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ABSTRACT: An investigation was conducted to isolate the effects of three sensor characteristics
(spatial resolution, data quantization, and spectral band configuration) on the thematic clas­
sification of remote sensing data acquired over an area containing surface coal mines. A fixed
effects analysis-of-variance (ANaVA) model and a balanced experimental design were used
to evaluate the effect on classification accuracy of refining each characteristic from Landsat
Multispectral Scanner (MSS) specifications to Thematic Mapper (TM) specifications. This ap­
proach required data for eight ANaVA treatments. The required data were obtained by a
systematic degradation of TM data acquired over Clarion County, Pennsylvania, on 28 August
1982. Data for each treatment were independently classified into six land-cover categories
using supervised training and a per-pixel, maximum-likelihood decision rule. Classification
accuracies were determined by comparisons to digitized ground reference data.
On the basis of ANavA, data quantization and spectral band configuration did not signifi­
cantly effect classification accuracy. The increase in spatial resolution from 80 m to 30 m,
however, significantly improved classification accuracy. With the other two characteristics
held constant, percent accuracies obtained with 30-m data were greater than accuracies ob­
tained with 80-m data by an average of 17.8 percentage points. These results differed con­
siderably from the results of a previous study. The discrepancy was attributed to differences
between scene and category characteristics.
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however, did not address the contribution of indi­
vidual TM sensor characteristics to surface mine
monitoring. The research reported here was con­
ducted to assess the usefulness of actual TM data
and to quantitatively evaluate the contribution of
individual sensor characteristics to data utility for
surface mine monitoring.

The research was further motivated by a thematic
classification of actual and systematically degraded
TM data acquired over an area of diverse land cover
near Washington, D.C. (Williams et aI., 1984). This
investigation found that the additional TM spectral
bands and the increased data quantization en­
hanced classification performance when a per-pixel,
maximum-likelihood decision rule was used. The
increase in spatial resolution (Le., the decrease in
instantaneous field-of-view) from MSS to TM speci­
fications, however, did not improve classification
accuracy. In a follow-on study (Irons et aI., 1984),
this result was attributed to two counteracting ef­
fects of increasing spatial resolution: (1) the spectral
variability of land-cover categories often increases,
which can hinder classification; and (2) the propor­
tion of mixed (boundary) pixels in a scene tends to
decrease, which can enhance classification perform-

INTRODUCTION

T HE USE OF Landsat Multispectral Scanner (MSS)
data for surface coal mine inventory and in­

spection has been extensively investigated (Ander­
son et aI., 1977; Chase and Pettyjohn, 1973;
Quattrochi, 1982). Despite encouraging research re­
sults, MSS data have not gained wide acceptance for
operational surface mine monitoring. One reason
for the lack of acceptance is the MSS spatial resolu­
tion. The 80-m resolution is considered insufficient
for detailed surface mine inspection (Russell, 1977).

The sensor payloads aboard the recently launched
Landsat-4 (16 July 1982) and Landsat-S satellites (1
March 1984) consist of an MSS and an advanced sen­
sor, the Thematic Mapper (TM), with a refined spa­
tial resolution (30 m). Relative to the MSS, the TM
also offers new and more optimally placed spectral
bands and enhanced radiometric sensitivity quan­
tized to eight bits rather than six bits (Table 1). These
sensor refinements are expected to enhance the use­
fulness of TM data relative to MSS data.

An earlier study (Irons et aI., 1977) with simulated
TM data acquired by an airborne sensor indicated
that TM data are potentially more useful than MSS
data for surface mine monitoring. This earlier study,
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TABLE 2. CLASSIFICATION ACCURACIES AND TRANSFORMED ACCURACIES FOR EACH ANOVA TREATMENT.

(NOTE: Items underlined are those factor levels different from Treatment A levels, i.e., actual TM data).

52.14
40.01
51.75
41.36
51.16
40.78
50.96
42.71

Transformed
Accuracy,

(Arcsin 0)
62.3
41.3
61.7
43.7
60.7
42.7

60.3
46.0

Percent
Overall

Classification
Accuracy
(p x 100)

Bandpass Radiometric
(Micrometres) Sensitivity (NE~p)

Multispectral Scanner
Subsystem (MSS)

0.5 - 0.6 0.57%
0.6 - 0.7 0.57%
0.7 - 0.8 0.65%
0.8 - 1.1 0.70%

64

82 meters (Bands 1-4)

15 megabits/sec

6 bands
6 bands
6 bands
6 bands
3 bands
3 bands
3 bands
3 bands

Spectral Band
Configurations

plained by Rosenfield (1981). This approach was ap­
plied to simulated TM data by Sigman and Craig
(1981) and to actual TM data by Williams et al. (1984)
and Irons et al. (1984).

The experimental design was based on a three­
factor fixed-effects ANOVA model. The three factors
corresponded to the three sensor characteristics, and
two levels per factor were selected to approximate
the TM and MSS specifications for each characteristic:
30-m (TM) and 80-m (MSS) spatial resolutions; eight­
bit (TM) and six-bit (MSS) data quantization; and six
spectral bands in the visible, near-infrared, and
middle-infrared portions of the spectrum (TM), com­
pared to a subset of three spectral bands in the vis­
ible and near-infrared (MSS). The thermal infrared
band of the TM was not considered due to the com­
plication in experimental design presented by the
120-m spatial resolution. All possible combinations
of the three factors, given the two levels per factor.
produced eight treatments for analysis (Table 2).

The data required by the eight treatments were
obtained by systematically degrading actual TM data.

Factor
Level

8 bits
8 bits
6 bits
6 bits
8 bits
8 bits
6 bits
6 bits

256

Radiometric
Sensitivity (NE~p)

0.8%
0.5%
0.5%
0.5%
1.0%
OS Kelvin (NE~T)

2.4%
30 metres (Bands 1-5, 7)
120 metres (Bands 6)
85 megabits/sec

Data
Quantization

Thematic Mapper
(TM)
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30m
80m
30m
80m
30m
80m
30m
80m

0.45 - 0.52
0.52 - 0.60
0.63 - 0.69
0.76 - 0.90
1.55 - 1.75

10.40 - 12.50
2.08 - 2.35

TABLE 1. COMPARISON OF LANDSAT TM AND MSS SENSOR CHARACTERISTICS

Bandpass
(Micrometres)

Spatial
Resolution

Treatment
Designation

Band
Designation
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Data Rate
Quantization

Levels

Spectral Band 1
Spectral Band 2
Spectral Band 3
Spectral Band 4
Spectral Band 5
Spectral Band 6
Spectral Band 7
Ground IFOV

METHODS AND MATERIALS

EXPERIMENTAL DESIGN

The intent of the experimental design was to iso­
late the effect of each of three TM sensor character­
istics (spatial resolution, data quantization, and
spectral band configuration) on classification per­
formance. An analysis-of-variance (ANOVA) ap­
proach was adopted to evaluate the effect of altering
each characteristic from approximate MSS specifica­
tions to TM specifications. The application of ANOVA
to the assessment of thematic classification is ex-

ance. The study concluded that the ultimate effect
of increasing spatial resolution depended on the
spectral and field-dimension attributes of the land­
cover categories and suggested that TM scenes for a
variety of geographic areas be analyzed to more fully
assess TM data utility. The research reported here
extended the general approach of Williams et al.
(1984) to a new area which has been extensively
disturbed by surface mining.
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Data for each treatment were classified into six land­
cover categories (water, agriculture, bare mine spoil,
grass on mine soil, trees on mine spoil, and forest)
using supervised training and a per-pixel, maxi­
mum-likelihood classification algorithm. Classifica­
tion accuracies were assessed by au toma ted
comparisons to digitized ground reference data. The
ANaVA design enabled a quantitative evaluation of
the effects of each factor on classification accuracy.
Each of these data processing and analysis proce­
dures is described below.

STUDY SITES

The general study area was Clarion County,
Pennsylvania. The county is located within the Main
Bituminous Coal Field of the Appalachian Plateau
Physiographic Province. Dipping sedimentary strata
of the Allegheny Group, formed during the
Pennsylvania geologic period, underlie Clarion
County. The county is heavily forested and is
characterized by rolling topography of moderate
relief. Surface coal mining has disturbed extensive
portions of the county, and a range of bare to
revegetated mine spoil conditions can be found there.

Color infrared aerial photography was acquired
over the county on 6 October 1982 at a scale of
1:40,000. Four 241-mm format (9-inch format)
photographic frames were arbitrarily selected for
photointerpretation. The four frames were enlarged
to a scale of 1:10,000. Interpretations were limited
to a 41-cm square from the center of each frame to
avoid the increased geometric distortion typically
found at the edges of photographs. The surface areas
depicted within each square served as a study site.
Each of the four Clarion County sites covered an
area of approximately 1680 hectares.

DIGITAL IMAGE DATA

Digital image data were acquired over Clarion
County on 28 August 1982, by the Landsat-4 TM
(Scene 40043-15244, Path 17, Row 31, Jamestown,
New York). The data were in the CCT-PT format
generated by NASA's Scrounge System (Lyon et al.,
1983). Data in this standard format have been
radiometrically corrected and then resampled for
geometric rectification. The resampling results in 28.5­
m square pixels.

The TM data corresponding to the four study sites
were extracted from the scene. Each site was
represented by a 160- by 160-pixel segment, and the
data for the six reflective spectr"al bands were
extracted. The four data segments were
concantenated to form the data set corresponding
to the first ANaVA treatment (Treatment A, Table
2).

TM DATA PROCESSING

The Treatment A TM data were systematically
degraded (Table 2) to evaluate the effects of altering
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each sensor characteristic separately (Treatments B,
e, and E), the effects of altering all possible
combinations of two characteristics (Treatments D,
F, and G), and the effects of simultaneously altering
all three sensor characteristics under consideration
(Treatment H). Each step of the degradation process
was intended to approximate the impact of an MSS
sensor characteristic on digital image data. The spatial
degradation consisted of convolution with a three­
by three-pixel unweighted average filter to
approximate the 80-m instantaneous field-of-view
(IFaV) of the MSS, sampled at two-pixel (57-m)
increments. The two-pixel increment was used
because the 80-m MSS data are resampled for
geographic registration and provided to investigators
in a digital format consisting of 57-m square pixels.
The spectral degradation consisted of a three-band
subset of the TM data (bands TM2, TM3, and TM4)
which resemble bands MSSl, MSS2, and MSS4. The
reduction in quantization from eight bits (TM) to six
bits (MSS) was accomplished by integer division by
four. The degradation process is described in greater
detail in Williams et al. (1984).

GROUND REFERENCE DATA

Ground reference data were essential to the
assessment of classification accuracy. Such data were
derived from the photointerpretation of the four
enlarged frames of aerial photography. A
photointerpreter first delineated the boundaries of
the six land-eover categories (water, agriculture, bare
mine spoil, grass on mine spoil, trees on mine spoil,
and forest) onto acetate overlays. The
photointerpreter used a 15-m (1.5 mm on the
photograph) minimum mapping unit criterion. The
delineated boundaries were then digitized using a
hand-held cursor and digitization table. The digitized
boundaries were registered to the TM data using
image control points and digital rubber-sheet
stretching. Finally, two files of digitized, registered
reference data were generated in a raster format.
One file consisted of 28.5-m square raster cells and
could be directly overlaid onto the digital image data
with 28.5-m square pixels (Treatments A, C, E, and
G). The second file consisted of 57-m square raster
cells and could be directly overlaid onto the spatially
degraded data (Treatments B, D, F, and H).

SELECTION OF TRAINING AND TEXT PIXELS

The digitized ground reference data enabled the
selection of a stratified random sample of image pixels
for each ANaVA treatment. The strata were the six
land-cover categories depicted in the reference data.
For each treatment, 330 pixels were selected from
each category; 280 pixels served as training pixels
while the remaining 50 pixels were used as test pixels.
The six land-cover categories were treated as equally
important in subsequent analyses by virtue of the
selection of an equal number of pixels from each
category.
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CLASSIFICATION

For a given ANOVA treatment, a particular land­
cover category was statistically represented by the
means and covariance matrix of the multispectral
data from the associated set of 280 training pixels.
The statistics for all six categories were used by a
per-pixel, Gaussian, maximum-likelihood decision
rule to classify the 300 test pixels (six categories times
50 test pixels per category). Because the category
associated with each test pixel was known from
ground reference data, a contingency matrix was
easily generated to display the portion of correctly
classified pixels by category along with omission and
commission errors. The sum of correctly classified
pixels over the six categories divided by the total
number of test pixels (300) formed the overall
accuracy value used in subsequent analyses. These
classification and accuracy assessment procedures
were repeated for each ANOVA treatment.

EVALUATION OF RESULTS

The evaluation of the effect of each sensor
characteristic on classification accuracy was based
on a three-factor, fixed effects ANOVA model with
no interactions. Fixed effects ANOVA models operate
under three assumptions (Neter and Wasserman,
1974): (1) the observed responses for each treatment
are normally distributed random variables; (2) each
normal probability distribution has the same variance;
and (3) the observations for each treatment are
random observations and are independent of the
observations for any other treatment. An additional
assumption of no three-factor interaction was
included in these analyses because only one
observation of overall classification accuracy was
obtained per treatment.

The assumption of no three-factor interaction
slightly deviated from the approach of Williams et
al. (1984). In the earlier study, multiple observations
of classification accuracy were obtained for each
treatment by acquiring multiple random samples of
training and test pixels. Repeated random sampling
was not conducted for the research reported here
because of concerns regarding independence.
Multiple samples of the Clarion County TM data
would extensively overlap due to the limited number
of available pixels, and repeated training and testing
with overlapping samples could not be regarded as
independent experiments. Thus, the use of only one
observation of classification accuracy per treatment
was considered more suitable for the analyses
reported here, and this approach more closeiy follows
the analysis outlined by Rosenfield (1981).

The observed classification accuracies were
transformed prior to ANOVA to create a new scale
of measurement which more closely adhered to the
model assumptions. The original accuracy values
were binomially distributed proportions rather than
normally distributed random variables. The variance

of a sample proportion depends on the true
proportion, and, therefore, the variances of the
observed accuracies could not be equal between
treatments unless the accuracies were also equal.
The arcsin (inverse-sine, square-root) transformation
is commonly used to stabilize proportion variances
for ANOVA (Neter and Wasserman, 1974; Rosenfield,
1981). This transformation was applied to the
accuracy values in the following manner:

8 = arcsin VP

where p is a proportion (Le., classification accuracy)
and 0 "" p "" 1; and 8 is the transformed accuracy
in degrees.

The transformed accuracies, 8, had an
approximately constant variance of 821/300 (Bartlett;
1947; Rosenfield, 1981), where 300 is the number of
classified pixels tested for each treatment to determine
accuracy. The transformation had the added
advantage of a tendency to improve the closeness
of the distributions to normality (Bartlett, 1947; Neter
and Wasserman, 1974).

The transformation was performed to permit a
statistically valid assessment of factor effects by
ANOVA. The transformation does not alter the status
of classification accuracy as a meaningful value for
further discussion.

The transformed accuracies were used in the
ANOVA to compute F-statistics for the statistical
evaluation of factor effects. Error mean square was
the appropriate denominator of the F-statistics, but
error mean square could not be calculated in the
conventional manner because only one observation
per treatment was obtained. The computation of a
statistically valid F-statistic was made possible by
assuming that the three-factor interaction was zero
(Neter and Wasserman, 1974). Under this
assumption, the expected value of the mean square
normally associated with the three-factor interaction
was equal to the error variance and thus served as
an appropriate denominator of the F-statistics. For
this investigation, a null hypothesis was rejected if
the appropriate F-statistic was greater than the 95
percent point of the F-distribution (Le., factor effects
were tested at an lX-level of 0.05).

RESULTS

CLASSIFICATION

Table 3 provides examples of the contingency ma­
trices from which classification accuracies were de­
rived. The diagonal elements of each matrix are the
percentage (proportion times 100) of test pixels cor­
rectly classified for each class. The average of the
diagonal elements equals the percentage of all test
pixels correctly classified and is the overall accuracy
value given in Table 2. The other elements are per­
cent omission and commission errors. For example,
the element in row 2, column 3 is the percentage of



TABLE 3. CONTINGENCY MATRICES FOR TREATMENTS A AND B. DIAGONAL ELEMENTS ARE PERCENT CORRECTLY CLASSIFIED

FOR EACH CLASS. THE OTHER ELEMENTS ARE PERCENT OMISSION AND COMMISSION ERRORS.

DISCUSSION

To summarize this investigation, the effects of three
sensor characteristics were quantitatively evaluated
with respect to the thematic classification of remote
sensing data acquired over a geographic area con­
taining surface coal mines. ANaVA was used for the
evaluation on the basis of a fixed-effects model and
a balanced experimental design. The three charac­
teristics were spatial resolution, data quantization,
and spectral band configuration. Two levels were
considered for each characteristic; one level was the

increase in accuracy was 17.8 percentage points. The
graphs indicate some interaction between spatial
resolution and the other two factors. The increase
in data quantization from six bits to eight bits slightly
increased the classification accuracies for 30-m data
and slightly decreased the accuracies for 80-m data
(Figure Ib). Similarly, the change from the three­
band configuration to the six-band configuration
increased the accuracies obtained with 30-m data
and decreased the accuracies obtained with 80-m
data (Figure lc). These interaction effects, however,
appear small compared to the main effect of spatial
resolution and were not considered significant on
the basis of ANaVA results.
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Bare Grass on Trees on
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Mine Spoil Mine Spoil Mine Spoil
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Water Agriculture
76 10
2 66

0 0

0 10

6 12
2 16

Water Agriculture
54 16
4 72

4 10

2 46

8 22
2 56

a) Treatment A

Ground
Reference

Ground
Reference

Water
Agriculture
Bare
Mine Spoil
Grass on
Mine Spoil
Trees on
Mine Spoil
Forest
b) Treatment B

Water
Agriculture
Bare
Mine Spoil
Grass on
Mine Spoil
Trees on
Mine Spoil
Forest

agricultural pixels incorrectly classified as bare mine
spoil. This represents an omission error for the ag­
riculture class and a commission error for the bare
mine spoil class.

Table 2 lists the percent overall classification ac­
curacies obtained for each treatment. The accuracy
obtained with actual TM data (Treatment A) is greater
than the accuracy obtained with the data which most
closely approximated MSS data (Treatment H) by 16.3
percentage points.

ANOVA

Table 4 presents the F-statistics used to evaluate
the effect of each factor on classification accuracy.
The null hypothesis of no factor effect could not be
rejected at an a-level of 0.05 for the data quantization
factor, the spectral band configuration factor, or the
two-factor interactions. The effect of spatial resolution
was considered strongly significant on the basis of
the F-test.

The results of classification and ANaVA are
graphically illustrated in Figure 1. The increase in
spatial resolution from MSS specification (80 m) to
TM specifications (30 m) consistently and dramatically
improved classification accuracy when the other two
factors were held constant (Figure la). The average



'F(0.95;a,l3) is the 95% point of the F-distribution with parameters a and 13. a is the degrees-of-freedom associated
with the factor or interaction and 13 is the degrees-of-freedom associated with error. The effect was considered significant
(Le., the null hypothesis was rejected) if the F-statistic was greater than F(0.95;a,I3).

TABLE 4. ANALYSIS-OF-VARIANCE RESULTS.

Degrees of Sum of
Factor Freedom Squares F-Statistic F(0.95;a,I3)'

Spatial 1 211.66 10583.00 161

Spectral 1 0.02 1.00 161

Quantization 1 0.90 45.00 161

Spatial-Spectral 1 1.89 94.50 161

Spatial-Quantization 1 1.87 93.50 161

Spectral-Quantization 1 0.07 3.50 161

Total 7 216.44 10822.00 161

Error 1 0.02

TABLE 5. PROPORTION OF MIXED PIXELS ASSOCIATED WITH

EACH LAND-COVER CATEGORY. A PIXEL WAS CONSIDERED TO

BE A MIXED PIXEL IF ANY OF ITS EIGHT NEAREST-NEIGHBOR

PIXELS WERE ASSOCIATED WITH A DIFFERENT LAND-COVER

CATEGORY. MIXED PIXEL IDENTIFICATION WAS ACHIEVED BY

USE OF THE DIGITIZED GROUND REFERENCE DATA.

70.6%

96.8%
75.0%
79.5%
80.8%
89.5%
58.6%

57-m by
57-m pixels

46.5%

70.5%
49.3%
55.8%
53.6%
67.4%
36.3%

28.5-m by
28.5-m pixels

any increase in spectral variability at the higher spa­
tial resolution. The six Clarion County land-cover
categories often occurred in fields with narrow di­
mensions, as shown by the large proportions of
mixed pixels associated with most categories (Table
5). The higher resolution data (28.5-m square pix­
els), however, contained much fewer mixed pixels
than the spatially degraded data (57-m square pix­
els), and the total mixed pixel proportion for the
high resolution data was 24.1 percentage points less
than the total proportion for the degraded data (Ta­
ble 5). For comparison, the total mixed pixel pro­
portion for the Washington, D.C. TM data was only
19.5 percentage point less than the proportions for
degraded (again, 57-m square pixels) data when five
land-cover categories were considered (Irons et aI.,
1984; Table 3). The surface mined landscape of Clar­
ion County represented a distinct geographic situ­
ation of narrow features for which the 1M spatial
resolution was of immediate benefit in thematic
classification.

The results of the investigation reported here in­
dicate that six-bit data from three visible and near­
infrared spectral bands were as useful as eight-bit

Category

Water
Agriculture
Bare Mine Spoil
Grass on Mine Spoil
Trees on Mine Spoil
Forest

Total Over All Categories
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1M specification for the characteristic while the other
level approximated the MSS specification. This ex­
perimental design required data for eight treat­
ments which were obtained by the systematic
degradation of 1M data acquired over Clarion County,
Pennsylvania, on 28 August 1982.

Data for each treatment were independently
classified into six land-cover categories (water, ag­
riculture, bare mine spoil, grass on mine spoil, trees
on mine spoil, forest) using supervised training and
a per-pixel, maximum-likelihood decision rule.
Classification accuracy was determined for each
treatment by an automated pixel-by-pixel compari­
sons to digitized ground reference data. The eight
accuracies were arcsin transformed to create a scale
of measurement which more closely adhered to the
assumptions of ANOVA. The effects of data quanti­
zation and spectral band configuration were not
considered statistically significant on the basis of F­
tests. The increase in spatial resolution from 80 m
to 30 m significantly increased classification accu­
racy.

This investigation geographically extended the
methodology applied by Williams et al. (1984) to a
Washington, D.C., TM scene. The results obtained
with the Clarion County TM data, however, differed
considerably from the results obtained by Williams
et al. (1984). To briefly review, both increasing data
quantization and adding the three spectral bands to
the configuration improved classification accuracies
obtained with the Washington, D.C. data, but spa­
tial resolution did not significantly effect accuracy.
The insignificance of the spatial resolution effect was
attributed to two counteracting consequences of in­
creasing resolution: (1) category spectral variability
tends to increase, which can hinder classification;
and (2) mixed pixel proportions tend to decrease,
which can enhance classification.

The analyses of the Clarion County data indicate
that the reduced proportion of mixed pixels had a
greater influence on classification accuracy than did



FIG. 1. The effects of each sensor characteristic, with the
other two characteristics held constant, on percent classi­
fication accuracy. The letters on the graphs refer to the
ANOVA treatments in Table 2. (a) Effects of spatial reso­
lution. (b) Effects of data quantization. (c) Effects of spectral
band configuration.
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data from all six reflective TM bands for the recog­
nition of the six land-cover categories depicted in
the Clarion County data. The increased quantiza­
tion did not appear to enhance any between-cate­
gory boundaries in spectral data space. The additional
spectral bands did not seem to increase contrasts
between categories over the contrasts provided by
the visible and near-infrared observations.

Digital image data from the Landsat satellites are
frequently used to generate thematic maps through
the application of per-pixel, maximum-likelihood
decision rules. Classification accuracy was selected
as a quantitative indicator of data utility for both
this investigation and by Williams et al. (1984). Taken
together, the two studies show that the contribu­
tions of advanced TM sensor characteristics to data
utility depend heavily on the scene and the cate­
gories-of-interest. For some scenes, the eight-bit
quantization can enhance between-category bound­
aries, and the new spectral bands can provide data
from portions of the spectrum where category re­
flectivities become disparate. The categories-of-in­
terest in other scenes may already be separable with
data from visible and near-infrared spectral bands,
but the categories may occur in small fields. In this
case, the TM 30-m resolution can enhance classifi­
cation by reducing the proportion of mixed pixels
relative to MSS data. In particular, the results re­
ported here demonstrate that the TM spatial reso­
lution can be of immediate benefit for certain
applications such as surface mine monitoring.

TM data utilization is not limited to thematic map­
ping by per-pixel classification. Relative to MSS data,
TM data provide information with greater radio­
metric precision and from additional spectral re­
gions. This information can be applied to the
determination of surface feature attributes and to
the observation of physical surface processes as well
as to classification. Also, increasing the spatial res­
olution from 80 m to 30 m has consequences which
are not exploited by a per-pixel, maximum-likeli­
hood decision rule. The increased resolution clari­
fies shapes, sharpens boundaries, and accentuates
the textural appearance of categories. These con­
sequences can facilitate the visual photointerpreta­
tion of imagery, and the development of new
classification algorithms which exploit these con­
sequences can potentially improve automated clas­
sification performance. This investigation focused
on the use of TM data for thematic mapping. TM
data utility will become even more apparent as more
data applications and alternate classification ap­
proaches are explored.
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