
Comparisons between Spectral Mapping Units 
Derived from SPOT Image Texture and Field 

- 

Soil Map Units 
Patrick A. Agbu 
Department of Plant and Soil Science, Alabama A&M University, Normal, AL 35762 
Egide Nizeyirnana 
Department of Agronomy, University of Illinois, Urbana, IL 61801 

ABSTIWCT: A spectral soil map, depicting map unit variability due to soil properties, would be a useful addition to field 
investigations in separating soil units in a soil survey program. This study was conducted to assess the usefulness of 
image texture features in discriminating among soil map units based on pertinent soil properties. SPOT satellite image 
texture data derived from transformation of the original image were classified for mapping unit separability in two 
3108-ha areas in Ford County, Illinois. The image texture map units and field soil map units from a survey of the area 
were analyzed by discriminant analysis procedure to show how the depicted map units were separated based on 
variability of pertinent soil properties. Classification results showed percent overall agreement of discriminate map 
units from soil properties to be 61.01 for field soil map units and 46.61 for SPOT texture map units in the Mona Township 
area. The latter were 55.2 percent and 46.15 percent, respectively, for the Drummer Township area. A measure of the 
overall map agreement with the classification from soil properties, using the Kappa statistic, indicated that the field 
map was better than the SPOT texture map by a ratio of 0.5306:0.4035 in the Mona Township, and 0.5025:0.4291 in the 
Drummer Township. However, the Kappa statistic was not significantly different for the image texture and the field 
soil map units at the 0.05 level. The data demonstrate the inappropriacy of using only field soil maps as standards for 
judging the accuracy of spectral maps. It also underscores the potential for using image textural features for delineation 
of map units in the initial phases of detailed soil survey programs and land-use planning. 

INTRODUCTION 

R EFLECTANCE PAT~ERNS depicted by spectral maps could por- 
tray the actual variability of soil map units due to soil prop- 

erties and could be used in addition to field investigations to 
separate soil map units. The soil is a complex mixture of ma- 
terials possessing various physical and chemical properties which 
can affect its absorptance and reflectance characteristics. Lund 
et al. (1980) and Harrison and Johnson (1982) have concluded 
that the use of spectral maps derived from Landsat data im- 
proved accuracy or quality of map unit delineations. Wright and 
Birnie (1986) studied the degree to which surface soil parame- 
ters could be detected and quantified on the basis of SPOT data, 
and they suggested that it would be possible to use SPOT data 
in a practical way to map within-field soil variations. The sec- 
ond-generation high resolution remote sensing satellites (e.g., 
Landsat TM and SPOT HRV) offer additional possibilities for map- 
ping within-field variation of soil units (Agbu and Frank, 1988). 
In a study using high-resolution Landsat TM and SPOT satellite 
data to interpret detailed soil information at the consociation or 
complex mapping level for a rangeland in Kansas, Su et al. 
(1989) determined that the overall accuracy of soil spectral classes 
from TM and SPOT data was improved after digital elevation 
model data were merged with imagery data. 

In analysis of remotely sensed data of the Earth and extraction 
of useful thematic information, data are transformed into in- 
formation using various techniques and algorithms. Imhoff et 
al. (1982) employed image enhancement in addition to statistical 
classification techniques to create images more suitable for vis- 
ual delineation of soil units. Principal components (PC) trans- 
formation is one of the most frequently used methods, and is 
based on the variance-covariance structure of the image, which 
produces new digital values that are linear combinations of the 
original digital numbers. Johnson and Wichern (1982) contend 
that the objective of PC transformation is two-fold, mainly, data 
reduction and image interpretation. The technique has been 

used in soil mapping on Arizona rangeland by Roudabush et 
al. (1985). Ratio transformations have been used (Friedman, 1980) 
to reduce the difference in digital numbers from similar surface 
materials caused by slope, shadows, or seasonal changes in 
sunlight illuminating angle and intensity. Satterwhite (1984) 
suggests that, in addition to the latter, ratios may also provide 
unique information not available in any single band that would 
be useful for discriminating between soils and vegetation. Fra- 
zier and Cheng (1989) investigated the Palouse region soils and 
determined that areas defined by amorphous Fe/C ratio, where 
topsoils have been thinned to the extent that pa!eosols are ex- 
posed, corresponded well with Landsat TM band ratios 3/4, 5/ 
4, and 513 which are useful in mapping. They also suggested 
that the TM ratios 114, 314, 514 combination is a useful choice. 
SPOT ratio data were determined to be superior in discriminat- 
ing different soil types of Henry County, Indiana (Venugopal 
and Gimblett, 1988). Principal component transformations were 
found to be less definitive than ratio transformation by Lee et 
al.  (1988) in a study of Wisconsin soils. Other transformation 
techniques, using statistical divergence analysis to examine the 
separability of Landsat MSS and TM data, indicated that the use 
of a low-pass filter may increase class separability from Landsat 
TM data (Haack et al., 1987), and soil features in Landsat im- 
agery might be extracted by an intensity transformation (Muld- 
ers, 1987). 

  not her technique, the addition of image texture to spectral 
features in the analysis of imagery, for identification and clas- 
sification of objects or regions of interest has been demon- 
strated. Statistical texture features generally allow users to 
measure the similarity between a central picture element in a 
subset of the image matrix and the block of surrounding ele- 
ments. The addition of textural information to spectral reflec- 
tance information in Landsat MSS data (Shih and Schowengert, 
1983) improved the statistical separability of otherwise similarly 
reflecting geomorphic surfaces in Arizona. Frank (1984) has as- 
sessed changes in the condition of semiarid geomorphic sur- 
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faces using digital image processing techniques involving three 
texture measures: variance code, contrast code, and range code. 
His results suggest that albedo and texture measures are po- 
tentially viable indices of the condition of the geomorphic sur- 
faces. 

The results from an initial study (Agbu, 1989) indicate that 
using textural features from satellite digital data was superior 
to using principal components, ratioing, or original imagery 
data for characterizing spatial variability of soil properties. Be- 
cause the goal in a soil survey is to group soils that are similar 
and to separate those that are different based on significant soil 
properties, spectral mapping units that maximize variation among 
mapping units while minimizing same within units is desired. 
The objectives of this investigation were (1) to derive spectral 
mapping units from classification of SPOT image textural fea- 
tures, and (2) to compare spectral map units from the image 
texture classification to the field soil map units using discrimi- 
nant analysis of significant soil properties. 

STUDY AREA 

The study area for this investigation is located in Ford County, 
east-central Illinois and consists of two sites, each of 3108 ha 
with contrasting variability of map unit composition as indi- 
cated by a modern USDA soil survey map (Fehrenbacher, 1990). 
One of the areas, Mona Township, is located in the northern 
part of the county, and the other, Drummer Township, is in 
the southwest corner (Figure 1). The general area is part of the 
landscape developed during the Wisconsinan glacial period. The 
soils have developed in parent material of moderately thick to 
thin loess or silty material over different textured glacial till, 
outwash, and lacustrine sediments (Fehrenbacher et al., 1984). 
In some parts the thin loess mantle is relatively unimportant as 

FIG. 1. Location of the study areas in Ford County, Illinois. 

soil parent material because it has become mixed with other 
materials and cannot be identified as loess. Twenty mapping 
units were delineated in both study sites; the soils are all Mol- 
lisols and have a mesic temperature regime. Soil moisture re- 
gime is mainly aquic in major soils and udic in minor soils, and 
the mineralogy is mixed. Both areas are mostly cultivated to 
corn and soybeans. The Mona Township area lies between T 
27 N and T 29 N; and within R.8E and R.1OE. The study site is 
between section lines 1400E to 1700E and 3100N to 3500N. The 
second area is in Drummer Township (T 23 N to T24N), and 
lies between section lines 200E to 600E and 600N to 900N. A 
modern soil survey was recently completed in the county (Feh- 
renbacher, 1990), and a cloud-free satellite data set was suc- 
cessfully acquired on 26 April 1987. There was no precipitation 
event for two days preceding and including the image acqui- 
sition date, and most of the soil surface was fallow, except a 
small percent in permanent pasture and along the streams. The 
best period to acquire remote sensing data for this region for 
soil studies is from late April to mid-June (Kiefer, 1972) when 
the soil surface is predominantly fallow and the farmlands have 
been prepared for cropping. 

SPOT DATA ANALYSIS 

The SPOT data were read from the computer compatible tapes, 
using Earth Resources Data Analysis System (ERDAS) software, 
and the study area was extracted from the satellite scene. The 
data set for the study site was geometrically corrected by ref- 
erencing it to the Universal Transverse Mercator (UTM) world 
coordinate system. Road intersections used as control points in 
the rectification of the image were picked from both the dis- 
played image and a 7.5-minute quadrangle (uSGS) map of the 
area. The data were resampled to a 20- by 20-metre cell size 
using the bilinear interpolation procedure. The effect, if any, of 
solar elevation in the image was not visible in the original im- 
agery, and because both areas were extracted from the same 
scene, no correction was made for solar elevation. Of the var- 
ious texture measures available for digital image transforma- 
tion, Jensen (1979) showed that only a few statistical texture 
measures are necessary to characterize spatial relationships be- 
tween picture elements. One such texture measure defined by 
Jensen (1979), the variance code (Equation I), was selected for 
this study because it appears to represent the best surface var- 
iability measure for the kind of detail required: that is, 

A 3- by-3 kernel size was used in calculating the transformed 
value, and all three bands (0.50 to 0.59 pm, 0.61 to 0.68 pm, 
and 0.79 to 0.89 pm) were used in the generation of the texture 
transformed image. 

The data set was then classified by the unsupervised maxi- 
mum IikeIihood algorithm to derive the spectra1 mapping units. 
Classification clusters were aggregated to form soil spectral 
classes. The precise positions of field sample points were lo- 
cated on the imagery by digitization of the points from the 7.5- 
minute quadrangle map of the area in UTM coordinates. These 
coordinates were then located on the geo-referenced satellite 
image, and the corresponding pixel in which the point occurred 
was subsequently identified. Soil spectral classes in the classi- 
fied image were also identified in the same manner. 

FIELD AND LABORATORY PROCEDURES 

Observations were made on a systematic sampling grid spaced 
402 m apart, with the first sample taken at the northwest comer 
of the site to coincide with the second diagonal pixel from the 



COMPARISONS BETWEEN SPECTRAL MAPPING UNITS 

road intersection. This was located by pacing 40 m into the 
section and 40 m south from the corner. Subsequent observa- 
tions were made with reference to the first one, and the soil 
was sampled to a depth of 1.2 m with a hand probe. A total of 
221 observations were made. The systematic sampling proce- 
dure used provided even distribution of the observations (Yates, 
1948); furthermore, it is reasonable to assume that the sampling 
scheme is independent of the distribution of soil properties be- 
cause of the lack of apparent periodicity in landscape features 
(Quenouille, 1949). Soil morphological properties that were ex- 
pected to genetically influence the surface section of the soil, 
and are pertinent in separation of soil map units (Table I), were 
described according to procedures outlined in the Soil Survey 
Manual (Soil Survey Staff, 1981). The upper 50 cm of the B 
horizon were described as the upper B horizon and the lower 
part as the middle B horizon, because their influence is expected 
to differ in the surface control section. After the soil was de- 
scribed, samples of the A horizon and the upper 50 cm of the 
B horizon were collected in labeled soil bags and returned to 
the laboratory for analyses. Surface descriptive characteristics 
of the observation sites, mainly the landscape position (toe- 
slope, footslope, sideslope, summit), slope form (convex, con- 
cave, linear, and level), and aspect were coded. The aspect codes 
ranged from 0 (level) to 8 (west, likely to be the brightest at 
time of satellite pass). The transformation for the Munsell color 
hue was used (ASTM, 1988). The qualitative soil variables were 
coded or transformed to facilitate analysis of the data (Horvath 
et al., 1984; Agbu, 1989). 

Soil samples were air dried, crushed, and passed through a 
2-mm sieve prior to the various analyses. Particle size distri- 

TABLE 1. SIMPLE STATISTICS FOR SELECTED SOIL PROPERTIES OF 
SAMPLED SITES USED IN DISCRIMINANT ANALYSIS. 

Variable 

Landscape position 
Percent slope 
Slope form 
Aspect 
A horizon depth 
A horizon color hue 
A horizon color value 
A horizon color chroma 
Upper B horizon color hue 
Upper B horizon color value 
Upper B horizon color chroma 
Middle B horizon color hue 
Middle B horizon color value 
Middle B horizon color chroma 
Dominant mottle color hue 
Dominant mottle color value 
Dominant mottle color chroma 
Depth (cm) to reduced colors 
Depth (cm) to carbonates 
Depth (cm) of loess over 

tilVoutwash 
A horizon percent sand 
A horizon percent silt 
A horizon percent clay 
A horizon percent organic car- 
bon 
B horizon percent sand 
B horizon percent silt 
B horizon percent clay 
B horizon pH 

Drummer 
Mona Township Township 
Mean SD CV Mean SD CV 

% % 
2.7 0.6 22.4 2.8 0.8 27.6 
1.1 1.5 135.3 1.9 1.2 62.3 
2.2 1.1 48.2 2.8 0.9 34.0 
2.7 2.9 104.2 3.9 2.5 65.9 

35.8 10.2 28.4 40.3 15.6 38.8 
20.7 1.8 8.9 20.1 0.8 3.9 
2.2 0.4 16.9 2.6 0.5 18.8 
1.0 0.3 34.1 1.2 0.4 36.0 

24.0 1.6 6.5 22.3 1.8 8.0 
3.4 0.7 19.5 3.9 0.7 17.3 
2.0 0.9 43.4 2.7 1.2 42.9 

24.2 1.2 5.1 23.3 2.2 9.4 
4.5 0.7 15.4 4.6 0.6 13.9 
3.1 1.0 33.4 3.4 1.0 30.4 

21.0 1.3 6.1 21.3 3.4 16.0 
5.0 0.4 8.3 5.0 0.9 18.4 
7.1 1.1 16.1 6.0 2.3 37.7 

43.2 11.5 26.7 48.1 18.9 39.3 
92.4 31.1 33.7 104.8 22.6 21.6 

bution of the A and the B horizons were determined by the 
modified pipet method of Kilmer and Alexander (1949). Soil 
reaction expressed as pH was measured in a 1:l soi1:water mix- 
ture using a pH meter and a glass electrode. Organic carbon 
content for the A horizon samples was determined by the loss- 
on-ignition method of Davies (1974). 

STATISTICAL ANALYSIS 

Descriptive statistics were computed by the elementary sta- 
tistics procedure outlined in the Statistical Analysis System (SAS) 
computer software (SAS Institute Inc., 1985). The DISCRIM pro- 
cedure in SAS was used to develop a discriminant function to 
classify each observation into one of the map units. Discrimi- 
nant analysis as a predictive technique is based on classdying 
an observation into one of several populations based on a vector 
of variables for that observation. Distance functions between 
the observation and the centroid of each population are calcu- 
lated, and each observation is placed in the class from which it 
has the smallest generalized squared distance, assuming that 
each class has a multivariate normal distribution. Pooled co- 
variance matrices were used to calculate the discriminant func- 
tions because a test of homogeneity of within-group covariance 
matrices showed non significant chi-square at 0.05 probability 
level. In order to conserve space, individual covariance matrices 
are not presented. Both the Mona and Drummer Township areas 
were used to compare the use of this analysis for field soil and 
SPOT textural map units. A subset of soil variables derived from 
stepwise discriminant analysis failed to produce better discrim- 
ination models based on overall classification accuracies; there- 
fore, all soil variables were used to produce the discriminant 
functions. 

EVALUATION OF DISCRIMINATE MAP UNITS 

Assessment of agreement between classification from dis- 
criminant analysis and the maps from both areas was conducted 
by comparing the predicted map unit classification against the 
SPOT texture map on the one hand, and the field soil map on 
the other. Observation site comparisons were made by calcu- 
lating the frequency of coincident classes on the map and the 
classification, and reporting the coincident frequencies in an 
error matrix (not presented). Percent correct, percent omission 
error, percent commission error, and overall percent agreement 
(Equations 2 through 5) were calculated from the error matrices 
for all the map units as follows: 

Number of correct predictions 
Percent - - for a map unit x 100 
correct Total number of the map unit 

present in sample 

Number predicted as other 
Percent map unit's x 100 

= Total number of the map unit error 
both correctly and 
erroneously classified 

Number of incorrect predictions 
Percent for a map unit x 100 
omission = 
error Total number of the map units 

present in sample 

Number of correct vredictions 

A better measure of overall agreement between the map and 
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the classification was the Kappa statistic (Equation 6 )  calculated 
from the error matrix as follows: 

where 
r = number of rows and columns in error matrix, 

Xii = number of observations in row i and column i, 

Xi+ = marginal total of row i, 

X + i  = marginal total of column i, and 

N = total number of observations. 

The Kappa statistic is a non-parametric measure of agreement 
between the reference data (i.e., predicted units from soil prop- 
erties) and SPOT texture or field soil map units (Congalton and 
Mead, 1983; Hudson and Ramm, 1987). It is the maximum- 
likelihood estimate from the multinomial distribution and a 
measure of the actual agreement of two classifications minus 
the chance agreement. 

I LEGEND 

RESULTS AND DISCUSSION 
I 

PUTE 1. SPOT image texture map of the Mona Township area. Descriptive statistics for the selected soil properties, mainly, 
mean, standard deviation, and coefficient of variation, are shown 
in Table 1. These are indicative of the degree of variation shown - by most of the selected soil properties, and compare well with 
what others have reported for other soils elsewhere (Wilding 
and Drees, 1983). The spatial pattern of soil variation, as delin- 
eated on the field soil map, shows broad areal map units for 
the Mona Township (Figure 2) but a smaller and more complex 
pattern in the Drummer Township (Figure 3). Only parts of the 
soil maps of the study areas with the superimposed sampling 
grid have been included to show the general pattern of soil 
distribution in the two areas. In the Drummer Township the 
field soil map shows 26 soil map unit delineations, out of which 
14 occurred on the observation sites. Only 15 soil map units 
were delineated on the soil map in the Mona Township, and 
11 of these occurred on the observation sites. These map units 
and their classification are documented in a soil survey report 
(Fehrenbacher, 1990). The spatial pattern of variation of spectral 
map units resulting from the SPOT texture classified image of 
the Mona Township is depicted in the spectral map shown in 
Plate 1, while that for the Drummer Township is shown in Plate 
2. There were 15 spectral map units occurring on the observa- 
tion sites in the Mona Township and 24 in the Drummer Town- 
ship. The spectral map units were not characterized during this 
investigation; however, this would be a necessary next step 
before these mapping units would be useful for direct appli- 
cation in land use planning. 

The results of the discriminant analysis (Table 2) show that one observation each, it generally had smaller errors of omis- 
Wilks' Lambda, which is a measure of how well the map units sion and commission for its units than the spectral map which 
are separated, indicates slightly better separation of the units did not have 100 percent omission error for any of its units. In 
in the field soil map than the image texture map in the Mona the Drummer Township area two units of the field soil map 
Township area, whereas the opposite is the case for the Drum- and three of the spectral map were completely and correctly 
mer Township. Average squared canonical correlation is an- predicted (Table 4). The field soil map had one unit that had 
other measure of separability of the map units; this showed that 100 percent omission errors, but the spectral map did not. How- 
the field soil map had slightly better separation of map units ever, it is pertinent to note that all the errors of total omission 
than the image texture maps for both study areas. in both areas occurred with map units in which only one ob- 

The classification results in the Mona Township area show servation had been made in the sample. Generally, the spectral 
that two map units were completely and correctly predicted map units from both maps in both areas were more numerous 
from both the field soil and the SPOT image texture maps (Table than the field soil map units, and the commission and omission 
3). Although the field soil map had two map units which were errors were lower in the field soil maps compared to the spectral 
excluded from the discriminant error matrix, because they had maps. The more numerous map units in the spectral maps were 

LEGEND mm 4 7, 

PLATE 2. SPOT image texture map of the Drummer Township area. 
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TABLE 2. MULTIVARIATE ANALYSIS OF VARIANCE OF SOIL PROPERTIES USED IN DISCRIMINATION OF FIELD SOIL AND IMAGE TEXTURE MAP 
UNITS. 

Data Partial Wilks' 
source R"2 F Statistic Prob. F Lambda' Prob. Wilks' ASCC** Prob. ASCC 

Moiia Township 
Field soil map 0.0077 2.239 0.0001 0.0558 0.0001 0.2180 0.0001 
SPOT map 0.0251 1.397 0.0001 0.0682 0.0001 0.1657 0.0001 

Drummer Township 
Field soil map 0.0458 2.029 0.0001 0.0273 0.0001 0.2021 0.0001 
SPOT map 0.0688 1.301 0.0001 0.0172 0.0001 0.1495 0.0001 

* Wilks' lambda is close to 0 if the groups are well separated. 
* *  Average squared canonical correlation (ASCC) is close to 1 if all groups are well separated. 

TABLE 3. ACCURACY ASSESSMENT FOR FIELD SOIL AND SPOT IMAGE TEXTURE MAP UNITS IN MONA TOWNSHIP. 

Field soil Classification Spectral Classification 
map units % Correct % Commission % Omission map units % Correct % Commission % Omission 
Ashkum 47.83 50.00 52.17 A1 34.78 63.64 65.22 
Brenton 0.00 - 100.00 A10 38.46 61.54 61.54 
Bryce 100.00 72.22 0.00 A l l  100.00 33.33 0.00 
Drummer 48.00 55.56 52.00 A13 50.00 60.00 50.00 
Elliott 70.00 39.13 30.00 A14 46.15 62.50 53.85 
Jasper 0.00 - 100.00 A15 75.00 62.50 25.00 
La Hogue 100.00 42.86 0.00 A16 66.67 85.71 33.33 
Milford 47.27 29.73 52.73 A17 100.00 25.00 0.00 
Pella 70.00 18.33 30.00 A2 46.88 48.28 53.12 
Rutland 100.00 50.00 0.00 A3 43.86 32.43 56.14 
Selma 80.00 47.83 20.00 A4 55.56 58.33 44.44 

A5 36.67 50.00 63.33 
A6 80.00 60.00 20.00 

Kappa = 0.5306 A7 71.43 50.00 28.57 
% Overall agreement = 61.09 A8 35.71 61.54 64.29 

Kappa = 0.4035 
% Overall agreement = 46.61 

TABLE 4. ACCURACY ASSESSMENT FOR FIELD SOIL AND SPOT IMAGE TEXTURE MAP UNITS IN DRUMMER TOWNSHIP. 

Field soil Classification Spectral Classification 
map units % Correct % Commission % Omission map units % Correct % Commission % Omission 
Ashkum 44.44 55.56 55.56 81 85.71 50.00 14.29 
Brenton 
Bryce 
Corwin 
Dana 
Drummer 
Elliott 
Martin ton 
Milford 
Proctor 
Raub 
Ru tland 
Sawmill 
Swygert 

Kappa = 0.5025 

% Overall agreement = 55.20 

100.00 75.00 
54.55 25.00 
66.67 60.00 
75.00 25.00 
80.00 50.00 
62.50 54.55 
75.00 57.14 

100.00 33.33 
40.00 71.43 

100.00 60.00 
21.74 66.67 

100.00 33.33 
66.67 77.78 
75.00 81.82 
25.00 50.00 
66.67 60.00 
28.57 42.86 
38.89 58.82 
35.48 21.43 
41.67 47.37 
50.00 50.00 
44.44 69.23 
60.00 0.00 

Kappa = 0.4291 
% Overall agreement = 46.15 
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a consequence of allowing for more classes in the classification 
algorithm than were present in the field soil map during the 
imagery classification process. Also, the tendency for the spec- 
tral map to isolate small inclusions in the soil map unit due to 
spatial variations that are usually aggregated in the field soil 
map added to the greater number of spectral classes. There is 
reason to suggest that correlations exist between spectral classes 
and field soil map units because not only surface soil properties, 
but also some subsurface soil properties used in soil map unit 
delineation are related to spectral data. Agbu et al. (1990) have 
shown that a significant correlation exists among some perti- 
nent subsurface soil properties and spectral data, suggesting 
that subsurface pedogenic processes in relatively stable land- 
scapes influence soil surface properties including organic mat- 
ter, amount and kind of clay, surface soil texture, etc., which 
are directly related to spectral reflectance. 

The overall classification and map agreement was 61.1 per- 
cent for the field soil map and 46.6 percent for the spectral map 
in the Mona Township, while in the Drummer Township these 
were 55.2 percent and 46.2 percent, respectively. Adjusting the 
overall percent correct measure by subtracting the estimated 
chance contribution, using the Kappa statistic, the Mona Town- 
ship shows actual agreement of the discriminant analysis clas- 
sification to be 0.5306 with the field soil map and 0.4035 with 
the SPOT texture map (Table 3). In the Drummer Township the 
Kappa values were 0.5025 and 0.4291 for the field soil and SPOT 
texture maps, respectively. The ratios of the Kappa statistic for 
the different maps of an area could be used as a relative measure 
of the performance of one against the other, and this indicates 
that in the Mona Township the field soil map performed better 
than the SPOT image texture map by a factor of 1.32, while in 
the Drummer Township this factor was only 1.17, indicating 
that the two maps were comparable based on soil properties. 
These are not very wide margins and suggest that in these 
landscapes reasonably satisfactory map unit delineations could 
be made using image textural features in detailed soil surveys. 
Also, the Kappa coefficients of agreement for the spectral and 
the field soil maps were not significantly different from each 
other in both study areas at the 0.05 probability level, corro- 
borating the comparability of the two maps for mapping unit 
separation. However, it should be acknowledged that the spec- 
tral texture map units must be characterized in terms of signif- 
icant soil properties, and possible mergers determined before 
they can be useful in a soil survey or land use planning. 

The classification accuracy of nearly 53 percent by the field 
soil map supports the contention that partition of soil variabil- 
ity, which is the basis of map unit separation, was not very 
effective. Therefore, the field soil map is an imperfect standard 
for judging the accuracy of a spectral map. Even if the field soil 
map were extremely accurate for detailed soil survey such as 
the one used in this study, which is a second-order survey 
(1:15,840), i.e., in minimizing soil property variability within 
map units and maximizing same among units, the particular 
pattern represented would be in part a function of the design 
of the mapping units, and hence not necessarily unique. The 
apparent divergence between the two maps could be a function 
of the properties emphasized and the way the respective map- 
ping units were defined, rather than of differences in variability 
of soil properties which are usually reflected in delineated map 
units. Earlier work has indicated that some kind of transfor- 
mation or classification of original imagery data is necessary for 
soil mapping unit discrimination. Therefore, the overall agree- 
ment shown by the texture image map, which is not signifi- 
cantly different from the field soil map based on variability of 
soil properties, suggests that textural transformation of original 
imagery data and its ~Iassification produces discriminate spec- 
tral mapping units which may be used as a basis for formulating 

and defining soil mapping units in a detailed soil survey pro- 
gram. 
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BOOK REVIEWS 

Geographic Information Systems: A n  Introduction by Jeffrey Starr and John Estes. Prentice 
Hall, Rt. 9 W, Englewood Cliffs, NJ 07632. 303 pages, 70 illustrations including 8 color plates. 
Hard cover. 1990. $44.20 

W ITHIN THE PAST FIVE YEARS, the field of geographic infor- 
mation systems (GIS) has mushroomed, as witnessed by 

the number of journals, conferences, and symposia devoted to 
the subject. The urgent demand for professionals trained in GIs 
has not gone unnoticed, with both graduate and undergraduate 
students showing an increasing interest and clamor for GIs in- 
struction. Correspondingly, university departments nationwide 
are striving to meet that demand but have been hampered, 
especially at the introductory levels, by a lack of educational 
materials. Geographic Itzformation Systems:  An Introduction was 
written by the authors, Jeffrey Starr and John Estes, to help fill 
that void. 

The first chapter introduces basic terminology and geo- 
graphic/cartographic concepts important to understanding either 
manual or automated geographic information systems. The sec- 
ond chapter on background and history, though quite brief, 
helps put the present state GIS development into a much needed 
historical context. Importantly, the authors stress that the de- 
velopment of G I ~ ,  in terms of both the underlying concepts and 
the technology, is a product of many disciplines. 

Starr and Estes take an all encompassing view of GIs, not 
necessarily to subsume other related disciplines but to link them. 
Data integration is viewed as the philosophical basis of GIs tech- 
nology. GIS is seen as the correct tool for integrating the differ- 
ent technologies that are used in gathering, analyzing, and 
assessing spatial data. The authors define five essential ele- 
ments that a GIS must contain: data acquisition, preprocessing, 
data management, manipulation and analysis, and product 
generation. A discussion of these five elements, along with data 
structures, form the core of the book with a chapter devoted to 
each. 

A thorough grounding in data structures is crucial to strip- 
ping away the black-box image of GIs technology. The chapter 

does a reasonable job of introducing the various raster and vec- 
tor data structures in common use: raster arrays, quad-trees, 
DIME files, DLGs, and arc-nodes. The authors rightly point out 
that geographic information systems should be able to work 
with both raster and vector data types and be able to readily 
convert from one data structure to the other. However, raster 
and vector systems are fundamentally different views of the 
underlying spatial information and the reader would have prof- 
ited from expanded discussion on this and related topics (e.g., 
topological encoding). 

Getting data into a GIS is one of the greatest operational head- 
aches and costs involved in any GIs application. The two chap- 
ters on data acquisition and preprocessing provide an overview 
on developing a spatial database covering such topics as sam- 
pling, interpolation, photointerpretation, registrationhectifica- 
tion, digitizindediting, inputting existing digital data sources, 
and data structure conversions. Once you have the data in, you 
have to manage it and make it available to users. Starr and Estes 
cover the basic principles of database management: efficiency, 
data retrievavquery, redundancy, integrity, security, and syn- 
chronization of multiple users. The discussion on spatial data- 
bases is framed in the context of two fundamental questions at 
the core of geographic analysis: (1) What is found at a given 
location?; and (2) Are there any examples of specified objects 
within a specified area? 

Geoprocessing (manipulation and analysis of spatial data) is 
often the focus of attention when discussing GIs. Starr and Estes 
take a data structure independent approach in their overview 
of fundamental geoprocessing operations: reclassification and 
aggregation, connectivity and neighborhood operations, mea- 
surement, statistical analysis, and modeling. In comparison to 
the length of material presented on data preprocessing, this 
chapter receives short shrift, potentially disappointing readers 




