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ABSTRACT: Digitally correlated Gestalt data are generally less accurate than manually digitized data because of limitations
of image correlation. The data must, therefore, be filtered to remove the degradations and to improve accuracy. Results
from the estimation of the unit sample response of the degradation function suggested that the responses vary from
one Gestalt patch to another. Consequently, filtering for restoration cannot be performed unless the unit sample
response of the degradation function is known for every patch. One alternative, as adopted in this investigation, is
filtering for noise removal only. Conventional (linear and multilinear) and weighted least-squares filters in the spatial
domain, and the Wiener filter in the spectral domain, were applied to the Gestalt data. The results suggest that accuracy
of the degraded Gestalt data can be improved through noise removal only.

DEGRADATION MODELS AND FILTERING STRATEGIES

Two linear filtering models that could be used for the process­
ing of Gestalt data are presented here. The first model involves
both restoration and noise removal and the second involves
noise removal only.

In the first model, the Gestalt data g(x,y) are assumed to have
been degraded by a linear shift-invariant degradation function
with unit sample response il(x,y), and additive noise TJ(x,y): i.e.,

where !(x,y) represents the undegraded elevation data. This model
could be used efficiently only if the degradation function is
linear and shift-invariant when going from one patch to another
within the Gestalt OEM. If this is not true, then the application
of this model is severely limited, unless there is some knowl­
edge of the unit sample response h(x,y) of the degradation func­
tion for each Gestalt patch. In the absence of the above
information regarding h(x,y) for all patches, a second model
should be used, where the only errors present are due to ad­
ditive noise, i.e.,

Depending on the model chosen, restoration filters may be de­
signed for removal of the convolutional degradation and/or the
additive noise.

In the context of the Gestalt data, h(x,y) is not known explic­
itly. Moreover, access to the GPM [] has not been possible for
this investigation. Hence, h(x,y) has to be determined analyti­
cally using data digitized manually on the Wild AC-1 stereo­
plotter (see previous section) and the erroneous Gestalt data.
The following discussions will explain how h(x,y) could be de­
termined.

Equation 1 can be rewritten in matrix notation as

(1)

(2)

(3)g = Fh + 1]

g(x,y) = f(x,y) + TJ(x,y).

g(x,y) = !(x,y) * h(x,y) + TJ(x,y)

The overall root-mean-square (RMS) errors of eight targetted
control points used in the absolute orientation were 0.057 m,
0.061 m, and 0.078 m (at ground scale) in X, Y, and Z, respec­
tively. These same eight control points used for the absolute
orientation on the GPM II prior to the correlation process yielded
the overall RMS errors 0.145 m, 0.176 m, and 0.312 m (at ground
scale) in X, Y, and Z, respectively.

The precision of the data digitized on the Wild ACl was
evaluated using two determinations of the same elevation points.
With a total of 992 points, each with two elevation measure­
ments, the precision (Jd was 0.41 m.

'Currently with lntergraph Corporation, One Madison Industrial
Park, Huntsville, AL 35807.

DESCRIPTION OF TEST AREA AND DIGITIZED DATA

T HE GESTALT PHOTOMAPPER II, hereafter called the GPM II,
is a system that uses the digital correIa tor to derive eleva­

tions. A given stereomodel is divided into approximately one
thousand 8-mm by 9-mm patches, and the parallaxes of the 2444
points (or a 47 by 52 matrix) within each patch are derived.
Only the center portion of a 40 by 40, 32 by 32, or 24 by 24 grid
matrix is written out. The successive processing of individual
patches is carried out column-wise to cover the whole stereo­
model.

Currently, the automatic image correia tors do not recognize
objects. In the presence of steep terrain, the two images can be
very different and the image correIa tors could then fail. Diffi­
culties have also been reported when correlating over areas with
buildings and other tall structures (Allam, 1982; Dowman and
Haggag, 1977). Most image correlators, however, can perform
geometric corrections for distortions caused by terrain relief.
The process of image correlation could also fail if it is performed
over imageries with low contrasts, such as over water- and snow­
covered surfaces.

This paper presents various linear filtering algorithms, in the
spatial and spectral domains, which could be used to improve
the accuracy of the Gestalt data. The filtering algorithms inves­
tigated here take advantage of the regularly gridded structure
of the Gestalt data. The findings of this investigation are also
valid for filtering regularly gridded data generated by other dig­
ital correIa tors or acquired manually.

INTRODUCTION

Manually digitized data, which have higher accuracy than the
Gestalt data, were required for the evaluation of the perform­
ance of the various filters and also for the estimation of the unit
sample response of the degradation function. These data were
obtained on a Wild AC-l stereoplotter at locations correspond­
ing exactly to those of the Gestalt data. Also, the same two
pairs of aerial diapositives were used to ensure that the terrain
being manually digitized was identical to the digitally correlated
terrain.

The Gestalt digital elevation matrix (OEM) used in this inves­
tigation corresponds to one stereomodel in the National Re­
search Council of Canada's Sudbury Test Area (hereinafter called
the Sudbury Model or the Sudbury Gestalt Model). The pair of
overlapping diapositives are from frame numbers 70 and 72 of
the aerial photography at a scale of 1:16 000.

PHOTOGI,AMMETRIC EI\:GINEERII\:G AND REMOTE SEI\:SINC,

Vol. 53, No.5, May 1987, pp. 535-538.
0099-1112/87/5305-535$02.25/0

Q;1987 American Society for Photogrammetry
and Remote Sensing



536 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1987

FILTERING IN THE SPATIAL DOMAIN

Two filters for the estimation of signals in the presence of
additive noise in the spatial domain are discussed here. Both
of these filters, viz. the conventional and weighted least-squares
filters, are linear and shift invariant.

(9)

(10)

(11)

(12)

(13)

VI = r- gi

WEIGHTED LEAST-SQUARES FILTERING

This filter consists of two mathematical models with appropriate
weights (see Kok, 1986 for details):

where C"x and C"y are the covariance matrices of the signal
part of the centered data in the X and Y directions, respectively,
and CTlTlX and CTlTlY are the covariance matrices of the noise part
of the centered data in the X and Y directions, respectively.

The direct product formulation in Equation 8 can also be written
in the array algebra formulation as (see, e.g., Kok, 1986)

Conventional Least-squares Filter with Multilinear Formulation. With
the gridded structure of the Gestalt data, and with the assumption
that the autocovariance function models of the signal and noise
are separable in the two orthogonal directions (X and Y),
conventional least-squares filtering can be performed using the
IllUltilinear formulation. Either the direct product or the more
computationally efficient array algebra can be used. Details of
direct product or array algebra are given in Rauhala (1980), Blaha
(1977), Snay (1978), and Lancaster (1969).

The assumption of separable autocovariance function models
mayor may not be valid in the context of the Gestalt data, but
the assumption is required so as to apply the multilinear
formulation. In this investigation, the validity of this assumption
is judged by how well this filter performed in the experimentation.

The conventional least-squares filter with multilinear
formulation has the form (see, e.g., Kok, 1986)

S = (c"xC,~~) @ (c"" C,~,\.fr (8)

where C,'X and C,,) are the vectors of autocovariances between
the centered data and the unknown signal to be estimated in
the X and Y directions, respectively, CnX and C,.,.y are the matrices
of autocovariances for the signal part of the centered data in
the X and Y directions, respectively, i are the centered data,
and @ denotes the direct product.

The two covariance matrices CrrX and Cn .y are

where R is a matrix formed from the centered data and all other
quantities are as defined in Equation 8. Snay (1978) has shown
that the array algebra formulation is even more computationally
efficient and requires less storage than the direct product solution.

To filter data in an array of size M by N, Equation 8 or Equation
11 requires solving one M by M and another N by N linear
system of equations, while Equation 5 requires the solution of
a MN by MN linear system of equations. Therefore, the
multilinear formulation is more efficient than the conventional
least-squares filter.

(6)

(5)

c(d) = c,jO) exp( - kd)2 ,

where i denotes the centered discrepancies. The diagonal
elements of C~, are equal to the variance of the signal, and the
diagonal elements of CTlTl are equal to the variance of the white
noise, while c,x denotes the cross-correlation matrix between
the signal and the data.

The model for the autocovariance function of the signal used
was

CONVENTIONAL LEAST-SQUARES FILTER

This is an optimal filter that uses the least-squares, also called
minimum mean-square, criterion. It is assumed that the signal
and noise are stationary random processes with known first­
and second-order moments. Also, the signal and noise are
assumed independent. The optimum solution is dependent on
the autocovariance functions of the signal and noise. This filter
has been dealt with in various references (Kraus and Mikhail,
1972; Mikhail, 1976; Kratky, 1978; Hall, 1979; Papoulis, 1977;
Blais, 1985). Thus, mathematical details of the derivation are
not given here but the implementation of this optimal filter is
described.

In order to reasonably satisfy the stationarity assumption, the
trend component in the data is first removed to obtain centered
values. These centered data are used in the estimation of the
signal as

where F is the convolution matrix, g is the vector of the de­
graded Gestalt data, and hand 1] are the vectors of the unit
sample response of the degradation function and noise, re­
spectively. The unknown unit sample response h of the deg­
radation function could be determined by least-squares
estimation. For an over-determined solution, the least-squares
estimate h is well known to be expressible as

h = (F'CTlF)-' FT C,i I g (4)

where cTl is the covariance matrix of the zero-mean noise and
all other quantities are as defined in Equation 3. It is reasonable
to assume that CTl is an identity matrix because no other a priori
information is available (e.g., Blais, 1985).

The results obtained from investigations performed as de­
scribed above revealed that h is not shift invariant for finite array
sizes of 20 by 20 and 10 by 10 when going from one patch to
another (Kok, 1986). Thus, to perform filtering for restoration,
h must be obtained for and applied to each patch individually.
Although this is not impossible, the second model was chosen
in this study to attempt noise removal only as a first measure.

where C" (0) is the variance of the signal to be estimated, d is
the lag, and k is a constant to be estimated. This model completely
characterizes the random Signal, assumed here to be a stationary
Gaussian process.

When the signal at location i has been estimated, it is added
back to the value of the trend at the corresponding location

where Z; is the filtered elevation,s; is the estimated signal, and
A}( is the value of the estimated trend at location i.

The conventional least-squares filter is used here as an adaptive,
or locally variable, filter in the context of filtering the Gestalt
data. Each patch of the Gestalt DEM is assumed to have known
first- and second-order moments for the random signal and
noise, and the filtering is performed on one patch at a time.

Z; = 5; + A>X, (7)

where v I and V o are the discrepancies, or residuals, of the first
and second models, f's are the unknowns to be estimated, and
S, is an observation corresponding to location i in the grid matrix.
The first model states that the unknown f; at location i should
be estimated from the observation g;. The second model
corresponds to the Laplacian condition in the finite difference
method of interpolation discussed in Lancaster and Salkauskas
(1975). Note that the observation in this model can also be set
equal to any value different from zero.

Rewriting Equations 12 and 13 in the matrix notation as A,X
- (I = V I and A 2 X - (2 = V 2 , respectively, the weighted least­
squares filter is then given by

X = (A: PIA, + A~PoAo) I (A~P,t, + A~P2t2)

where P I and Po correspond to the observables in the first and
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WLS filtered

FIG. 1. Contour plots corresponding to C18Rll

TABLE 1. SNRs AND RMS ERRORS (IN METRES) FOR THE SIX PATCHES

UNF1LTERED LSM WLS WN
(J,i,,, ITdt a", IT",

PATCHES SNR (111) (111) (111) (m)

C6R13 2.96 0.71 0.65 063 0.65
GRll 2.56 0.68 0.64 0.59 0.61
C9R9 2.52 060 0.54 0.51 0.51
CI0R18 6.68 0.82 0.78 0.77 080
C18Rll 2.27 0.71 0.63 0.64 065
C18R17 2.54 067 0.64 0.57 0.62

moved from the data. The 32 by 32 array of data filtered with
the W ' filter were extended to an array of size 64 by 64 and
windowed before a Fourier transformation was performed. For
the WLS filter, the weights used were 5.0 and 1.0 for Equations
12 and 13, respectively.

Table 1 shows the RMS errors u"s and u"" computed from the
differences between the digitized and unfiltered and between
the digitized and filtered data, respectively. The improvements
range from 0.02 m to 0.10 Ill. These rather small numbers are
misleading if they are not considered in conjunction with the
accuracy of the digitized data, U d , which is 0.41 m. This is be­
cause U"I is comprised of two components, which can be de­
duced by error propagation of the equation expressing the
difference between the digitized and filtered data (assuming
random errors only): i.e.,

(15)

FILTERING IN THE SPECTRAL DOMAIN

With the regularly gridded structure of the Gestalt data, fil­
tering in the spectral domain can be implemented efficiently
using the Fast Fourier Transform (FFT) (see Brigham, 1974; Bra­
cewell, 1978). The Wiener filter for removal of additive noise is
presented here.

second model, respectively. Note that A, is an identity matrix
and, because the observation in Equation 13 is equal to zero, '2
is a null vector.

The finite element method of interpolation and filtering
discussed in Ebner and Reiss (1978) can also be related to the
filter discussed here.

RESULTS AND DISCUSSIONS

WIENER FILTER

The Wiener filter is an optimal filter that minimizes the mean­
square error. This criterion is identical to that for the conventional
least-squares filter, discussed earlier.

In Equation 5, the covariance matrix (c" + Cllll ) is positive­
definite and symmetric. Another important property of this matrix
is its Toeplitz structure, a direct result of the fact that
autocovariances are dependent only on the distance between
two data points, i.e., wide-sense stationarity. As explained in
Andrews and Hunt (1977) and Hall (1979), a matrix with the
Toeplitz structure can be aproximated by a circulant matrix,
which can then be diagonalized by the Fourier transform.

Filtering centered data with the Wiener filter is performed as
follows (Hall, 1979; Barrett and Swindell, 1981):

• PJII,V)
S(u,v) = P ( ) P ( )R(u,v) ,

,u,v + II II,V

where s(u,v) is the estimate of the signal in the spectral domain,
R(u,l') is the Fourier transform of the centered data, and P (II,V)
and Pll(u,l') are the power spectral density (PSD) functio·;ls of
the signal and noise model, respectively.

The PSD of the signal is computed from its autocovariance
model by Fourier transformation. The PSD of the noise, which
is assumed white, is a constant and can be determined from
the noise variance, which is equal to the mean-square value for
a zero-mean process.

Results obtained with the three filters, viz. the conventional
least-squares filter with the multilinear formulation (LSM), the
weighted least-squares filter (WLS), and the Wiener (WN) filter,
were compared. The conventional least-squares filter (with the
linear formulation) was excluded from the comparison because
it is computationally very involved and yields results equivalent
to the Wiener filter (Kok, 1986).

Six Gestalt patches were processed using the methods de­
scribed. Figure 1 shows the graphical results for one of those
patches (C18Rll), including the results using a conventional
moving average (MA) filter for comparison purposes. All the
data within a patch, which forms a grid matrix of size 32 by 32,
were used in the filtering. However, only an array of size 20 by
20, corresponding to rows 7 to 26 and columns 7 to 26 of each
filtered patch, was used for comparisons. There are two reasons
for using only the interior 20 by 20 grid of data. The first is that
the filtered data are usually not reliable along the edges, and
this is especially true with data filtered in the spectral domain.
The second reason for considering only the interior 20 by 20
array is that the data on both sides of a patch boundary are
usually less accurate than data closer to the patch center. There­
fore, data near the patch perimeter should be considered sep­
arate from the data in the interior of the patch. Although results
from filtering the data near the patch perimeter have not been
analyzed explicity, these filters are applicable to any part of a
Gestalt patch.

For the LSM and WN filters, the second-order trend was re-
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a~f = a~ + a7 (16)

where ad 2 is the variance of the digitized data, and a 2 is the
variance of the filtered data. As an example, consider o~e patch
from Table 1, say CI8Rl1. The improvements in accuracy of
0.05 m, 0.06 m, 0.07 m, and 0.08 m translate to about 17, 20,
23, and 27 percent of the maximum possible improvement of
0.30 m.

From Table 1, it can then be concluded that all three filters
yielded appro.ximately the same improvement in accuracy for
each of the SIX patches. The rather similar improvements in
accuracy. of the LSM and WN filtered data also suggest that the
assumption of separable autocovariance functions and vari­
ances in the LSM filter is valid. Note that the WN filter does not
assume the autocovariance functions and variances to be sep­
arable.

The signal-to-noise ratios (S RS) shown in Table 1 were com­
puted from the empirically determined autocovariance func­
tions of the signal and noise:

SNR = ajaTJ • (17)

To obtain the SNRs in terms of variances, one simply squares
the result obtained from Equation 17. The SNRs are a function
of the photography, scanning spot diameter, and various other
factors. Without access to the GPM II, the proper values of 5 Rs
for the patches being investigated cannot be obtained. Rather,
the .validity of the SNRs shown in Table 1 is ascertained by com­
panson to the values determined in investigations carried out
by Forstner (1982) and Helava (1976). All, except one, of the
computed SNRs are at the lower end of the range of values of
1.0 to 5.? cited in Forstner (1982), and all are in the range 1.1
to 10.0 Cited m Helava (1976). This is because the values cited
in those papers correspond to the digitized gray levels whereas
the 5 Rs here correspond to the digitally correlated data, which
have additional noise introduced due to correlation.

Removal of the degradation due to h(x,y) was not performed
in the filtering of the Gestalt data presented here. If the model
of h(x,y) for each patch is known, then restoration could be
performed. In the context of Wiener filtering, variable and
adaptive procedures such as those used in analysis of speech
signals (Oppenheim, 1978) and modelling of electroencepha­
logram (EEG) signals (Bodenstein et al., 1977) on a short-time
basis could be extended to two-dimensional Gestalt data for
"patch processing."

This paper has presented the implementation and results of
several linear filtering algorithms in the spatial and spectral do­
mams. These filtering algorithms are efficient when used with
data which have a regularly gridded structure, such as the Ges­
talt and other digitally correlated elevation data.
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