uniform sampling over the radar im­
age-frame, then the average value we will measure,
for example, of !J.., by converting brightnesses, pixel­
by-pixel, to !J.. and summing line-by-line over the
frame, would be represented by substituting P' for
P in Equation 27 and x' for x and y' for y in Equation
28. Our immediate problem is to find P'. In order
to do this, we must rethink Equation 27 as a con­
densed integral over the actual slopes of the surface,
with P representing the normalized multiplicity of
distinct pairs of z.,. and Zy. If Equation 28 is mapped
from the space of x and y to the space of Zx and z",
the result can be called the equivalent of Equation
27 and interidentification of terms can be achieved.
In order to do this properly, the integral of Equation
28 should be divided up into however may integrals
over separate domains are required in order that a
one-to-one mapping between each individual do­
main in x and y and the single domain in z, and z"
is achieved. Let 11 label such a domain and let there
be a total of N of them .. Inasmuch as the domains
are contiguous, then, the leading reciprocal of in­
tegration range in Equation 28 is unaffected apd. the
equation becomes

(A) = (Y2-YI) I (X2 -XI )-1 (29)

'~I f.~:' t~:' A(x,y)dxdy,
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(33)

N a(x',y') N
L P,,' =~) L P",
,,=.I U\x,y H=I

P'

a(x',y')
P (zx'z,,) -:JI--;

. V\x,y)

i.e., P'(zx,z.,) = C~ ~;ex) e-(zx
2

+ z,,2)/2'; (34)

With this expression for P' substituted for P in
Equation 27, we may compute (/L) and (/L2) in terms
of (J', using Equation 7. The results are

(/L2) = e; - (4e; - e;)(J'

or

and (/L) = ez(1 - 2(J'), from which, (35)

to 2nd order, (J' = «(6/L)Z)/e/. (36)

We compute (/L2) and (/L) = ez from the calibration
as it exists up to this point, averaging over the frame.
We therefore calculate (J'in Equation 34 from these
frame averages, «(6/L)2) = (/L2) - (/L)2, using Equa­
tion 36, and then use it to revise (/L) through Equa­
tion 35. We finally revise our calibration constant
by multiplying it by the ratio p(ez)/p(/L»)·

As indicated in the experimental counterpart
(Wildey, 1984) of this theoretical paper, a test of
metric precision will not be possible until radi­
ometrically calibrated radar systems are developed.
The Venus Radar Mapper is projected to fly such a
system and the present theory, to whatever preci­
sion it has been extended at that time, will be used
to extract topographic information during the nom­
inal mission. This forecast is possible because the
experimental paper has already demonstrated a fa­
cility for extracting enough topographic information
from uncalibrated images to enhance their geologic
interpretation (Soderblom, 1983). The greatest lim­
itation of the present theory lies in the fact that azi­
m u thai in tegra tion is unsa tisfactory, so tha t
topographic maps are obtained by producing a set
of independent line integrations in ground-range,
involving LC; which set is then adjusted in relative
zero-point of height and mean slope so as to pro­
mote an isotropic autocorrelation of the topogra­
phy. Nevertheless, the theory is intended to possess

[a(X' ,y')]
a(x,y) ,,'

A quick glance at Equation 11, which correspond to
this Jacobean, reveals that it is uniquely defined by
the values of Zx and Zv at the point of the contri­
bution to the integral' over Zx and zv' so that the
subscript n is no longer necessary or significant.
Factorization is therefore possible in the following
result:
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But by Jacobi's theorem, the ratio of the two Jaco­
beans is


