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Analysis of Thematic Map.
Classification Error Matrices

ABSTRACT: The classification error matrix expresses the counts of agreement and disagree­
ment between the classified categories and their verification. Thematic mapping experiments
compare variables such as multiple photointerpretation or scales of mapping, and produce
one or more classification error matrices. Analysis of categorical data by linear models can
analyze a set of one or more classification error matrices in a multivariate sense by utilizing
all of the cell frequencies in the matrix, not just the diagonal elements. This paper presents
a tutorial to implement a typical problem of a remotely sensed data experiment for solution
by the linear model method. The results of the application analysis indicate that two inde­
pendent photointerpreters are interpreting mapped categories in the same manner at the 95
percent probability level; and at the 59 percent probability level, the categories of oak and
cottonwood cannot be separated by interpretation.
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the advantages of giving the analyst more latitude
in choosing models and testing hypotheses which
are precisely tailored to specific data." (Grizzle et
aI., 1969, p. 489). The procedure is based on a
weighted least-squares adjustment. The 1969 paper
contains an example which is extendable to making
comparisons between more than one classification
error matrix, as in thematic mapping experiments.
A more recent version of the 1969 paper was
published by Koch et al. (1977). This recent paper
extends the mathematical and statistical basis of
weighted least-squares model fitting and of
hypothesis testing to additional analysis and
functional relationships. "The resulting methodology
represents a categorical data analogue to more well­
known counterparts for quantitative data, like
multivariate analysis of variance," (Kock et aI., 1977,
p. 135). The 1977 paper tests hypotheses on the basis
of the first-order marginal probabilities, and provides
an adjusted estimate of the relative effects associated
with the respective categories and variables being
studied.

The FUNCAT procedure, for functions of categorical
responses as a linear model, of the Statistical Analysis
System (Ray, 1982) performs the necessary
calculations and hypothesis testing.

PURPOSE AND SCOPE

The purpose of this paper is to present a tutorial
to implement a typical problem of a remotely sensed
data experiment for solution by the linear model
method. An example will use two classification error
matrices of two photointerpreters, obtained from the
paper by Congalton and Mead (1983). These data
are used as the example because the publication is
current, the data set is small, yet the experimental
design is involved enough to illustrate all the
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BACKGROUND

A general and unified approach to the analysis of
categorical data by linear models was published by
Grizzle et al. (1969). The procedure is tested by the
linearized modified chi-square statistic, and " ... has

T HE CLASSIFICATION ERROR MATRIX expresses the
counts of agreements and disagreements be­

tween the classified categories and their verifica­
tion. An accuracy evaluation of a thematic map will
usually have as its product a single classification
error matrix. A thematic mapping experiment to
compare such variables as multiple photointerpre­
ters, scales of mapping, algorithms, or instruments
for classification will produce several classification
error matrices. In the past, analysis of the results of
such experiments have been restricted to the data
contained in the cells of the main diagonal of these
matrices, representing the number of sample points
in each category which have been correctly inter­
preted. Analysis of variance was recently applied
by Rosenfield (1981), comparing the diagonal ele­
ments of the classification error matrices resulting
from a test of three scales of land-use and land­
cover mapping.

Such an analysis neglects the non-diagonal cell
data which represent the errors by commission in
the classification, and the errors of omission from
the verification. A beginning has already been made
to use the entire classification error matrix in studies
of such experiments (Congalton, 1980) using meth­
ods of discrete multivariate analysis (Bishop et aI.,
1975). Rosenfield (1981) suggested investigating other
techniques of multivariate analysis of variance for
analyzing the entire matrix. Chrisman (1982) also
calls for this approach and discusses an example.



TABLE 1. Two CLASSIFICATION ERROR MATRICES OF Two PHOTOINTERPRETERS, FROM CONGALTON AND MEAD
(1983), P. 72.

Verification (responses)

PI CA 1 2 3 4 Total Category
1 35 14 11 1 61 pine
2 4 11 3 18 cedar

c:
3 12 9 38 4 63 oak0

'J::
.s 4 2 5 12 2 21 cottonwood<lJ

0- 1 32 15 5 3 55 pine....
~ 2 2 7 8 5 20 cedar..5

3 7 8 38 2 55 oak
4 6 7 15 1 29 cottonwood

PI = photointerpreter
CA = interpreted category
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Pk,' [Pkil Pki2 Pki3 Pki4j·
(4 x 1) (1 x 1)

THE VECTOR OF ESTIMATED CELL PROBABILITIES, P

Let the observed cell frequency of the jth response
for the kth photointerpreter-ith interpreted category
be

The observed probability for each cell is then

Pkij = nki/nk;"

where the dot notation represents summation over
all values of the index.

For the set of cell probabilities for both
photointerpreters,

RATIONALE FOR LOG LINEAR MODELS

The classification error matrix may contain cells
with large disparity in the numbers; that is, some
cells contain very large frequencies and others very
small frequencies. If a linear function is used for
such a table, then the sums of the probabilities pre­
dicted from the model (summed by rows and col­
ums) may exceed the probability limits of 0 and 1.

A dichotomous variable which has the probabil­
ities P and q (q = I-p) may be expressed in terms of

The data may be considered as the form of a split­
plot experimental design (Steel and Torrie, 1960, p.
236), as in Table 1.

P' = [P,' P2'j·
(32 x 1) (16 x 1)

For the set of cell probabilities for all i interpreted
categories for each photointerpreter,

p/ = [Pkl' Pk2' Pk3' Pk4'j·
(16 x 1) (4 x 1)

For the set of cell probabilities for all j responses
for each photointerpreter-interpreted category
combination,
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LOG LINEAR ANALYSIS

hypotheses desired. The data are illustrated in Table
1.

The linear model method of analysis will test the
following three hypotheses: first, that there is no
significant difference between the two photo­
interpreters; second, that there is no significant
difference in classification among all categories; and
third, that there is no significant difference in the
interpretation between any pair of categories.

Starting with the data set of cell frequencies within
the classification error matrix, expected cell
probabilities are estimated by dividing each cell
frequency value by its respective row sum. Within
each row of the matrix, a general logit function is
formed in two steps: (1) by the division of each cell
probability value by the value in the last cell of the
row (except for the last cell in the row), and (2) by
the subtraction of the log of the denominator from
the log of the numerator. The relation of the
generalized logit functions to variables that were
used to form the table is examined by means of the
use of a design matrix. A vector of parameters
expresses the relation of the generalized logits to
the variables of interest. The vector of unknown
parameters for the example is described, and the
design matrix for the example is developed by matrix
partitioning. Contrast matrices are developed for
testing certain hypotheses about the problem.
Development of these matrices is needed for entry
into the FUNCAT computer program in order to solve
the problem and test the hypotheses. Lastly, the
results of the hypotheses tests for the example are
given.

The data for the experimental design of the clas­
sification error matrices of the photointerpreters 1
and 2 used in this research are contained in Table
1. In Table 1, the rows represent the interpreted
categories and the columns represent the verifica­
tion (or ground truth). The column data are consid­
ered to be the responses in the linear model sense.



THEMATIC MAP CLASSIFICATION ERROR MATRICES

in which

F(1T) = L = X 13 ,
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1, 2, ... ,

(24 x 15) (15 x 1)(24 x 1)

where 13 is the vector of unknown parameters, and
X is the design matrix.

Then for the set of j = 1, 2, 3 logit functions,

W [13,' 132' 133']
(15 x 1) (5 x I)

where, for the set of parameters for each logit
function,

Uj general mean for each logit function,
cxj differential effect of photointerpreter 1,
13'j differential effect of interpreted category 1,
132j differential effect of interpreted category 2,

and
133j differential effect of interpreted category 3.

The second photointerpreter effect = - CX,; the fourth
interpreted category effect = -l13i/S, i = 1, 2, 3;
and similarly for all remaining logit functions. This
process is a reparameterization of the
photointerpreter differential effect, and of the
interpreted category differential effect.

THE MATRIX FORM OF THE LINEAR EQUATIONS

We set the matrix form of the set of linear equations
for the additive model as

The A 2 matrix is needed to express this
relationship.

The linear operator matrix, A2 :

13;' = [u j cxj 13Jj 132j 133j]
(5 x 1)

which are necessary to the construction of a non­
singular covariance matrix.

THE LINEAR OPERATOR MATRICES A 1 AND A 2

The linear operator matrices are used to summarize
succinctly the functional relationship of the
probabilities to the photointerpreter and interpreted
category variables. The family of functions of the
linear model for logarithmic relationships has the
form (Grizzle and others, 1969, p. 492):

F(1T) A2 In A, ('iT)
(24 x 1) (24 x 32) (32 x 32) (32 x 1)

(see also Koch et al. (1977), p. 139 and 155).
The vector 11" represents the vector of expected

probabilities of all observations, and In A,('iT) is the
vector of logarithms of the elements of 'iT with A,
= I (Grizzle et aI., 1969, p. 500).

A generalized logit is defined as a linear
combination of the logarithms as

In(1T)1T i J = In(1T i) - In(1T i ,)

for each photointerpreter group, k: k
t; t = 2

its logit,

x = In(p/q),

and when p 0, x = -00; and when p = 1, x =
00. Because division by zero is not defined, the logit
can be readily expressed in linearized form by its
logs,

x = In(p) - In(q).

Thus, if the table frequencies represent a large dis­
parity, the sums of the probability values can be
greater than unity or less than zero. Then the linear
function of the logs will accomodate values between
the limits of plus and minus infinity.

THE LOGIT FUNCTION OF THE CELL PROBABILITIES

Define 1T", 1Ti2, ••• , 1Ti4 to be the expected
probabilities of observing the j = 1, 2, ... , r (r
= 4) responses, respectively, for each interpreted
category of each photointerpreter (Grizzle et a!., 1969,
p.499).

Write a generalized logit form of the log function
of these probabilities for the ith interpreted category
for the kth photointerpreter as

Iki , = In(1Ti ,/1Ti4)k' .•• , Iki3 = In(1Tj1Ti4)k

where i = 1, 2, ... , s (s = 4) for the four interpreted
categories, and k = 1, 2 for the two photointerpreters.

If the logit functions Iki1' Iki2 , Iki3 can be considered
as additive functions of the mean effect, the
photointerpreter effect, and the interpreted category
effect, there is no interaction. Then, given the additive
model, tests can be made on the photointerpreter
and interpreted category effects (Grizzle et al., 1969,
pp. 499-500).

TREATMENT FOR ZERO ELEMENTS OF THE

MATRICES

The problem of handling studies with large num­
bers of cells with zero cell frequencies has been con­
sidered by several authors. Upton (1978, p. 65)
reports the recommendation for the addition of 0.5
to every cell frequency before fitting the saturated
model so that the problem resulting from the log 0
= - 00 is obviated. Upton also recommends adding
0.5 when fitting the saturated model irrespective of
whether there are zero cell frequencies and refers
to Gart and Zweifel (1967) and to Plackett (1974,
Chapter 1) for certain desirable features. Both Plack­
ett (1974, p. 3) and Gart and Zweifel (1967, pp. 181­
182) indicate that adding the term 0.5 reduces bias
in the log or logit estimate to the second order, and
in its variance to the third order.

According to Kock et a!., (1977, p. 157), for the
case where the number of multivariate response
profiles r = [d is large, Land d each greater than
3, d = number of measurement conditions (cate­
gories), L = number of response levels (columns),
the properties of the rule to add 0.5 to the zero cell
frequencies are largely unknown. They recommend
to replace only these zero cell frequencies by 0.5
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4

]
X,
Xz

(12 x 15)

Xk1
XkZ
Xk3

Xk4

(3 x 15)

[

[

[
1, 2, ... , r - 1; r

Xki

(3 x 15)

XlIj = [1 1 1 0 0]
X1Zj = [1 1 0 1 0]
X13j = [1 1 0 0 I]
X14j = [1 1 -1 -1 -1]
XZ1j = [1 -1 1 0 0]
X22j = [1 -1 0 1 0]
XZ3j = [1 -1 0 0 1]
XZ4j = [1 -1 -1 -1 -1]

X
(24 x 15)

Xk

(12 x 15)

logit function, j: j

Q = (F - Xb)' VF-I (F - Xb),

parameterized form. The matrix is blocked by sets
of three rows. The first set represents the three logit
functions for the first subpopulation, being a set of
photointerpreter-k, interpreted category-i effects. The
following two sets represent through the
photointerpreter-l, interpreted category-3 effect. The
fourth set of three rows represent the
photointerpreter-l, interpreted category-4 effect. This
last effect is the negative sum of the other category
effects, on the basis that the sum of the parameters
for category equals O. The entire set is repeated for
the photointerpreter-2 effects. In this last case, the
photointerpreter-2 effect is the negative of the
photointerpreter-l effect, on the basis that the sum
of the parameters for photointerpreter equals zero.

The design matrix, X:

for each photointerpreter group, k: k = 1, 2,
t; t = 2

for photointerpreter group k, for each interpreted
category, i: i = 1, 2, ... , s; s = 4

for photoin terpreter-in terpreted ca tegory
combination, ki, for each

where for each photointerpreter-interpreted category­
logit j combination:

which corresponds to the sum of the squares in
normal regression. The value Q is approximately

TESTS OF HYPOTHESES

Test statistics are obtained from the linear model
by using weighted least-squares as a computational
algorithm, where the solution vector b is a Best
Asymptotic Normal estimator of ~ (Grizzle et aI.,
1969, p. 491). An appropriate test statistic for the
goodness of fit of the model is then

(A,), ]
(12 x 16)

[1 00 -I]

[010 -1]

[00 1 -1]

[

(AZ)kil

(AZ)kiZ

(AZ)ki3
(1 x 4)

1 -1 0 0 1

1 -1 -1 -1 -1
1 -1 -1 -1 -1

(AZ)kl
(3 x 4)

(AZ)kZ

1 -1 -1 -1 -1

1 1 0 1 0

1 1 1 0 0
1 1 1 0 0

1 1 0 0 1
1 1 0 0 1

1 1 0 0 1

1 1 -1 1 1
1 1 -1 -1 -1

1 1 -1 -1 -1

1 -1 1 0 0
1 -1 1 0 0

1 -1 1 0 0

1 -1 0 1 0
1 -1 0 1 0

1 -1 0 1 0

1 -1 0 0 1

1 1 0 1 0

1 1 0 1 0

1 1 1 0 0

1 -1 0 0 1

Az
(24 x 32)
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for photointerpreter group k, for each interpreted
category, i: i = 1, 2, ... , s; s = 4

for photoin terpreter-in terpreted category
combination, ki, for each log linear equation: j = 1,
2, ... , r - 1; r = 4

[
(AZ)kil

](AZ)ki
(AZ)k;Z
(AZ)k;3

(3 x 4)
(1 x 4)

where

THE DESIGN MATRIX, X

The design matrix, X, shown in Figure 1, represents
the linear equation coefficient matrix in full

FIG. 1. Design matrix for two photointerpreters (t = 2), four
categories (s = 4), and four logit equations (r = 4).
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Ho: C Jl = 0

Cj = [01000)
(1 x 5)
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C
(3 x 15)

category pair C;

1-2 [0 0 1 -1 0)

1-3 [0 0 1 0-1)

1-4 [0 0 2 1 1]

2-3 [0 0 0 1 -1]

2-4 [0 0 1 2 1]

3-4 [0 0 1 1 2]

[ ":',, c, c, ]

for the set of parameters for each interpreted category
pair:

where

To test for the pairwise effect of interpreted
category on the set of j logit functions simultaneously:

PROC FUNCAT;
WEIGHT COUNT;
MODEL C = A B/ADDCELL = .5;
CONTRAST '1-2' @1 B 1 -1 0, @2 B 1 -1 0, @3

B 1 -10;
CONTRAST '1-3' @1 B 1 0 -1, @2 B 1 0 -1, @3

B 1 0 -1;
CONTRAST '1-4' @1 B 2 1 1, @2 B 2 1 1, @3 B

2 1 1;
CONTRAST '2-3' @1 B 0 1 -1, @2 B 0 1 -1, @3

B 0 1 -1;
CONTRAST '2-4' @1 B 1 2 1, @2 B 1 2 1, @3 B

121;
CONTRAST '3-4' @1 B 1 1 2, @2 B 1 1 2, @3 B

1 1 2;

The data from Table 1 was analyzed using the
FUNCAT procedure, and the hypothesis tests were
made as indicated by the various contrast matrices.
Each of the three hypotheses were tested, and the
chi-square values, degrees of freedom, and proba­
bility values were computed. The results of these
hypothesis tests are given in Table 2.

The hypothesis on photointerpreters is not sig­
nificant at ex = 0.05, indicating that there is no evi­
dence to reject the hypothesis of no difference
between the two photointerpreters. The conclusion
is that both photointerpreters are interpreting the
categories in the same manner. This same conclu-

RESULTS AND DISCUSSION

which yields X2 with three degrees of freedom for
the paired effect.

The simplest SAS program for the FUNCAT
procedure for this example is

A = photointerpreter;
B = interpreted categories; and
CONTRAST '1-2', etc., represents the hypothesis
test for the pair of categories.

]00100
00010
o 0 0 0 1[

C

C

Cj

(3 x 5)

(3 x 15)

Qc = (Cb)'[C(X' VF-l X)-l C')-l Cb
= (Cb)' [CN-l C')-l Cb

[ ,,:\, c, c, ]

for the set of parameters for each logit function:

C is a known matrix called a "contrast" matrix, and
o is a c x 1 vector of zeros. A suitable test statistic
is then

which has a chi-square distribution with df = c in
large samples under the general hypothesis Ho (Koch
et al., 1977, pp. 153-154). The hypotheses to be tested
are

• The hypotheses of no differences between the
photointerpreters based on the marginal distributions
(Koch et a!., 1977, p. 136).

• The hypothesis of no differences among the categories
based on the marginal distributions (Koch and others,
1977, p. 136).

• The hypothesis of no difference in the responses for
the pairs of categories (Landis and others, 1976, p.
38).

chi-square distributed if the sample sizes are large
enough for the Central Limit Theorem to hold (not
necessarily so for the smaller sample sizes in this
example).

If the model fit is adequate, tests of linear
hypotheses pertaining to the parameter Jl can then
be performed. For a general hypothesis in the form:

which yields X2 with three degrees of freedom for
the photointerpreter group effect.

To test for effect of interpreted category on the
set of j logit functions:

which yields X2 with nine degrees of freedom for
the interpreted category effect.

= [ (3~' 5) C
2

C

3

p]
(9 x 15)

for the set of parameters for each logit function:

THE CONTRAST MATRICES, C

To test the effect of photointerpreter on the set of
j logit functions
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TABLE 2. RESULTS OF HYPOTHESIS TESTS FOR

DIFFERENCE BETWEEN PHOTOINTERPRETER, DIFFERENCES

AMONG ALL CATEGORIES, AND DIFFERENCES BETWEEN

PAIRS OF CATEGORIES.

Ho X2 df P

Photointerpreter 0.1128 3 0.9903

categories 78.3803 9 0.0'

Category Pair X2 df P

pine--cedar 10.52 3 0.0146'
pine-oak 54.28 3 0.0001'
pine--cottonwood 26.15 3 0.0001'
cedar---oak 23.82 3 0.0001'
cedar---cottonwood 11.32 3 0.0101'
oak---cottonwood 2.87 3 0.4124

'Significant at a = 0.05.

sion, as expected, was reached by Congalton et al.
(1983) using comparison of the two values for Coh­
en's coefficient of agreement.

The hypothesis on categories is significant at ex =
0.05, indicating that the hypothesis of no differ­
ences among all the categories is rejected. The con­
clusion is that at least two of the categories are being
interpreted differently.

This conclusion is what one would have logically
expected. The purpose of interpretation is to differ­
entiate between categories. But this conclusion tells
us nothing about individual pairs of categories. It is
hoped that all pairs of categories are being inter­
preted differently. It is the purpose of multiple com­
parison tests to determine which pair of categories
are not being separately interpreted. That is the next
step.

The purpose of the hypothesis for category pairs
is to apply a multiple comparisons test to all pairs
of interpreted categories to determine which pairs,
if any, are not being interpreted differently. The
null hypothesis is that the two categories of any pair
are being interpreted the same. If two categories of
a pair are being interpreted differently, then the null
hypothesis will be rejected. We note in Table 2 that
only the category pair oak-cottonwood is not sig­
nificant, and that there is no evidence to reject the
hypothesis that the categories are being interpreted
the same. The conclusion is that oak and cotton­
wood are being misinterpreted in the same manner
at the 59 percent probability level. This means that

something is wrong in this experiment relative to
separating oak and cottonwood. Possibly their re­
flectance is too similar in this environment to be
differentiated. Or maybe the sensor does not have
the sensitivity to differentiate oak and cottonwood
in this environment. In any event, confining oak
and cottonwood into one class would increase the
accuracy of the classification.
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