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ABSTRACT: A new supervised nonparametric classifier produces an image showing the empirical probability of correct
classification for a pixel as well as a thematic image. This allows an analyst to visually locate those parts of the image
where classification success can be improved. The algorithm was tested using SPOT XS data over a forest plantation in
southeast Australia. The classifier produced thematic maps of higher accuracy than those from conventional supervised
classifiers.

INTRODUCTION

T URNER ET AL. (1987) and Skidmore et al. (1987) outlined rea­
sons for the apparent reluctance of foresters to embrace re­

motely sensed data for operational use, with the major reasons
cited being imagery of poor spatial resolution, and resultant
maps having poor accuracy. Though spatial resolution is im­
proving with the new generation of satellites such as SPOT,
forest cover mapping accuracies using conventional classifiers
have been generally low (typically less than 80 percent mapping
accuracy at 90 percent confidence levels), especially where for­
est types are discriminated at Anderson et al. (1976) level 1II
(e.g., Strahler et aI., 1978; Merola et aI., 1983; Hame, 1984). Only
a few examples of high mapping accuracies have been reported.
Nelson (1981) cited accuracies of 79 to 88 percent, but only dis­
criminated hardwood from conifer and grassland. Walsh (1980)
claimed mapping accuracies of 88 percent (ranging from 85 to
95 percent per stratum). However, at each random point within
a stratum, Walsh included the 25 (5 by 5) surrounding pixels
into his calculation. This may have artificially increased map­
ping accuracy, as Kettig and Landgrebe (1976) showed that ad­
jacent pixels are autocorrelated.

Classification strategies may be categorized into supervised
or unsupervised methods. Both methods assume that the image
data form separate groups in N-dimensional feature space (where
N-dimensional feature space refers to the space created when
N channels (or features) of data are each placed on orthogonal
axes) and these groups can be associated with observed ground
cover types. The groups of data can be described by parametric
or nonparametric techniques. Parametric classification strate­
gies assume that each group can be enclosed by a boundary,
such as defined by the hyper-ellipsoid shaped decision volume
of the maximum likelihood classifier (Swain and Davis, 1978;
Richards, 1986). Nonparametric classifiers make no assump­
tions about the shape of the data distributions, except that the
groups of data can be separated by some discriminant function
(Nilsson, 1965) such as the linear regression functions derived
from logit modeling (Strahler et aI., 1980).

To improve the accuracy of forest maps derived from re­
motely sensed data, supervised and unsupervised techniques
have been combined. One methodology involves delineating
training areas containing representative cover classes; the train­
ing area data are then clustered using an unsupervised strategy
(Fleming, 1975; Beaubien, 1979; LaPerriere et aI., 1980; Thomp­
son et aI., 1980; Walsh, 1980). The unsupervised cluster strategy
may produce a thematic map directly, or the algorithm can gen­
erate statistics which are input to a supervised parametric clas-
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sifier. Another method to improve mapping accuracies is to
include data ancillary to the remotely sensed data (Strahler et
aI., 1978; Tom and Miller, 1980; Hutchinson, 1982; Cibula and
Nyquist, 1987). Hutchinson (1982) discussed the three methods
of combining spectral data with other ancillary data viz. strati­
fying an image prior to classification; incorporating the ancillary
data during the classification operation; and post-classification,
where a classified image is modified by the ancillary data, e.g.,
shadow reduction. These techniques use conventional para­
metric and nonparametric approaches for the classification of
the data, and aim to improve map accuracy through the inclu­
sion of additional input data. The proposed nonparametric clas­
sifier does not incorporate any additional information in order
to improve mapping accuracies.

Skidmore et al. (1988) showed that (forest plantation) cover
classes could not be successfully mapped from Landsat MSS data
using parallelepiped or euclidean distance classifiers. Using a
general nonparametric test, they quantified the co-occurrence
(or spectral overlap) of training set data distributions at each
vector point in N-dimensional feature space for a number of
forest plantation spectral classes. The main conclusion was that
training area data from some plantation age classes were not
co-occurring in N-dimensional feature space, even though the
classification strategies could not separate these classes. This
apparent contradiction was explained by the observation that
the distributions of training area data in two-dimensional fea­
ture space (i.e., a "scatter plot") are frequently observed to not
have a shape that can be approximated by a parametric classifier
(e.g., a rectangular shape for a parallelepiped classifier, or an
ellipsoid shape for a maximum-likelihood classifier). To im­
prove the accuracy of the forest cover type map, a supervised
nonparametric classifier based on these results has been devel­
oped.

CONSTRUCTION OF THE SUPERVISED NONPARAMETRIC
CLASSIFIER

INTRODUCTION

The classifier can be generally described as follows. Training
area data are collected for representative cover class areas. Each
pixel for the first cover class is assigned to the cell (or vector
position) in the N-dimensional feature space which equates with
the brightness value of the pixel. The number of pixels (for the
first class) that occurs in each cell is summed. Similarly, the
pixels of the second cover class are summed into the cells of
the N-dimensional feature space, but are stored as separate
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An estimator of P(Xli) is

P(Xli) = Fi(X)
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METHODS

A study area of 12 by 15 krn was selected over a section of
the Stromlo radiata (or Monterey) pine (Pinus radiata) planta­
tions near Canberra, A.C.T., Australia (see Figure 1). The plan­
tations are even-aged stands planted between 1930 and 1986.
Eight cover types were identified (viz. pine older than 40 years,
30 to 40 year old pine, 20 to 30 year old pine, 10 to 20 year old
pine, pine less than 10 years old, urban, and water) and at least

N-dimensional feature space, is assigned to the class and empirical
probability value equated with (X) in the lookup table.

The training sets usually contain relatively few pixels with a
considerable range in brightness values and many missing values.
As unfilled feature vector spaces result in unclassified image
pixels, the algorithm is obviously sensitive to the degree of
sparseness. To overcome the problem of sparseness, the data
distributions are collapsed into a smaller brightness value range
by multiplying the pixel brightness value by a factor of less than
one, and truncating the result to an integer (i.e., (X') = {integer
of (X.f)}, where O<f<I). The result is fewer vacant feature vector
spaces and more classified pixels in the image. Substituting (X')
into Equation (2) yields P(i I X'). For example, if the original
data were 8 bit (0 to 255 brightness levels), than a collapSing
factor of 0.5 would reduce the radiometric sensitivity to 7-bit
data (0 to 127), while a collapsing factor of 0.25 would result in
a 6-bit (0 to 63) data set. Obviously, if {L F/X') P(j)} in Equation
2 is 0, then P(i I X') will be undefined, and unknown pixels
equated with the vector position (X) will be unclassified.

The algorithm was written in Fortran-77 and executed on the
VAX-cluster at the Australian National University. The SPIRAL
geographic information system (Myers, 1986) was used for data
input/output. The UNIRAS software package (European Software
Contractors, 1982) was used to display the thematic images on
Tektronix graphics hardware.

FIG. 1. Map of the study area showing the plantation boundary, urban
boundary, roads, and Molonglo River.

(2)

(1)

P(iIX)

records (to the first class). This process is continued for all
remaining cover classes.

Each cell in the N-dimensional feature space is now tested
sequentially by the classifier. The classifier finds the class with
the highest empirical probability in the cell and assigns that
cover class identity to the cell. The empirical probability for the
cell is calculated by dividing the number of pixels in the cell for
that class by the total number of pixels tallied for all cover classes
in the cell. The number of training area pixels in each land­
cover class is normalized.

Any unknown pixel is classified by matching its pixel brightness
value in each feature with the equivalent cell in the N-dimensional
feature space, and extracting the class and empirical probability
from the cell. The class and empirical probability for each pixel
can then be displayed as two images. Thus, the classifier is not
function based but, rather, considers each cell in the N­
dimensional feature space as a separate decision rule.

DESCRIPTION OF THE ALGORITHM

Let (X) describe the vector position of a pixel in N-dimensional
feature space (Xl'X2, ••• ,XN ), where XN is the brightness value
or digital number (DN) in spectral band N. Training set data
are generated for each i1h class, for i = 1,2,... ,j classes.

Let P(i I X) be the probability that class i occurs at vector
position (X). Using Bayes' Theorem,

P(Xli)P(i)
P(X)

The total number of pixels in class i (Le., Fi) may be normalized
using the total number of pixels sampled (i.e., F).

P('IX) = (FIF;) Fi(X) P(i)
I L F/X) P(j) ,

where Fi(X) is the count of pixels from training sets of class i at
(X) and Fi = :Hi(X).

Now, P(X) = LP(XU)P(j).

P(Xli) P(')
Therefore, P(iIX) = LP(XU) (;(j) (see also Geisser 1982)

(Fi(X)/F;) P(i)
L (Fj(X)/F) P(j)"

where P(i) is the a priori probability for class i, in this case the
relative areal extent of the classes in the image. (F/F;) is the sum
of all training area pixels divided by the sum of pixels in class
i, that is a weighting factor to normalize training area fields of
different size.

A decision rule can be generated for each vector position in
feature space (X) by allocating to the vector position (X) the
class i with the highest probability of occurrence, P(i IX). That
is, if {P(i IX) > P(i + 1 IX) }, then the decision rule will allocate
class i and probability P(i IX) to vector position (X). In this way,
a two-dimensional lookup table of vector position (X) against
probability and class number can be generated for all (X). In the
event of two (or more) classes having equal probabilities, the
smallest class number is aSSigned to the class. Alternative
strategies can include stating a priori which class should have
preference, summing Pi(X) in the adjacent vector positions and
selecting the class with the highest sum, or randomizing the
selection (i.e., flip a coin).

An unknown pixel, which is located at vector position (X) in
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two training areas per class were delineated. The pine cover
classes had experienced different silvicultural treatments (thin­
ning, pruning, etc.) but a history of treatments was not avail­
able, so the age cover classes could not be segmented by stand
structure. The terrain varies from undulating (0 to 10 degrees)
to moderately steep (approximately 25 degrees). Aerial photo­
graphs at a scale of 1:10,000 and compartment maps were avail­
able for ground truth reference.

A SPOT XS scene (K386,J421) centered over Canberra, Aus­
tralia, provided the three channel remotely sensed data (Turner
et aI., 1987). This cloud free scene was acquired on 11 September
1986, which is late winter in southeast Australia. The view angle
was from the right at 4.5 degrees.

A preliminary unsupervised clustering of the area using the
CLUS algorithm (Turner et aI., 1982) yielded the approximate
areal extent of the eight cover classes. These data were used as
the initial a priori probabilities in the classifier (i.e., 'P(i) , in
Equation 2). These probabilities were modified empirically to
improve the discrimination of cover type classes in the final
thematic image.

The training area data were extracted and statistics (mean,
covariance matrix, range) generated. In order to visually com­
pare the locations of the training area data in N-dimensional
feature space, boxplots (Minitab, 1986) of the ON values for each
cover class in the three channels were drawn (Figure 2). The
boxplots visually indicate the spread of the data, the skewness
of the distribution around the median, and the range within
the data spread where most of the observations occur.

The proposed algorithm was tested with various collapsing
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FIG. 2. Boxplots of the digital number (ON) range in each channel for the
training areas.

factors (j) between 0.1 and 1. With a factor of f = 0.1, the
training data sets tended to merge, lowering the empirical prob­
abilities that pixels were correctly classified but increasing the
number of classified image pixels. With no collapsing (j = 1),
there were more unclassified image pixels but empirical prob­
ability of a correct classification was higher. Though any col­
lapsing factor can be used, empirical testing using SPOT and
Landsat MSS data indicates a value between 0.5 and 0.8 (i.e., a
dynamic range decrease from 256 ON to 128 and 205 ON, re­
spectively) ensures a reasonable compromise between reducing
the number of unclassified pixels and increasing empirical prob­
abilities. The thematic image presented here (Figure 3) was pro­
duced with a collapsing factor of 0.5. Skidmore et aI. (1988)
examined the effect of varying the collapsing factor for two
classes. Spectrally similar cover classes were merged at a rela­
tively high collapsing factor, while spectral cover classes that
do not occur in close proximity in N-dimensional feature space
will be merged at a lower collapsing factor. As the collapsing
factor decreases towards 0, the likelihood that either of the classes
will co-occur (or overlap) at a vector in N-dimensional feature
space increases, until at the collapsing factor limit of 0, all classes
will be merged into a single vector.

A maximum-likelihood classifier (MAXCLASS) and a Euclidean
distance classifier (CLASS) contained in the ORSER package (Turner
et aI., 1982) were executed using the same image and training
areas as used in testing the proposed classifier.

A quantitative analysis of mapping accuracy for the maxi­
mum-likelihood, Euclidean distance, and supervised nonpara­
metric classifiers was performed using the methodology proposed
by Hay (1979). At least 50 pixels were randomly located within
each cover class stratum on a 1:25,OOO-scale compartment map
that was geometrically rectified with the classified images. The
large number of roads within and bounding the plantation area
made it easy to locate the pixels to be tested. The mapping
accuracies are summarized as error matrices (Kalensky and
Scherk, 1975). A fourth error matrix was generated to include
those pixels sampled from the supervised nonparametric clas­
sification that had an empirical probability of more than 75 per­
cent, to ascertain whether a relationship exists between empirical
probability and overall mapping accuracy.

RESULTS

The boxplots of the ON values for the training areas are
presented in Figure 2. The average number of pixels per training
area class was approximately 900, and ranged from about 700
to 2000.

The thematic image produced by the nonparametric classifier
is shown in Figure 3, and the empirical probability of correct
classification is shown in Figure 4. The thematic maps output
by the maximum likelihood and euclidean distance algorithms
are included as Figures 5 and 6, respectively.

Error matrices for the three classification strategies, and also
for pixels with a probability of more than 75 percent correct
classification, are detailed in Tables 1 to 4. Note that six classes
were tested, comprising the five pine age classes and a 'non­
pine' class which included the grass, water, and urban classes.
The overall classification mapping accuracies are summarized
in Table 5.

DISCUSSION

The boxplots in Figure 2 show that the pine age classes are
spectrally similar in all three channels, once the pine tree crowns
have closed together. Pine trees greater than 10 years old had
closed crowns (i.e., classes 1 to 4). The non-pine classes (urban,
grass, and water) differ spectrally from each other and from the
pine, particularly in channels 2 and 3. The similar pattern of
the boxplots in Figure 2 indicates that channels 1 and 2 are
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FIG. 4. The empirical probability of correct classification.
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FIG. 5. The thematic image produced by the maximum likelihood classi­
fier.

correlated, with channel 2 having lower DN values than channel
1. This was confirmed by inspecting the correlation matrices for
the six classes, which showed a correlation coefficient between

FIG. 6. The thematic image produced by the Euclidean distance classifier.

channels 1 and 2 of greater than 0_90 for every class except for
the pine class less than 10 years old. The boxplots also show
that the classes are skewed towards the lower values in channels
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TABLE 1. ERROR MATRIX FOR THE SUPERVISED NONPARAMETRIC CLASSIFIER

Number of pixels Omissions

Class I II III IV V VI VII Total No.

I 29 6 14 6 55 26
II 5 22 14 8 50 28
III 1 41 12 54 13
IV 4 43 3 50 7
V 2 1 6 39 2 50 11
VI 1 9 46 57 11
Total no.

of pixels 37 28 74 76 48 51 2 316 96
Overall

c1assifica tion
accuracy' 70%

1419

%
47
56
24
14
22
19

Table Legend: I = greater than 40 year old pine
II = 30 to 40 year old pine

III = 20 to 30 year old pine
IV = 10 to 20 year old pine
V = pine younger than 10 years old

VI = non-pine (including water, grass and urban classes)
VII = unclassified

'Ratio of the sum of correctly classified pixels in all classes to the sum of the total number of pixels tested.

TABLE 2. ERROR MATRIX FOR THE MAXIMUM-LIKELIHOOD CLASSIFIER

Number of pixels Omissions

Class I II III IV V VI VII Total No. %

I 30 9 11 2 1 2 55 25 45
II 9 9 16 10 6 50 41 82
III 19 10 11 11 2 1 54 43 79
IV 1 3 39 7 50 11 22
V 2 3 45 50 5 10
VI 1 14 42 57 15 26
Total no.

of pixels 61 28 41 66 68 52 316 142
Overall

classifica tion
accuracy 56%

TABLE 3. ERROR MATRIX FOR THE SUPERVISED EUCLIDEAN DISTANCE CLASSIFIER

Number of pixels Omissions

Class I II III IV V VI VII Total No. %

I 26 6 16 5 1 1 55 29 53
II 5 8 15 16 5 1 50 42 84
III 23 19 11 1 54 35 64
IV 11 36 3 50 14 28
V 4 3 42 1 50 8 16
VI 1 14 27 15 57 30 53
Total no.

of pixels 59 14 61 71 62 31 18 316 160
Overall

classification
accuracy 50%

1 and 2. The high spectral variance is also obvious, especially
for channel 3.

Given the spectral similarity of the cover classes to be
discriminated, the utility of the proposed nonparametric classifier
in improving mapping accuracies becomes apparent (Table 5).
The nonparametric classifier yielded a higher mapping accuracy
(70 percent) than the maximum likelihood (56 percent) or the
Euclidean distance (50 percent) classifiers using identical training
area data. Tables 1 to 3 show that the classifiers had the lowest
mapping accuracies when discriminating between the older pine

age classes (i.e., greater than 20 years old). Figure 2 shows that
these classes were spectrally the most similar. Nevertheless, the
supervised nonparametric classifier achieved adequate class
mapping accuracies for the 20 to 30 year old pine, and had a
comparatively better class mapping accuracy for the 30 to 40
year old pine. The class mapping accuracies for the more than
40 year old pine was similar for all three classifiers.

As part of the mapping accuracy check, an error matrix was
formed using only those pixels with an empirical probability
greater than 75 percent. This threshold was chosen to provide
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TABLE 4. ERROR MATRIX FOR PIXELS GENERATED BY THE SUPERVISED NONPARAMETRIC CLASSIFIER WITH AN EMPIRICAL PROBABILITY OF GREATER

THAN 75 PERCENT

Number of pixels Omissions
Class I 11 III IV V VI V11 Total No. %

I 27 4 31 4 13
11 13 3 16 3 19
III 12 1 14 2 14
IV 13 15 2 13
V 2 30 32 2 6
VI 6 44 51 7 13
Total no.

of pixels 28 13 19 16 36 46 159 20
Overall

classification
accuracy 87%

TABLE 5. SUMMARY OF MAPPING ACCURACY RESULTS

a subsample of pixels with a high empirical probability. The
resulting mapping accuracy was 87 percent, which was better
than any other classifier including the nonparametric classifier
error matrix where the empirical probability ranged from 0 to
100 percent (Table 1). However, the smaller sample size (less
than 50 pixel samples per cover type) meant that the precision
of the accuracy figures was lower. This is consistent with
preliminary results presented by Skidmore (1987), where high
mapping accuracies (90 percent) were obtained from Landsat
MSS data while discriminating between six forest types in
Pennsylvania, using pixels that had a 100 percent empirical
probability of correct classification.

Those areas having a low empirical probability of correct
classification can be visually isolated (Figure 4). For example,
in the present study, pine older than 40 years and the 30 to 40
year old pine classes tended to have an empirical probability of
correct classification of less than 50 percent. To improve class
mapping accuracy, new training areas may be selected, and old
training areas checked for consistency in delineating the class.
Then, if the empirical probability of correct classification stays
low, it may be concluded that classes are spectrally similar and
could perhaps be merged into one class.

The superior mapping accuracy result obtained with the
proposed classifier is due to the lack of assumptions concerning
the shape or distribution of decision volumes which are implicit
in other classification strategies. Each vector in N-dimensional
intensity space is treated as a separate decision rule by the
proposed classifier. The supervised nonparametric classifier
requires a priori probabilities as an integral part of the
classification, and these prior probabilities can be modified easily
to improve the thematic map. Although a priori probabilities
could be included in maximum likelihood and Euclidean distance
classifiers (Duda and Hart, 1973), it is not commonly done, so
in this study the a priori probabilities were assumed to be constant.

Strahler et al. (1980) stated that an advantage with their
proposed nonparametric logit classification model is that it can
accept continuous data (i.e., Landsat data) or categorical data
(i.e., a soil map) as independent variables to model (by regression)
the probability that a pixel is a member of a given class. The
decision rule described here for the nonparametric classifier is

Classifier
supervised nonparametric
supervised nonparametric

(> 75% empirical probability)
maximum likelihood
supervised Euclidean distance

Overall mapping accuracy (%)
70

87
56
50

based upon ordered statistics, and so any data types may be
included as features in the classification without violating
statistical assumptions.

The algorithm required approximately four times the CPU time
compared with the maximum-likelihood classifier, for 200,000
pixels. The CPU time requirements appeared to increase
proportionally to n.log(n), where n is the number of pixels. As
additional channels are added, the number of vector spaces (or
bins) would increase. For example, using TM data, 2567 (7 x
1016

) bins would be required, many of which would be empty.
In this case some feature reduction technique, such as principal
component analysis, could be used. The improved mapping
accuracies obtained with the proposed classifier have to be offset
against the higher computational expense.
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