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AHS.IRAC.I.: Most current systems for prototyping rule-based systems use applicative, interpreted languages such as LISP 
or its derivatives. This makes it easy to prototype small applications in a flexible way. However, such systems are less 
useful in production applications involving large amounts of input data and specialized, numerically oriented libraries. 
An augmentation of C is presented containing the control structures, predicates, and data types that make possible 
the convenient specification of a rule-based system. The extended C language is used to build a rule-based system for 
labeling features in a digitized aerial photograph. Integration of the rule-based system with conventional image pre- 
processing and the performance of the rule-based system development tool are discussed. 

INTRODUCTION 

M OST OF THE SYSTEMS that have been developed for auto- 
matically generating rule-based systems employ an appli- 

cative approach. They use AI techniques such as heuristic search 
and backtracking and are generally written in LISP or LISP dia- 
lects. These design choices make it easy to quickly produce a 
working system and thus encourage experimenting with dif- 
ferent approaches to the problem at hand. However, such sys- 
tems are less useful for problems where large amounts of input 
data are involved. The code they produce is in most cases in- 
terpreted, not compiled, and therefore very slow. Furthermore, 
many conventional production environments for numerical 
computation are based on languages such as FORTRAN or C, 
and in general do  not have compilers or interpreters available 
for LISP. If libraries of application-dependent software are to be 
used, the interface to the rule-based system creates an addi- 
tional problem. Last, but not least, programmers in production 
environments are often unfamiliar with the concepts behind 
applicative languages and their use. 

For these reasons we initiated the development of a system 
that potentially overcomes these problems. The standard C lan- 
guage has been augmented in a general way, so as to permit 
the convenient specification of a rule-based system. A system 
written in this extension of C is translated into standard C by 
a preprocessor and subsequently compiled. The advantages of 
this method are threefold: 

The compiled code is faster than interpreted systems, 
Existing application software written in C can easily be integrated, 
and 
Programmers who currently use C need only become familiar with 
a few new concepts. 

We present in this paper the extensions to the C language, 
containing the control structures, predicates, and data types 
that make possible the specification of a rule-based system that 
classifies a sequence of input records into categories specified 
by rules. The extended C language is subsequently used to 
create an experimental rule-based system for classification of a 
multispectral aerial photograph. A general paradigm for image 
classification using conventional image processing techniques 
and a rule-based system is presented. A brief description of this 
paradigm has been given elsewhere (Schowengerdt and Mehl- 
dau, 1987). The image is first segmented into small regions which 
are then input to the rule-based classifier, where their spectral 
signatures, geometric properties, and context relative to neigh- 

boring regions are used to label each segment. The incorpora- 
tion of region shape and spectral features in the classification 
of high resolution remote sensing images was pioneered by 
Nagao et nl. (1979). A C language integrated production system 
(CLIPS) has also been recently developed that is written in stan- 
dard C code and incorporates a set of tools for building rule- 
based systems (Giarratano, 1987). CLIPS uses a LISP-like syntax 
and is primarily an interpreted system, even though a compi- 
lation option is available. 

METHODOLOGY 

The extensions to C correspond to the basic constituents of 
any rule based system; the most important extensions are "rules," 
which include a number of new predicates to help in rule spec- 
ification, and "phases," which implement the search proce- 
dure. A new data type, "list," is added for convenient handling 
of variable length data sequences, such as the vector description 
of image regions. Features are also provided to facilitate the 
input and output of data into and from the knowledge base. 

The new features in C are used to build a rule-based system 
that operates in the following manner. Images are pre-processed 
(segmented) into a list of spatial segments. The rule-based sys- 
tem assigns values for a number of labels to each segment. The 
rules used in the classification process are grouped into three 
phases, each of which determines the values for the segments' 
label in that phase. It is important at this point to distinguish 
between labels and their values. More than one value may be 
assigned to any label, allowing multiple interpretations or clas- 
sifications. A value is assigned to a label when a rule in a given 
phase evaluates to true for a given segment. If more than one 
rules "fires," a tree is created, where each node of the tree 
represents a value assigned to a label. This concept is shown 
in Figure 1, where the label assigned in the first phase has the 
two values "soil" and "asphalt," and the label assigned in the 
second phase, which is also transferred to the third phase, has 
five values. 

The label tree in Figure 1 is built in a breadth-first manner, 
one level per phase. Phase I starts with the root (the image 
segment) and creates the first level of the tree using spectral 
rules. Parallel with the assignment of a label, a probability value 
is assigned that represents the (heuristic) confidence in the par- 
ticular label. Geometric rules are evaluated in Phase I1 for each 
node at the lowest level in the tree, and a new level is appended 
to the tree. Phase I11 alters each value's probability based on 
neighboring segments' labels and probabilities. In A1 terminol- 
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PHASE l PHASE ll PHASE Ill 

,- fallow agr. (0.01) - fallow agr. (0.01) 

soil (0.1) 

I '  
unpaved road (0.05) - unpaved road (0.1) 

natural area (0.04) - natural area (0.02) 

image 
segment 

I 
paved road (0.5) - paved road (0.6) L a,,, (0.7, 
parking lot (0.2) - parking lot (0.1) 

FIG. 1. Hypothetical label tree for one image segment. The associated 
probability of each label is indicated in parentheses. The label with the 
highest probability used in the final map is shown in bold. 

ogy, this system uses forward-chaining with the goal that, in 
the end, the rules will result in some classification that is clearly 
most likely. 

The final value for the label of a segment is taken as that with 
the highest probability after Phase 111. However, all possible 
classifications are enumerated in the output. Rules can refer to 
labels assigned in earlier phases, in both their conditional and 
consequential parts, and thus refine earlier classifications. It is 
also possible to assign the same label in more than one phase. 
This is useful if new information has been computed and old 
labels (or their probabilities) are no longer appropriate. 

In this section, the extensions to C are introduced by example. 
For a formal definition in the sense of programming languages, 
and for a description of their implementation, see Mehldau (1986). 

List Data Type. Lists have been added to C as a new data type 
to make possible the convenient handling of data sequences of 
variable length. An example of a function that makes use of 
lists is given in Figure 2. The argument to the function is a list 
of characters. The function builds and returns a new list that 
contains all lowercase characters from the argument list. 

Lists are declared with the " ( ( 1  "-sign in a syntax similar to 
the """ or "pointer-to" notation in standard C. List constants 
are specified as expressions or range expressions within square 
brackets; the example in Figure 2 shows the degenerate case of 
an empty list. Elements of a list are addressed like elements of 
an array - by following the list with an expression (or a range 
expression) in square brackets. Finally, lists can be concatenated 
using the "*"-operator. A function len() is provided which 
returns the length of its list argument. 

111puflOufput. It is assumed that the input for classification 
consists of a list of records of uniform format, albeit of varying 
lengths. An example for an input declaration is given in Figure 
3, where an individual record consists of an integer, id , two 
real numbers, a and b , and a list of characters, string. 

The system generates an input function that reads a list of 
records according to the input specification and stores them in 
an implicit system variable. The system also generates an output 
function which writes out the input as well as the results of the 
classification process in a standardized form. Users familiar with 
the system have the option of writing their own output function. 

Control Structures. The two control structures added to C are 
called phases and rules. A phase contains a set of rules which 
produce one level of the label tree. The sample phase shown 
in Figure 4 assumes the input configuration from the example 
in Figure 3. It obtains two additional values, and assigns a label 

char @example (list) char @list; i 
int i; 
char @newlist; 

newlist = [ I  ; 
for (i = 0; i < len(1ist); i++) ( 

if ('at <= list[i] & &  listcil <= ' 2  , ( 
newlist *= list[i..il; 
/ *  ... or it could be written as ... * /  
/ *  newlist=newlist* [list[ill; *! 

1 
I 
return (newlist) ; 

FIG. 2. Sample list function. 

input ( 
int id; 
double a, b; 
char @string; 
example; 

FIG. 3. Sample input 
declaration. 

input I int id; double a, b; char @string; I ;  

phase example (label) char *label; ( 
int value-1, value-2; 

obtain~values(&value~l,&value~2); 

rule one 
value-1 < ?->a & &  ?->a < ?->b & &  ?->b > value-;! => 

assign (1.0) "increasing sequence"; 

rule two 
value-1 > ?->a & &  ?->a > ?->b & &  ?->b > value-2 => 

assign (1.0) "decreasing sequence"; 

printf ("Phase finished\n1') ; 

FIG. 4. Sample phase declaration. 

to the current record if the sequence value-1, a, b, value-2 
is either increasing or decreasing. The question mark in the code 
stands for a pointer to the record being processed. 

Phase declarations are very similar to function declarations 
in standard C - they consist of a name, a label to be assigned 
in parentheses, and a body. The body of a phase, in turn, contains 
declarations, statements, and rules. Rules are name and consist 
of a conditional part, followed by a "= >" and a consequential 
part. The consequential part only needs to contain a label 
assignment (as in the example above), but it can also be a block 
consisting of decIarations, statements, and label assignments. 

Expressions. To help the user of the system access the input 
data and express properties of objects, the syntax of standard 
C for express ions  has  been enhanced .  Some o f  these  
enhancements are shown in the example in Figure 5 ,  which 
again assumes the input configuration from Figure 3. Both rules 
scan the character string of the current record to determine 
which label to assign. The question mark ('I?" ) denotes a pointer 
to the current input record. 

Three new expressions help simplify the formulation of rule- 
predicates: the forall- and exis t -  quantifiers, and the in- 
expression. All three expressions yield boolean (integer) values 
with the obvious meaning. In addition, the probability associated 
with an already assigned label can be obtained with the function 
prob0 . 
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RESEARCH DESIGN approximately 4 m. The image was processed on a VAX-11/750 
minicomputer, and the image processing software used was the We used the extended language to write an "System at Arizona for Digital Image Experimentationu (SADIE, 

rule-based system for classification of a digitized aerial color 1988) and International Imaging interactive image 
infrared image of Tucson, Arizona (Plate la). This was a three- processing package (12S, 1984). 
band image, 512 by 512 pixels, with a ground resolution of 

IMAGE PREPROCESSING 
input { int id; double a, b; char @string; I ;  The image was first submitted to an unsupervised statistical 
phase example (label) char *label; t multispectral classifier (an implementation of the k-means 

char C; clustering algorithm with a nearest-mean decision rule) that 
assigned each pixel independently to one of eight spectral 

rule one 
for all c in ?->string: c in ['a'..'z11 => clusters. Eight clusters were chosen to yield a compromise 

- 
assign (1.0) "lower casew; between spectral resolution and the average size of spatial 

segments in the cluster map. The classifier also provided the 
rule two 
(tor-all in ,-,. tring: in , =,, ,*, . , ,Z, L i  global statistics (mean and variance of the pixels in the three 
(there-exists c in ?->string: c in ['a'..'zl]) & h  spectral bands) for each of the clusters. Pixel noise in the cluster 
(there-exists c in ?->string: c in [ ' A ' . . ' Z 1 1 )  => map was reduced with a local majority filter (Schowengerdt, 

assign (1.0) "mixed case"; 1983), thus introducing some spatial consistency. The resulting 
1 smoothed, spectral cluster map constituted a segmented image. 

FIG. 5. Sample phase declaration using new expressions. Two 128 by 128 windows (Plates l b  and lc) were further 
processed. Spatially connected segments were consecutively 
numbered with a "blob-coloring" algorithm (Ballard and Brown, 

I 
I 1982), and the boundaries of the segments were obtained with 

- 
L 

descriptions, each consisting of a unique ID (the segment 

muhispectral 

image 

I 

unsupervised spectral clustering 

per-pixel 

spectral map 0 
local majority filter 

smoothed 

spectral map 

I 
I 

a modified "turtle" algorithm (Papert, 1973) to yield a vector- 
format. The windows in Plates l b  and l c  contained approximately 
1700 and 3200 spatially connected segments, respectively. 

The input to the rule-based system was a list of segment 

number), the mean gray levels in all three bands for the pixels 
in that segment, a list of integer (pixel) coordinates that describe 
the boundary of the segment, and, finally, a list of the IDS of 
all neighboring segments. The latter information provided the 
basis for contextual rules applied in the third phase. The overall 
flow of data in this system is illustrated in Figure 6. 

image processing The classification of segments was done in three phases, as 

IMPLEMENTATION OF THE RULE-BASED SYSTEM 

described below. The parameters and content of the rules in 
each phase were set heuristically, with a few iterations performed 
for adjustments. 

Phase 1: Spectral lr~formation. The first phase consisted of eleven 
rules and attempted to classify the segments into basic categories 
according to their spectral characteristics. The six categories used 
in this phase were "vegetation," "water," "soil," "asphalt," 
"sand," and "gravel," i.e., rather general labels that could be 

raster-to-vector conversion assigned from spectral signatures. The following is an example 

1 
Phase I - spectral rules 

4 
Phase II - geometric rules 

4 
Phase Ill - context rules 

of a rule for this phase: 

rule spect - 3 
dist [O] < = MAXDIST[O] = > assign (mindist/dist[O] ) 

SOIL; 

rule-based The three spectral bands define a three-dimensional space. The 
system rule compares the spectral distance between the segment 

signature and one of the eight clusters (dist [0] , determined 
during the preprocessing of the image), to some threshold 
(MAXDIST[O]) , and conditionally assigns the label together 
with a probability which depends on some other threshold 
(rnindist). Thresholds were determined manually from the global 

I spectral clustering statistics. Because the gray levels in the spectral 
vector-to-raster conversion bands had not been calibrated, the thresholds would not be 

valid for a different image. Note that the statistical classifier in 
the preprocessing stage assigned a cluster to each pixel, whereas 

labeled 0 the rules in Phase I made this decision for a segment as a whole, 
based on the mean spectral values for the segment. In Phase I 
the cluster classes were also given names. 

Phase 11: Geometric lr~formation. The second phase used the 
FIG. 6. Paradigm for combining image and rule-based processing. geometric characteristics of the segments (derived from the 
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segment 2 

area 

c u w i l i n e ~  
C - 4  A I P  

aspect ratio 
AR = L"21A 

raggedness 
R I 1 langle between adjacent vectors1 

P 

FIG. 7. Geometric features used in Phase I I .  Two hypothetical 
segments with equal areas but different shapes are shown. 
Length is defined as the longest diameter of the segment. 

description of their boundaries) to refine the classification of the 
first phase. The labels here were "active agriculture," "urban 
vegetation," "natural vegetation," "river," "lake," "fallow 
agriculture," "unpaved road," "natural area," "paved road," 
"parking lot," "gravel road," "commercial building," and 
"residential building." The incorporation of geometric information 
in Phase 11, and context information in Phase 111, made this 
relatively high level of land-use discrimination feasible. In this 
phase, we used rules like the following: 

rule geom - 4 
? - > spl = = WATER 6"6" curvilinear < 0.3 6"b aspect -ratio 

> 10.0 = > assign (prob(? - > spl))  RIVER; 

Based on the classification result from the first phase (?- > spl) 
and on the values of the (precomputed) geometric features 
curvilinear and aspectratio, this rule assigns the label "river." 
The four geometric features used in Phase I1 are illustrated in 
Figure 7. 

Phase Ill: Context Irzformation. The third and potentially most 
powerful phase reassessed the probabilities assigned to the labels 
in the second phase. This was done by looking at the neighboring 
segments and increasing or decreasing the confidence values of 
the labels assigned in the second phase according to the overall 
consistency. An example of a rule in this phase is 

rule context - 14 
? - >label = = PARKING-LOT 88 for -all  element i n  

? - > neighbors: element - >label in [PAVED - ROAD, 
GRAVEL -ROAD, COMMERCIAL - BUILDING] = > assign 
(min(prob(? - > label)* (1 + 0.05*len(? - >neighbors)), 1)) 
? - >label; 

This rule represents knowledge about spatial relationships 
between adjacent features in a scene, in the sense that certain 
types of objects are usually found next to certain other types. 
If the classification of an object is consistent with its neighbors, 
the probability for the particular label is increased. If the 
classification of an object is not consistent with the labels of its 
neighbors, the probability of that classification is decreased. This 
technique of improving the overall consistency of the  
classification, when applied iteratively, is called "constraint 
relaxation" (Levine, 1985). The results presented here represent 

only one pass through Phase 111. Other approaches to the use 
of context in image classification are described by Wharton (1982) 
and Tilton et al. (1982). 

RESULTS AND DISCUSSION 

COMPUTATIONAL PERFORMANCE 

The preprocessor and the experimental rule-based system have 
been implemented on a VAX-11/785 under the UNIX operating 
system. The rule-based system was specified with approxi- 
mately 300 lines of extended C. The preprocessor expanded this 
into a standard C program of almost 900 lines, which was then 
compiled under the LTNIX C-compiler with full optimization. The 
whole process took under one minute of real time, and the C- 
compiler alone accounted for approximately 80 percent of that 
amount. 

The resulting C program was linked with the code that im- 
plements the diverse list functions (approximately 230 lines), 
and run on the test data described earlier. During the first and 
second phase, between two and three labels per segment and 
phase were assigned on the average. The third phase only reas- 
sessed the probabilities of the labels in the second phase, so it 
did not continue this expansion. The first window (1662 indi- 
vidual segments) was processed in 3.0 minutes of real time, and 
the second window (3224 segments) took 4.2 minutes. Again, 
these times are quite reasonable, especially if compared to some 
of the image processing routines (the "turtleu-algorithm, for 
example, took about 10 minutes of real time). 

To show the superiority of our system over an interpreted 
system, the rules were implemented in LISP and run on the 
same test data. The C-based system proved to be faster by a 
factor of 260! Due to problems with the available LISP compiler 
(notably with respect to trigonometric functions), no compari- 
son could be made between our system and compiled LISP. To 
determine the efficiency of the system, a profile of the running 
program was obtained with UNlX profiling software. Only about 
10 percent of the execution time was required for each phase 
of the rule-based system; the remainder was used for data r/o 
and list processing. 

The final classifications of the two windows are shown in 
Plates l b  and lc. In the non-urban window (Plate lb), the results 
are generally reasonable, with some anomalies, such as the 
inclusion of three dark fields (A) in the paved road object because 
they are connected by a few pixels to the actual road. Also note 
the classification of the field (8) as a parking lot because of its 
dark spectral signature and large size. This indicates weaknesses 
in the Phase 111 context rules for "parking lot." 

The classification of the urban window (Plate lc) is worth 
examining in some detail. In Plates Id, le, and If we show an 
enlargement of part of the window containing houses, lawns 
and trees, and streets. The per-pixel spectral cluster map contains 
considerable classification "noise," resulting in many spatial 
segments that are not clearly related. The final map from the 
rule-based system shows the benefits gained by incorporating 
segment geometry and context. Many neighboring, but spectrally 
different segments are merged because of the context rules. This 
occurs even though we have doubled the number of possible 
class labels from Phase I to Phase 111 and applied only one cycle 
of probability modification based on spatial context. Such merging 
of spectral categories is common practice in manually labeled 
cluster maps. However, it is being achieved here in a combined 
space of spectral, geometric, and context features in an 
"automated" fashion (given the pre-defined rules and their 
parameters). A simple count of houses (an example residential 
building is labeled R in Plates Id, le, and If) from these images 
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yields 16 from the center block of Plate Id and 11 from the final who provided the "front end" (lexical analyzer and parser) tor 
map, Plate If, or an accuracy of about 70 percent for the our preprocessor as well as an efficient implementation of the 
"residential building" class. Some categories, notably "parking list data type. We also wish to thank the reviewers for their 
lot," remain troublesome for dark regions of the image, again valuable comments on the manuscript. 
pointing out the need for improvement in Phase I11 rules for 
this category. REFERENCES 

CONCLUSlONS Ballard D., and C. Brown, 1982. Computer Visiorr. Prentice-Hall, Engle- 
An extension of the C language for the generation of rule- wood Cliffs, New Jersey. 

based systems has been presented. The implementation of this Giarratano, J., 1987. CLIPS User's Guide Versior~ 4.10. Artificial Intelli- 
system has been shown to be feasible and more efficient than gence Section, NASA Johnson Space Center. 
comparable interpreted systems. 125, 1984. System 5570 Digital Image Processing System, Vcrsiorr 3.0 

A multispectral, high resolution image was segmented by User's Manual. International Imaging Systems, Milpitas, California. 

multispectral clustering, converted to vector format, and Kernighan, B., and D. Ritchie, 1978. Tire C Progra~n~ning Larr~uaxe. Pren- 
processed by a rule-base system written in the extended C lan- tice-Hall, Englewood Cliffs, New Jersey. 
guage. The segments were labeled using spectral, geometrical Levine, M., 1985. Visiorr in Man and Machine. McGraw-Hill, New York, 
and contextual rules. N.Y. 

The geometric phase generally was not as discriminating as Mehldau, G., 1986. A Rule-Based P r o ~ r a ~ i l r n i ~ ~ g  Lal~g~lagc nrzd its Applicn- 
expected. In our paradigm, geometric features were calculated tio~r to Image Reco~g~~itior~. M.S. Thesis, University of Arizona, De- 
from the per-pixel spectral segmentation. Because only spectral partment of Science. 

information was used for the initial segmentation, different ob- Nagao, M., T. Matsuyama, and Y. Ikeda, 1979. Region Extraction and 
jects in the image sometimes appeared as a single segment, and Shape Analysis in Aerial Photographs. Cotnptrtcr Vision, Grnl?kics 
single objects sometimes appeared as multiple segments. Thus, nrrd Inra,ye Processir~g, Vol. 10, No. 3, pp. 195-223. 

the derived geometric parameters were not necessarily repre- Papert, S., 1973. USL'S of T ~ c h ~ l o l o ~ y  to Enhnrlce Educatior~. Massachusetts 
sentative of the true objects. Spatial-spectral segmentation Institute Technical No- 298. 
schemes (Ballard and Brown, 1983; Levine, 1985) should be an SADIE 4.0, 1988. Usc>r's Maiiual and Subroutine Rcfercrlce Mnrriml. Uni- 
improvement. Also, the simple geometric features used here versity of Digita1 Image 

were probably insufficient for the complex shapes that occur in Schowengerdt, R., 1983. T~~cI~r~ iquc~s for  linage Proccssiny nrld Classification 
the non-urban areas. irr R~,nrotc Scrrsirlg. Academic Press, New York, N.Y. 

The third phase used the neighboring segments to reinforce Schowengerdt, R., and G. Mehldau, 1987. Classification of Multispec- 
or suppress an  existing classification for a given segment. The tral Imagery with a Rule-Based System. Proceedings of tire 40th AI I -  
forall- and exist-quantifiers in this phase not be appro- 11~01 Cor~j f lm~cc o$ tile Society of Pl~oto~raphic Scicrrtists and Errgirrecrs, 

priate for "real world" problems. Quantifiers such as "most" Rochester, N.Y., pp. 186-189. 

and *<fewo might be more appropriate and could be achieved Tilton, J-, S. Vardeman, and P. Swain, 1982. Estimation of Context for 

by having "forall" and return probabilities instead of Statistical Classification of Multispectral Image Data. 1EEE Trarrs- 
actions or1 G e o s c i ~ ~ r ~ c ~  arid Rcnrot~, S S I I S ~ I I ~ ,  Vol. GE-20, No. 4, pp. 445- binary values. Any context information, however, appears to 452. 

be useful in both urban and non-urban areas, even if it only 
extends to the nearest neighboring segments. Wharton, S., 1982. A Context-Based Land-Use Classification Algorithm 

for High-Resolution Remotely Sensed Data. Phc~tographic Ei~gi~lccr- 
ACKNOWLEDGMENTS ing, Vol. 8, No. 1, pp. 46-50. 

The authors would like to thank Dr.,Eugene Myers of the 
Department of Computer Science at the University of Arizona, (Accepted 18 January 1990) 

AERIAL PROCESSING EQUIPMENT FOR FlLM AND PRINTS 
VERSAMAT MODEL I1CM AERIAL FlLM PROCESSOR 
VERSAMAT MODEL 1 ICM AERIAL FlLM PROCESSOR SPECIAL MODIFICATION 
WlTH 11  TANKS, USED FOR C-41, OR BL&WH REVERSAL WlTH EXTRA WASH, 
VERSAMAT MODEL 11 AERIAL FlLM PROCESSOR WlTH HYPO FILTER AND 
RECIRCULATION PUMP. SOLID STATE MOTOR CONTROL AND 1 1CM RACKS. 
VERSAMAT MODEL 324 FOR ULTRATEC 241NCH FlLM PROCESSING 
ALL VERSAMATS ARE COMPLETELY REBUILT. TESTED AND GUARANTEED. 
LOGETRONIC SP1070C AND LOGETRONIC SP1070B AUTOMATIC PRINTERS 
COLENTA 80"INCH-32"IPMINUTE RA-4 OR EP-2 PRINT PROCESSOR LlKE 
COLENTA 52"INCH-16"IPMINUTE RA-4 OR EP-2 PRINT PROCESSOR LlKE 
COLENTA E-6 MINI DIP & DUNK PROCESSOR LlKE NEW 
ALL COLENTA EQUIPMENT NEWEST MODELS USED ONLY FOUR MONTHS. 
CHICAGO ARCHITECTURAL PHOTOGRAPHING COMPANY 312 733 3277 


