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ABSTRACT: Theoretical and practical aspects of the finite element approach in self-calibration
developed by the author have been investigated in detail. An experimental verification of
the proposed technique has been carried out. The experimental results support the conclusion
that the reported technique gives a good representation of the systematic errors in photo­
grammetry.

(1)

present state-of-the-art in analytical self-calibration
is basically as follows:

Analytical approaches to camera calibration have a
common starting point: compensation of systematic
image coordinate errors by analytical models incorpo­
rated into the photogrammetric projective equation. The
parameters defining systematic errors are then re­
covered simultaneously with the projective parameters
(position, orientation, focal length, principal point) in
a least-squares adjustment leading to the minimization
of the quadratic form of the residuals of measured
quantities.

Most reported analytic functions representing film
shrinkage, film flatness, and radial lens distortion
are assumed to be valid throughout the image plane.
A logical extension of this theory is to divide the
image plane domain into subdomains or finite ele­
ments and then to prescribe a mathematical model
for systematic errors over the image plane domain
in a piecewise fashion, element by element, thus
eliminating the assumption of symmetry.
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where P, are linearly independent selected functions
existing over the domain and its boundary and C,
are unknown parameters to be determined, not by
a differential equation, but by a system of M discrete

THE BASIC IDEAS OF THE FINITE ELEMENT
METHOD

The finite element method can be described in a
few words. Suppose that in the problem to be solved
it is required to find a function v which minimizes
a given expression. This minimizing property leads
to a differential equation for v (the Euler Equation),
but normally an exact solution is impossible and
some approximation is necessary. A trial solution is
considered in which v is approximated by a solution
V m of linear form
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INTRODUCTION

SINCE ABOUT 1956 the finite element method has
developed enormously. It began as a numerical

method of stress analysis and is still most widely
used for this purpose (Cook, 1974). In addition, it
has become popular in many other areas including
heat conduction, seepage flow, fluid dynamics,
acoustics, electric and magnetic fields, and recently
in digital terrain modeling (Ebner et aI., 1978, 1980,
1981).

PhotogTammetry can be described as a non-con­
tact measuring technique which extracts reliable
geometric measurements from imagery records.
Generally, this measuring technique is categorized
into two fields: analog and analytical photogram­
metry. The last two decades have witnessed a tre­
mendous gTowth for the analytical approach due to
developments in high speed digital computer tech­
nology, and the growing importance of non-con­
ventional photogrammetry.

In the analytical approach, systematic errors in
photogrammetry are compensated for by mathe­
matical functions (e.g., orthogonal polynomials). In
many cases these mathematical functions yield no
insight into the physical or mechanical source of the
errors. It will be shown that the finite element ap­
proach can play an important role in modeling these
errors and in increasing photogrammetric accuracy.

In photogrammetry, the finite element method
can be used to study and investigate many prob­
lems such as camera calibration, film shrinkage,
camera stability, flatness of film during exposure,
mono- and stereo-comparator calibration, distor­
tions in X-ray photogTammetry, and in underwater
photogTammetry. It can also be used to correct dis­
tortions in satellite imagery. The finite element ap­
proach in analytical self-calibration forms the topic
of this paper.

A search of the current literature (see, for exam­
ple, Brown (1971), Brown (1972), Kenefick et al. (1972),
Ebner (1976), and Fraser (1979)) reveals that the
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FIG.1. Subdivision into finite elements of arbitrary contin­
uum.

RECTANGULAR ELEMENTS

Rectangles are a special case of a quadrilateral.
However, a quadrilateral can be transformed to a
rectangular shape by using a bilinear coordinate
transformation (Ergatoudis, 1968). Linear functions

v(X,y) = a, + a2 x + a3 Y (2)

This function is linear inside each triangle and
continuous across each edge. Thus, the graph v(x,y)
is a surface made up of flat triangular pieces, joined
along the edges. This is an obvious generalization
of broken-line functions in one dimension.

The three coefficients of Equation 2 are uniquely
determined by the values of the function v at the
three nodes. This means that the function can be
conveniently described by giving its nodal values.
Furthermore, along any edge, it reduces to a linear
function of one variable, and this function is
obviously determined by its values at the two end
points of the edge. The value of v at the third vertex
has no effect on the function along this edge,
regardless of whether this vertex belongs to the
triangle on one side or the other. Therefore, the
continuity across the edge is assured by continuity
at the vertices.

The approximation function v in Equation 2 is of
class Co. An approximation function is considered
of class k if it has continuous derivatives across the
element boundaries of order k (Strang, et aI., 1973).

There are other trial functions beside the linear
function described in the literature (see, for example,
Zienkiewicz (1977), Strang et al. (1973)), but such
trial functions will need more than three nodes to
define the function over the triangle.

Equation 2 can also be written in terms of the
values of the function at the nodes

v = 1, Vi + 12vj + 13 vk (3)

where 1,,12,13 are the triangular coordinates (Cook,
1974).

TRIANGULAR ELEMENTS

The most basic and simplest of all trial functions
is

into line elements, linear or curved. Triangles and
quadrilaterals are common shapes used for two­
dimensional problems. In three-dimensional
analyses, the common elements used are tetrahedra
and hexahedra. In this paper, the emphasis will be
on the two-dimensional problems.

In two-dimensional analysis the simplest element
shapes are obviously a triangle and quadrilateral
defined by three or four nodes, respectively. Triangles
are obviously better at approximating a curved
boundary, but there are advantages to quadrilaterals
(especially to rectangles) in the interior, as there are
fewer of them, and higher order functions can be
very easily used (Strang et aI., 1973).
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ELEMENTS AND THEIR SHAPE FUNCTIONS

The discretization principle in the finite element
method involves the division of a continuum (Figure
1) into an equivalent system of smaller continua. In
one-dimensional problems, the continuum is divided

algebraic equations which the computer can handle
(Strang et aI., 1973).

The finite element process as described so far is
identical to the Rayleigh-Ritz procedure. The
difference is only the manner in which the function
v is prescribed. In the Ritz process, the traditionally
used function v is usually given by an expression
valid throughout the whole region, thus leading to
simultaneous equations in which no banding occurs
and the coefficient matrix is full. In the finite element
process this specification is usually piecewise, each
nodal parameter influencing only adjacent elements,
and thus a sparse and usually banded matrix of
coefficients is found (Zienkiewicz, 1977).

Thus, the key features of the finite element concept
according to Norrie et al. (1973) are

• The domain is divided into subdomains or finite
elements, usually of the same form (Figure 1); and

• The trial solution is prescribed (functionally) over the
domain in a piecewise fashion, element by element.

The accuracy of the finite element method can be
increased, if that is necessary, but not by the classical
Ritz method of including more and more complex
trial functions. Instead, the same functions are
retained, and the subdivision is refined.

412



413

(6)

TRIANGULAR ELEMENTS

The image plane domain can be divided into
triangular element subdomains. By assuming that
each point on the photograph will have a different
focal length, the collinearity condition can be
modified to the following form:

Xij - X"i = h (X'/Z')ij

where

A FINITE ELEMENT APPROACH FOR THE
ANALYTICAL SELF-CALIBRATION METHOD

One of the basic systematic errors in
photogrammetry is radial lens distortion. To
compensate for this distortion, it can be assumed
that each point on the image plane will have a
different focal length.

The scale of the photograph is a function of the
camera's focal length, and by assuming a different
focal length for each image point, we are allowing
a certain variation in the photo scale. This variation
in the photo scale is also very effective in eliminating
some of the image errors such as expansion or
shrinkage of the photograph and the lack of flatness
of the image surface.

Mi

[

X - XC]
M

i
y; - Y;c ;
Zj - Zic

photographic coordinates of the
principal point of the ith

photograph;
focal length at the r point of the
ith photograph;
observed photo coordinates of point
j on the i'h photograph;
object space coordinates of the jth
point;
object space coordinates of the ith
exposure station; and
unitary-orthogonal orientation
matrix of the ith photograph.

Let the symbol Ii, denote the exterior orientation
parameters plus the principal point coordinates
(xcyc,zcW,<I>,K,Xp,yp) of the ith photograph, the

Zi~nkiewicz (1977), Schultz (1973)). Examples of such
runctions are the biquadratic and the ordinary bicubic
function which are of class Co, the hermitian bicubic
function which is of class C', and the spline functions
whose class depends on the degree of the spline
used.

b Lagrange's interpolation formula can also be used
in two-dimensional interpolation. But this formula
is more suitable for deriving theoretical results than
for practical computations (Dahlquist, 1974).

b

b

a
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FIG.2. Rectangular grid mesh.

in rectangular elements will be discontinuous across
the boundaries. So the simplest construction, in
analogy with the linear element for triangles, is based
on a piecewise bilinear function with class Co in
each rectangle; that is,

v(x,y) = a, + a2 x + a3 Y + a4 xy (4)

where a" a2 , a3 , a4 are coefficients determined by
the value of the function at the vertices of the
rectangle.

It is important to notice that, for arbitrary
quadrilaterals, these piecewise bilinear functions
would not be continuous from one element to the
next. Suppose that two quadrilaterals are joined by
a line y=mx+b. Then along that edge, the bilinear
function reduces to a quadratic; it is linear only if
the edge is horizontal or vertical. A quadratic cannot
be determined from the two nodal values at the end
points of the edge, and in fact the other nodes do
affect the value of v. Therefore, bilinear elements
may be used only on rectangles (Strang et aI., 1973).

Equation 4 can be written using the value of the
function at the nodes. For a rectangular grid mesh
as in Figure 2, the bilinear equation will be

(S)v = [1 - x/a, x/a] [Vi. j Vi+ 1 •j ] [1 - Y/b]
Vi •j + 1 V i + l •j + 1 y/b

where
a the size of the grid in the x direction,
b the size of the grid in the y direction, and
x,y = element local coordinates with origin at the

point (i,j).
There are many other shape functions discussed

in the literature (see, for example, Strang et al. (1973),
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(8)

(9)

the focal length at node i,j; and
the dimension of the rectangular
element in the x and y directions,
respectively.

CONTROL FIELD

Yij - yp' = g([) (Y'/Z')'j

Using a bilinear function as in Equation 5,

g([) = (1- x/a, x/a] [[',j ['+l,j ] [ 1 - y/b ]
["j+l [,+l,j+l y/b

A three-dimensional object space control field was
used. Veress and Tiwari (1976) and Fraser (1979)
have given a complete description of the control
field, This field consists of four piano wires
suspended as plumb lines, each weighted with a
heavy plumb bob immersed in an oil bath at one
end and fixed to the ceiling by hooks at the other
end, Small seed-beads of approximately 3-mm
diameter are fixed on the wires to serve as target
points, In all, 34 targets are available.

Precise theodolite surveys were carried out to
determine the object space coordinates of the control
points. A Zeiss TH2 theodolite was used to measure
the horizontal and vertical angles to the target points

EXPERIMENTAL VERIFICATION OF THE FINITE
ELEMENT APPROACH IN ANALYTICAL

SELF-CALIBRATION

In order to verify the proposed finite element self­
calibration technique and also to assess its
practicability, an experiment was conducted (Munjy,
1982), The camera system used in the experiment
consists of two MK-70 metric Hasselblad cameras,
serial numbers 1146 and 1148, each with a Biogon
6O-mm fl5.6Iens, The MK-70 incorporates a calibrated
reseau plate with 25 crosses in a l-cm by l-cm grid
pattern. The cameras were placed 0.60-m apart with
their axes parallel to each other. The photographs
were exposed using time of 1/2 second at [-stop 22.
The two cameras were focused at 2 m. At [-stop 22
the depth of field was large enough so that all image
points were in clear focus,

where
["j
a,b

element. With the above approach Equation 6 can
be modified to the following form:

Xij - xpi = g([) (X'/Z')ij

(7)

irrWB
8"'WB + W[

BTWB +W

SYM.

symbol ui the focal length at point j(fi) of the i1h

photograph, and the symbol 'iij the object space
coordinates (X, Y,Z) of the r point. Note that, in
the above parameter vectors, there are no lens
distortion coefficients as in other self-calibration
methods. Equation 6 is linearized by Taylor's series
expansion about the initial approximations for the
unknown parameters. If all linearized equations are
gathered, the collection of equations may be written
in matrix notations as (ASP 1980)

V + B5 + 85 + 'ifB = E

where W, W, W, Ware, respectively, the weight
matrices of the image coordinates, the elements of
exterior orientation and the principal point
coordinates, the focal length at each point, and the
object space coordinates. The E, E;E' are vectors of
residuals between the observed and current
computed values. Equation 8 represents the general
system of normal equations for the bundle
adjustment of a photogrammetric block with finite
element calibration.

where
o = vector of corrections to the exterior

orientation parameters and the principal
point coordinates,

5 vector of correction to the focal lengths,
.B = vector of corrections to the object space

coordinates,
B = matrix of partial derivatives of the

collinearity equation with respect to the
exterior orientation parameters and the
principal point coordinates,
matrix of partial derivatives of the
collinearity equation with respect to the
focal lengths,

'8 = matrix of partial derivatives of the
collinearity equation with respect to the
object space coordinates,

V = residual vector for the image coordinates,
and

E = discrepancy vector.

Treating all parameters as observed or pseudo­
observed quantities of known a priori precision, the
entire set of observation equations may be merged
into a single observational equation system, giving
rise to the following least-squares normal equations
(Brown 1971):

RECTANGULAR ELEMENTS

In rectangular elements the focal length of a point
inside an element can be expressed as a function of
the focal length at the nodes of the rectangular
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TABLE 1. HASSELBLAD 1146 FINITE ELEMENT CALIBRATION RESULTS
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0.012
0.009

-0.008
-0.028
-0.022

0.044
0.029
0.008
0.018
0.030

-0.002
0.010

-0.013
-0.043
-0.024
-0.024
-0.022
-0.021
-0.016
-0.007
-0.007

0.043

Radial Lens
Distortion

r(mm)

23.990
10.329
4.326

18.806
20.569
29.398
32.470
27.584
24.294
26.889
22.282
17.427
9.906

22.069
17.096
16.072
17.172
18.817
23.303
15.079
20.831
31.584

Radial
Distance
r(mm)

y
(mm)

3.809
10.356

- 4.298
9.723

-12.897
-17.217

22.318
14.261

- 5.115
-12.539

22.309
17.454

- 9.880
15.084
5.786
0.558

- 6.127
- 9.858
-16.939
-15.051
-20.803
-20.700

RESULTS AND ANALYSIS

Each Hasselblad camera lens system was calibrated
individually by assuming that all object space
coordinates of the points that were seen in each
photograph were free from errors and by dividing
the image plane into triangular elements. The
calibration resulted in a focal length for each point
as shown in Tables 1 and 2. The mean standard
error of the focal length was 0.027 mm for camera
1146 and 0.033 mm for camera 1148.

The average principal point coordinate standard
error was 0.015 mm. The root-mean-square (RMS)
errors of the adjusted image coordinates were 0.0025
mm for camera system 1146 and 0.003 mm for camera
system 1148.

By dividing the image plane for the Hasselblad
camera into four rectangular elements, the focal
length was represented by a bilinear function in each
element. The focal length at each node, as shown
in Table 3, was found by a least-squares adjustment.
Points 10 and 11 on photo 1146 and 3 and 4 on photo
1148 had shown high residuals and they were
dropped from the adjustment. The focal length

Photo Coordinates

x
(mm)

23.965
0.299
0.371

-15.839
-15.727

24.085
23.884
23.902
24.019
24.047
0.245
0.282
0.398

-15.860
-15.822
-15.788
-15.756
-15.736
-15.700

0.430
0.468

24.106

3 63.378
8 63.403

10 63.224
19 63.252
24 63.281
29 63.442

1 63.404
2 63.365
4 63.394
5 63.418
6 63.340
7 63.383

11 63.267
18 63.224
20 63.258
21 63.250
22 63.268
23 63.275
25 63.303
26 63.318
27 63.327
30 63.434

Focal
Point Length
No. (mm)

from the ends of a baseline, which was accurately
measured by a steel tape lying flat on the floor.

The horizontal and vertical angles were
transformed to pseudo-image coordinates and then
a photogrammetric intersection program was used
as suggested by Abdel Aziz (1975) to find the space
coordinates of the control field points. The mean
standard error of X, Y, Z coordinates in the control
field was 0.155 mm.

IMAGE COORDINATE MEASUREMENTS

Image coordinates were observed on an OMI-Bendix
AP/C. Each negative was observed monocularly.
Besides observing the x,y coordinates for all target
points, four reseau crosses were also observed, and
an affine transformation was used to transform the
machine coordinates to photo coordinates. In order
to ensure rapid convergence of the camera calibration
program, space resections were carried out so as to
obtain reasonably refined preliminary estimates for
the values of the exterior orientation elements at
each camera station.

Average focal length (fo) = 63.347 mm

Mean standard error of the focal length = 0.027 mm
Principal point coordinates
xp = 0.275 mm <TXp = 0.012 mrn
YP = 0.027 rnm CTYp = 0.011 mm

The root mean square error of the adjusted image coordinates = 0.003 mm



TABLE 3. HASSELBLAD MK-70 FOCAL LENGTH AT THE NODES OF THE RECTANGULAR FINITE ELEMENT CAMERA
CALIBRATION

Average focal length (fo) = 63.254 mm

Mean standard error of the focal length = 0.033 mm
Principal point coordinates
xp = -0.037 mm crxp = 0.017 mm
YP = 0.037 cryp = 0.017 mm

The root mean square error of the adjusted image coordinates = 0.0025 mm

63.255
63.152
63.252
63.261
63.326
63.202
63.324
63.352
63.165

0.003
0.012
0.001
0.007

-0.002
-0.008
-0.012

0.033
0.017

-0.008
0.031
0.001

-0.003
-0.005
-0.002
-0.004
- 0.001

0.001
-0.002
-0.031
-0.010
-0.013

Camera
1148

Radial Lens
Distortion

r(mm)

Focal Length at the
Nodes

2.681
25.224
24.079
23.492
17.330
22.305
18.335
21.050
13.067
6.224

31.572
25.920
20.921
18.868
15.929
16.278
17.682
28.511
32.148
21.826
19.876
25.447

Radial
Distance
r(mm)

63.333
63.281
63.466
63.154
63.431
63.370
63.149
63.344
63.396

Camera
1146

y
(mm)

2.817
9.338

- 5.287
1.133
7.323

-15.437
-18.197

21.187
13.204

- 6.086
21.224

-10.898
13.933
10.516

1.932
- 3.489
- 7.569
-16.084
-21.879
- 21.688
-11.743
-19.655

contour lines on the image plane for camera 1146
and 1148 are shown in Figures 3 and 4, respectively.

Computing the object space coordinates by
intersection the, root-mean-square errors of the X, Y,Z
coordinates listed in Table 4 were obtained.

CONCLUSION

The finite element calibration approach developed

Y
(mm)

-25.000
-25.000
-25.000

0.000
0.000
0.000

25.000
25.000
25.000

0.190

0.160

x
(mm)

Photo Coordinates

0.029
-23.523
-23.497
-23.508

15.733
15.930
0.154

- 0.063
- 0.045

0.097
-23.535
-23.491

15.690
15.720
15.790
15.832
15.877

-23.484
- 23.464

0.171
15.898
15.957

RMS (XYZ) of Object
Space Points (mm)

Photo Coordinates

x
(mm)

-25.000
0.000

25.000
-25.000

0.000
25.000

-25.000
0.000

25.000
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TABLE 2. HASSELBLAD 1148 FINITE ELEMENT CALIBRATION RESULTS

63.335
63.284
63.257
63.272
63.246
63.231
63.212
63.352
63.334
63.168
63.317
63.257
63.244
63.236
63.246
63.238
63.250
63.256
63.251
63.165
63.222
63.222

Focal
Length
(mm)

TABLE 4. SPACE INTERSECTION RESULTS

3
8

10
9

14
33
29
1
2
4
6

11
12
13
15
16
17
26
27
30
32
34

Point
No.

Node
Number

Focal Length
Representation

Triangulaar Finite Element
Bilinear function in a square

finite element
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FIG.3. Hasselblad MK-70 (1146) focal length contour lines (initial focal length
= 63.000 mm; contour interval = 0.010 mm; image size 25 mm by 25 mm).
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FIG.4. Hasselblad MK-70 (1148) focal length contour lines (initial focal length
= 63.000 mm; contour interval = 0.010 mm; image size 25 mm by 25 mm).
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in the previous sections has been employed for the
calibration of two Hasselblad MK-70 metric cameras.
Results obtained from the experimental verification
of the finite element approach support the conclusion
that this approach gives a good representation of
systematic image errors in photogrammetry.

Due to the nature and the complexity of most
systematic errors in photogrammetry, some difficulty
will be encountered in representing these errors in
mathematical models that would be valid throughout
the image plane. This is especially true for film
shrinkage, film flatness, and lens distortion. The
use of these mathematical models to correct
systematic errors can also introduce new errors that
affect the precision of the photogrammetric results.
In the finite element approach, we still have the
same problem, but by dividing the image plane
domain into subdomains or finite elements, a better
representation of the systematic errors can be
achieved.

Dividing the image plane into four rectangular
elements and representing the focal length by a
bilinear function gave results 15 percent worse than
those for the triangular finite element approach. In
spite of this difference between the accuracy of the
triangular finite element approach and the rectangular
finite element approach, the latter is recommended
because there are fewer unknowns to be solved for
in the observation equations. Also, if there are more
points in the image domain, a finer rectangular mesh
will give better results.

The attainment of higher accuracy in the finite
element results for camera calibration depends very
much on the accuracy of the image coordinate
measurements. The so called first-order measuring
instruments that are available on the market at
present can measure image coordinates within an
accuracy of about O.OOlmm to O.004mm. This
measuring accuracy will permit us to assume the
focal length as a variable quantity, and this forms
the basis for the finite element approach in self­
calibration.

In addition to self-calibration, the finite element
method can be used in photogrammetric block
adjustment to establish subsidiary control networks,
and also for the correction of distortions in X-ray
photogrammetry and satellite imagery. .

Additional research still needs to be carned out
on the use of more complicated trial functions in
the elements, in order that higher accuracy may be
achieved. Multiframe camera calibration with the
finite element approach is worth development as
well. The author believes that the use of the finite
element technique in self-calibration is only the first
of several possible applications of this technique that
will contribute to the advancement of the state-of­
the-art in analytical photogrammetry.
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