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ABSTRACT: The problem of hierarchical structures for multipoint matching is addressed. Related to this problem, three 
structures, namely, multigrid, multiresolution, and the combination of them, have been developed and investigated. 
The multigrid structure extends the regular grid points, on which the multipoint matching is performed, to a number 
of levels in spatial resolution from coarse to fine, while the multiresolution structure extends the image resolution to a 
number of levels from lower to higher resolution. Each of these two structures, in turn, removes one of the factors 
which handicap the efficiency of the multipoint matching. The combination of these two structures then leads to a 
structure which achieves high computational efficiency in multipoint matching. The developed structures have been 
tested on a number of images, and results are presented. 

INTRODUCTION AND MOTIVATIONS 

T HE MULTIPOINT MATCHING ALGORITHM by Rosenhoh (1986a, 
1986b, 1987, 1988) is a very attractive image matching d- 

gorithm, in particular, when applied for automatic digital tex- 
rain model (DTM) generation. It is a global approach, and has 
higher reliability compared with single point matching a l p -  
rithms, due to its global smoothness constraints. On the other 
hand, it has the drawback of being computationally expensive. 
It has been noticed by, e.g., Rosenholm (1987,1988) and K6lbl 
et al. (1988), that it has a very slow convergency rate. Jn oder  
to overcome this problem, Rosenholm (1987,1988) uses a low- 
pass filtering technique to preprocess the images. His results 
show that low-pass filtering usually improves the convergency 
speed, but not always. It is known that low-pass filtering has 
the effect of removing or smoothing high frequency information 
(and errors) and sometimes also smoothing over disturbances 
in the images. In this aspect it improves the convergency speed. 
On the other hand, low-pass filtering may also smooth impor- 
tant information, decreasing precision. This has been shown by 
Rosenholm (1988). Korten ef d. (1988) have investigated meth- 
ods for improving the convergency in their FaT-Vision system, 
which is similar to our problem in the sense of convergency. 
The most favorable approach for speeding up convergency, ac- 
cording to their experiences, is the frequency related average 
(FRA) method. This method also raduces image frequency a d  
smoothes high frequency errors. 

Reasons for the slow convergency speed of the m&pdnt 
matching are due to (a) high frequencies information of image 
(gray values), @) disturbances over images, and is) bw fre- 
quencies components of the solution, i.e., parallaxes. The first 
two factors come from the image [gray value) information The 
third point is due to the structure of the problem, i.e., a large 
equation system with regularly (grid) distributed points. The 
slow convergency speed is a common problem for such a struc- 
ture. All these attempts aforementioned for improving the con- 
vergency speed are effective in smoothing the first two Lactors, 
which are related to the image gray values. But the third factor, 
which is not related to the image gray value but rather fs the 
structure of the problem, is not effected. 

The speeding up of the convergency from the third point of 
view is motivated by the idea of using the multigrid method. 
The multigrid method is a well developed numerical method 
for solving large equation systems with regularly grid spaced 
points to achieve high efficiency. The structure of our multi- 
point matching problem is very similar to that so that the mul- 
tigrid structure can be adapted, that is to extend the grid structure 
to a number of levels from coarse to fine. The coarse levels deal 
very efficiently with low frequency components of the solution, 
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while finer levels deal with the high frequeaq componc.ats of 
the solutions so as to obtain accuracy. 

To speed up convergency from the first two points sf view, 
the methods mentioned above, such as low-pass filteckg and 
the FM, are effective. But together with the d g n d  structure, 
a -re effective way to obtain efficiency is the use of multire- 
solution. The multipoint image matching processing is not just 
to solve a linear or non-linear equation system, but also involves 
the formation of the equation system, which is a processing on 
the pixel level (each pixel is involved). Besides that, the match- 
ing also involves some other processing which is also on the 
pixel level, e.g., resampling of the right image gray values. This 
means we have to reduce the number of pixels if we want to 
speed up the processing. This motivates the use sf multiple 
resolution of image. Multiresolution together with the multi@ 
structure forms the hierarchical structure of our multipoint 
matching. At the lower mdtigrid level, lower resolution is used; 
at higher muitigrid level higher resolution is used. 

In this paper, we present the multigrid and multiresolution 
structures for multipoint matshing. The aim of the strdy is to 
achieve high computational efficiency and reliability. First, we 
present the multipoint matching algorithm, mitigrid method, 
and multiresolution technique briefly. Then we formulate the 
multipoint matching in d g r i d  structure, and multiresolution 
structure separately. And, finally, we combine the multigrid 
and multiresolution bgether into the multipoint matching to 
form a hierarchical stnrchw. Experiments are performed and 
numerical results are prsvided, At the end of this paper, we 
give some general dimssion on the developed method to re- 
l'gted wo&-and draw some conclusions. 

THE MULTIPWNT MATCHING ALGORITHM 

The u d z p h t  matching dgdhm (Rosenholm 1986a, 198&, 
1987, 1988) is basically an area-based matching method using 
the least-squares technique. i t  is regarded as an extension of 
single point least-squares matching techniques (Forstner, 1982; 
Adcennam, 1984; Griin, 1985). B ~ l t  unlike a conventional siigle 
point area-based matching method, which matches one point 
( w h b w )  at a h e ,  h e  multipoint matching matches a group 
of points simultanewdy. The points are usually located in a 
re@r grid form in one of tbe images (see Figure 1). These 
grid points are connected to eash other by the finite element 
method by means of a bilinear function. Smoothness constraints 
on object surface are imposed on the solution, which makes it 
different from a single point matching algorithm too. In this 
aspect, it is similar to some other global matching algorithms, 
e.g., the stochastic optimization approach by Barnard (1989), or 
matching using regularization (Poggio, 1985; March, 1988), and 
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minimization of energy functional using continuation methods 
(Witkin et al., 1987). 

Here the problem is cast as a minimization problem, i.e., to 
minimize the differences between the two matching images un- 
der the smoothness constraint~. The problem is solved by a 
least-squares estimation technique. For every point (pixel) (x,y) 
from the images, we can formulate the following observation 
equation: 

where g, and g, are gray values of the first and second matching 
images, n(x,y) is the noise, and p is the parallax at this point, 
which is interpolated biiearly from the parallaxes of its four 
neighborhood grid points pi,j (the cross points in Figure 1) (see 
Rosenholm, 1986a). In Equation 1, we assume the normal case 
image geometry, i.e., no y-parallaxes. p,.s are the unknown 
parameters and to be determined in the feast-squares estima- 
tion. 

The smoothness constraints are formulated as fictitious ob- 
servations with special weights w,; i.e., 

p' = p.  - p . .  .z 1,j ,,,+I = 0, wxi,, 
(3) 

Pi  = Pi,j - Pi+l,j = 0, Wyi,, 

Equations 1, 2, and .3 form the basic observation equation 
systems for the least-squares estimation. As Equation 1 is non- 
linear, it needs to be linearized. The linearized equation systems 
together with Equations 2 and 3 in matrix form look like this: 

Minimization of V WV leads to the following normal equation: 

The rest is a standard least-squares estimation problem. Due 
to the linearization of the nonlinear observation equation (Equa- 
tion l), the solution needs to be iterated (a Newton-Gauss it- 
eration) until certain criterion is satisfied. 

MULTlGRlD MULTIPOINT MATCHING 

The multigrid method is a very well developed numerical 
method for solving large sparse system of linear or nonlinear 
equations, in particular, with grid spaced unknown points. The 
method was developed at the beginning for solving discrete 

I FIG. 1. Multipoint matching. All the grid points (the 
white crosses) are matched from the left image to 
the right image simultaneously. The neighborhood 
grid points are connected by a bilinear surface model. 

elliptic boundary problems. Now it has been applied to many 
other numerical analysis problems in physics and engineering. 
It has also been applied to visual surface reconstruction (Ter- 
zopoulos, 1983; Terapoulos, 1984), image analysis (Terzopou- 
los, 1986), and digital terrain model (DTM) interpolation in 
photogrammetry (Ebner et al., 1986). For a detailed description 
of the multigrid methods and applications see, e.g., Brandt (1982), 
Stiiben et al. (1982), and Hackbusch (1985). We briefly describe 
the method in the following subsection. 

The aim of the multigrid method is to gain computational 
efficiency. When one tries to solve a Iinear equation system of 
the form LJh = Fh (where Lh is a linear operator, Xh is the 
unknown vector, and Fh is the right hand side vector. They are 
all defined on a grid domain Oh and assuming Lh-' exists) by 
classic relaxation methods, such as Jacobi's method or Gauss-Sei- 
del's method, it is found that the convergency is very slow. The 
reason is that relaxation is a local operation. High frequency1 
components of the corrections (or errors) in the relaxation can 
be smoothed out quickly, while the low frequency part remains 
for a long time. They inhibit global information propagation, 
thus inhibiting convergency. Based on this observation, the basic 
idea of the multigrid method is to extend the grid structure to 
a number of levels in spatial resolution, in a coarse-to-fine strat- 
egy. The low frequencies at a finer level become high frequen- 
cies at a coarser level. Errors with these frequencies can be 
smoothed out very quickly by relaxation at this coarse level. In 
a successive scheme, transferring the already obtained results 
from level to level, error at any frequency (between a certain 
band) can be smoothed quickly at a certain level of the grid. 
Moreover, at coarse grid, the dimension of the system is re- 
duced (by a factor of 4 usually), so the computation can also be 
done quickly. These features make the multigrid a very attrac- 
tive and efficient tool in solving large linear systems defined by 
a regular grid. 

There are different multigrid methods. One of them is the so- 
called full multigrid or nested iteration method, which suits our 
multipoint matching problem. The full multrigrid method can 
be simply understood as one to obtain good initial approxi- 
mation from a coarser grid for the next finer grid. In the full 
multigrid, the relaxation starts from the coarsest grid level as 
predefined. At each level higher than the coarest level, a num- 
ber of iteration steps of a suitable multigrid method is per- 
formed, i.e., performing a multigrid cycle from the current level 

'Here high and low frequencies of the correction or error are related 
to the grid spacing. For errors whose wavelengthes are larger than the 
grid space are regarded as low frequency errors, and vice Vera. 
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to the coarsest level. The result is then transferred to the next 
finer grid by an interpolation operator. In our case, the multi- 
grid cycle is replaced by a number of Newton-Gauss iterations 
of direct solution within the same level. 

APPLICATION FOR MULTIPOINT MATCHING 

Multipoint matching is formulated as a least-squares esti- 
mation problem. In our case the multigrid method cannot be 
applied directly because, firstly, the multipoint matching prob- 
lem is not a determined linear or nonlinear system of equations, 
which is the case for the multigrid method. And secondly, the 
normal matrix N in Equation 5 is usually not a diagonally dom- 
inant matrix, although it is a sparse system. This means that 
cIassicaI relaxation methods, such as the Jacobi method or Gauss- 
Seidel method, are not suitable for solving the system. A direct 
solution is more suitable in this case. Further, the first derivative 
of the second image gray value function gl%(x,y) can be replaced 
by the first derivative of the first image gray value function 
g'l,(~,y), and this replacement has a great advantage in obtain- 
ing computational efficiency, because g', (y,x) is independent 
of the unknown X (Li, 1989). So for each fiewton iteration, the 
design matrix A is not changed and neither is the normal matrix 
N. Once the inverse N-I is computed, it is valid for all the 
iterations. For each Newton iteration, only the right hand side 
needs to be reformulated and one matrix multiplication N-'U 
needs to be performed. This saves much computational work 
and makes the direct solution more efficient than relaxation 
methods. The more iterations needed, the more efficient is this 
solution than the relaxation solution. 

But on the other hand, multipoint matching does have some 
special characteristics, which makes it suitable for the multigrid 
solution, i.e., the regular grid-spaced matching points. The 
multigrid structure extends the grid to a number of levels from 
coarse to fine, so the spatial resolution of the grid crosses a 
wide range and the matching is performed in a strategy of coarse- 
to-fine. The coarse grid levels allow direct information commu- 
nications over a large range, achieving global propagation of 
information, while fine grid levels treat more local and detailed 
information flow in obtaining accuracy. In this way the overall 
efficiency of the matching is increased. Here we use the similar 

idea as the full multigrid method, i.e., to obtain good initial 
approximate values for a fine grid from a coarse grid in an 
efficient way so as to accelerate the processing. But we replace 
the multigrid cycle over a number of levels in the full multigrid 
by direct solution of a number of Newton iterations within the 
same level. The information flow in this case is the unknown 
X from coarse level to fine level. The coarse-to-fine transfer 
operator is a simple bilinear interpolation as 

. r l 2  llh 

Let the number of levels in the multigrid structure be K, the 
grid point changing ratio from level to level be 2:1, and the grid 
point number be in the order of (2k + 1) x (2k + I), where k 
is the level number. The grid spacing h, in terms of pixels, 
changes in a ratio of 1:2 from coarse to fine level, while the 
image resolution is unchanged. Such a multigrid structure is 
shown in Figure 2 with an example of four levels. The matching 
starts from the coarsest level i& (k = I), with grid point number 
of 3 by 3 and zero initials. The grid spacing for level k is h, = 
2K-kh (h is the grid spacing of the finest grid level K) .  The coarse 
to fine transfer of the unknown X uses the bilinear interpolation 
operator in Equation 6. At each level higher than the coarsest 
level, a standard multipoint procedure is performed with the 
initial value obtained from the previous level. After conver- 
gence is reached, the result is transferred to the next finer level. 
This processing proceeds successively to the finest level. 

MULTIPOINT MATCHING WITH MULTIRESOLUTION 
The multiresolution structure has been widely used in image 

analysis and vision related problems, such as feature detection, 
motion estimation, image matching, and visual surface recon- 
struction, etc. Terzopoulos (1983,1984) developed a method of 
multilevel reconstruction of a visual surface. Terzopoulos (1986) 
also used multiresolution of images in connection with the mul- 
tigrid method to compute lightness, shape-from-shading, and 
optic flow. For feature detection, e.g., edges, the pyramidal 
structure is also often used, (see, e-g., Rosenfeld (1983)). In 

FIG. 2. The 2:l multigrid structure of multipoint matching with four levels. The left shows the lmage,and the right 
shows the multigrid structure of the matching points. The same image (resolution) is used at diierent grid levels, and 
the result is transferred from level to level by the interpolation operator Id. 
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image matching, multiresolution or pyramid is often used in a 
hierarchical structure, typically to derive approximate values 
from lower resolution for higher resolution. Examples are too 
numerous to list here. 

Multiresolution structure of image or image pyramid is a data 
structure which consists of a sequence of images of the same 
object presented at successively reduced resolutions. Such a 
structure contains no information that is not implicitly pre- 
sented in the finest version of the image in the sequence (the 
original image), but it has great potential of gaining computa- 
tional efficiency in making some of this information explicit. It 
also has the property that only a small overhead in memory 
space relative to the input image is required. These two char- 
acteristics make the multiresolution structure a very efficient 
tool in image analysis. 

In general, the way of generating an image pyramid from a 
given image can be described as follows (see, e.g., Wong et al. 
(1978), Burt et al. (1983), and Meer et al. (1987)). First, the image 
a-,(x,y) at level k- 1 of the pyramid is low-pass filtered. This 
is equivalent to convolving the image with a local symmetrical 
weight function or generating kernel p(x,y). After the convo- 
lution, the low-pass filtered image is resampled with a reduced 
sample density s(x,y). So 

where @ denotes the convolution operation and @ denotes the 
resampling. Usually there are some constraints on the gener- 
ating kernel, such as separability, symmetry, normahtion, etc. 
For the choice of the optimal generating kernel with respect to 
minimum information loss and computational efficiency, see 
Burt et al. (1983) and Merr et al. (1987). One of the most com- 
monly used convolution kernels is the unimodal Gaussian-Iike 
function. A pyramid generated by such a kernel is often called 
a Gaussian pyramid. In contrast to the Gaussian pyramid, the 
Luplacian pyramid is also sometimes used. A Laplacian pyramid 
is a sequence of error images, which are the differences between 
two neighboring levels in the sequence of a Gaussian pyramid 
(Burt et al., 1983). For fast computation of a Laplacian pyramid, 
also see Crowley et al. (1984). 

The simplest way of building a resolution pyramid is the 2 
by 2 block averaging method. Starting from the original image 
(the finest version of the image or the base of the pyramid), 
each new lwel is generated by averaging a 2 by 2 non-overlap- 
ping pixel block from the last level. Repeating the same pro- 
cedure, the operation successively traces down to the root node 
of the pyramid. One can see that the image size in the pyramid 
generated in this way is reduced by a factor of 4. The generating 
kernel p is  the following: 

It can be shown that only a third of the original image memory 
is needed for additional images in the pyramid representation. 

Multiresolution representation of images offers advantages in 
obtaining computational efficiency. Object has scale. Large ob- 
jects (in the image gray value structure) can be more easily 
recognized from the image or matched from one image to an- 
other at a lower resolution (large scale). This is due to the fact 
that, firstly, at lower resolution, information to be processed is 
much less than at higher resolution, so the computational work 
can be done more efficiently. Secondly, sometimes too detailed 
information (fine structure) makes the recognition or matching 

confusing, while at lower resolution the detailed information is 
reduced very much, which reduces the confusing factors. And 
thirdly, the techniques of generating image pyramids as dis- 
cussed in the previous subsection have the effect of removing 
noise and improving the signal-to-noise ratio of the lower levels 
of the pyramid. In this sense, the matching at lower levels of 
the pyramid can be done more reliably. Also at lower resolu- 
tion, the parallax is reduced, which means that for the same 
parallax it is much smaller at the lower resolution in terms of 
pixels than at the higher resolution. This scaling in parallax 
reduces the search space and so increases the pull-in effect of 
the matching. 

On the other hand, the precision of matching at lower reso- 
lution is limited as the spatial information preserved at lower 
resolution is limited. As the corresponding dimension of a pixel 
in object space is increased at lower resolution, the obtained 
precision of matching is subject to this resolution. Generally, 
the lower the resolution, the lower the precision of the match- 
ing. On the other hand, if the resolution is higher than a certain 
level, increasing the resolution would not increase the precision 
significantly. If we want to have a certain precision, a certain 
level of resolution (at the finest level) has to be used. 

This discussion motivates the use of rnultiresolution in a suc- 
cessive scheme for image matching. The low resolution allows 
the matching to treat primitive information fast and reliably, 
and that makes a coarse but fast and reliable correspondence 
between the two images based on primitive information. This 
coarser correspondence can then be used to guide to finer 
matching. By transferring the results from a lower resolution 
level to a higher resolution level, the higher resolution now 
allows the matching to concentrate on more detailed informa- 
tion and so achieve higher matching precision. In this succes- 
sive schedule over a number of resolution levels, the matching 
is performed in a more efficient way. The number of levels in 
the pyramidal structure is, of course, problem-dependent, it 
need not be fixed. 

Again, let the number of levels of resolution be K where we 
define the finest level as K We let the image size at the finest 
level be 2" by 2". As we only change resolution from level to 
level, the number of the grid points is kept constant in all levels, 
say (2K + 1) by (2K + 1) grid points. This means that the grid 
spacing, k, changes from level to level. If we use the 21 reso- 
lution reduction ratio from level to level, the h reduction ratio 
is also 21. Figure 3 shows the structure of multipoint matching 
with multiresolution. 

The matching starts from the lowest resolution level R, with 
zero initials. At level k of the structure (for 1 < k s K) ,  with the 
image size of 2n-K+k by 2n-K+k and the grid spacing of kk = h&K-k, 
a standard multipoint matching, but with initial approximation 
values from the last level, is performed. The results (parallaxes at 
the grid points) are then transferred to the next level. The transfer 
operation in this case is a multiplication by a factor of 2 due to 
the resolution reduction such as 

COMBINATION OF MULTlGRlD AND MULTIRESOLUTION 
So far we have formulated the multipoint matching with mul- 

tigrid structure and with multiresolution independently. Mul- 
tigrid and multiresolution, in the sense of structure, could be 
equivalent in some special cases of image analysis problems, 
e.g., in the Terzopoulos (1986) case, but they are different in 
our multipoint matching case. They have different effects on 
the matching processing. The multigrid takes advantage of the 
special structure of the matching problem, i.e., the regular grid 
spaced points for the matching, and allows the distribution of 
grid points to aoss a number of spatial resolution levels, from 
coarse-to-fine. Coarse grid allows the process to communicate 
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FIG. 3. Structure of multipoint matching with multiresolution. The left shows the multiple image 
resolution structure from lower to higher level (top-down). The right shows the grid points 
structure, which is the same for all levels. 

directly between points over a large area and so global infor- 
mation flow is achieved, while fine grid treats more local com- 
munication between points which increases the model fidelity 
of the matching. In this way it improves the efficiency. The 
multiresolution structure improves the efficiency of the match- 
ing due to the fact that image gray value structures vary in 
resolution. The coarse resolution treats primitive information 
for efficiency and fine resolution treats detail information for 
precision. 

Both multigrid and multiresolution suffer from difficulties, 
but in a different way, in obtaining more efficient computation. 
In the multigrid case the grid points are reduced from level to 
level, so the size of the normal equation matrix is reduced. This 
leads to processing on the grid point level, i-e., the matrix op- 
eration is faster at the lower level. But the pixels are not reduced 
from level to level, as the matching involves processing on the 
pixel level; this handicaps the computational efficiency of the 
multigrid method in this case. On the other hand, the multi- 
resolution is just working in an opposite way, i-e., at the lower 
level pixels are reduced so processing on the pixel level is done 
fast, but processing on the grid level (matrix inverse and mul- 
tiplication) is not reduced. 

The above analysis of multigrid and multiresolution perform- 
ances leads, naturally, to the combination of them into the mul- 
tipoint matching at the same time, in such a way that advantages 
of both structures are promoted as much as possible while dis- 
advantages are avoided as much as possible. The combination 
of them is, of course, not unique. There are many different ways 
to do so. But they should be combined in such a way that both 
computational efficiency and precision can be achieved. So the 
general rule is a lower grid level with lower image resolution, 
and a higher grid lwel with higher image resolution. In this 
way the matching processing is performed fast on both grid 
level and pixel level at the lower level of the matching, and at 

the higher level of the matching the precision on grid level and 
pixel level can be improved. In the following we will formulate 
a structure (combination) of multigrid and multiresolution for 
the multipoint matching. In this structure the grid point and 
pixel keep homogeneity in resolution increasing or decreasing. 

Similar to previous ones, we let the number of levels be K, 
the original image size be 2" by 2" and the finest grid points be 
in the order of (2" + 1) by (2" + I), and the grid spacing be h. 
We use the 2:l coarsening ratio f6r the grid points from level 
to level and the same ratio for the resolution reduction. In this 
way the grid spacing h in terms of pixel is unchanged from level 
to level. Figure 4 shows the structure of multipoint matching 
with multigrid and multiresolution. 

The matching starts from the lowest level, L,, with zero ini- 
tials. At level k of the structure (for 1 < k s K), with the image 
size of 2n-K+k by 2n-K+k and the grid points of (2m-K+k+1) by 
(2m-K+k+ I), a standard multipoint matching is performed but 
with initial approximate values from the previous level. The 
transform operation now is a combination of IhH as given in 
Equation 6 and ITR as given in Equation 9, that is, 

fZPERIMENT AND RESULTS 

The multipoint matching with different structures as formu- 
lated in the previous sections have been tested on various image 
data sets, mostly concerning computational efficiency. For the 
purpose of comparison the following tests have been per- 
formed: ( i )  single level multipoint matching (the original algo- 
rithm), (ii) multigrid multipoint matching, (iii) multipoint 
matching with multiresolution, and (iv) multipoint matching 
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FIG. 4. Structure of multipoint matching with multigrid and multiresolution. The left shows the multi- 
image-resolution structure from coarser to finer and the right shows the multigrid structure from 
coarser to finer (top-down). 

with combination of multigrid and multiresolution. Three sets 
of image data are used for testing the algorithms. They rep- 
resent different types of images and applications of image 
matching. All the images have the size of 300 by 300 pixels. 
Data sets A are three pairs of digitized aerial photographs, B 
are three pair of close-range images, and C are three pair of 
synthetic images. 

The multipoint matching in multigrid structure is applied to 
all the test images. Four levels are used in the test. The grid 
points from level 1 to level 4 are 3 x 3,5 x 5,9 x 9, and 17 x 
17, respectively. The grid spacings are 128 x 128,64 x 64,32 
x 32, and 16 x 16 pixels respectively from level 1 to level 4. 
The matching always starts from zero initial approximate values 
at level 1. The results are presented in Table 1 together with 
the results of the original single level matching. 

From Table 1 we can see that multipoint matching with mul- 
tigrid structure does not reduce the computational work, if the 
single level does not require much computational work. For 
example, when the two matching images are not too far away, 
i.e., the parallax-range is rather small. As shown in Table 1 that 
for image set A and B (except Bb), although the number of 
iterations at the last level is reduced very much, the total num- 
ber of iterations is not reduced, and neither is the total CPU 
time. This is expected, because the computational work at the 
lower level is not reduced very much at each iteration. The 
reduction is only in the matrices computations; the rest is the 
same at all levels. On the other hand, the multigrid structure 
has improvements in efficiency compared to single level mul- 
tipoint matching for image pairs with a large parallax range. As 
in examples Bb,Cb,Cc, single level does not get to the correct 

match even after a large number of iterations, while multigrid 
matching does match correctly and with less computational work 
In this sense, multigrid structure also improves reliability. 

RESULTS OF MULTIPOINT MATCHINQ WITH MULTIRESOLUTION 

In this section we give some examples of results of multipoint 
matching with multiresolution only, i-e., image resolution 
changes from level to level, while grid points do not change. 
Here the grid points are 17 by 17 at all levels for all the data 
sets shown here. Table 2 shows the results. In Table 2, level 4 
is the finest level with the original resolution. From the table, 
we can see the following. The total computational work (CPU 
time or in terms of seconds per grid point slp) for the matching 
is not reduced in cases where the single level does not require 
very much work, e.g., the parallax range is not to large. But if 
the single level needs a large number of iterations, e.g., with 
large parallax range, the multiresolution reduces the computa- 
tional work. In the examples given here, data set A is the case 
where multiresolution does not improve efficiency, while, for 
example Bb and set C, multiresolution improves efficiency. This 
is similar to the results of multigrid multipoint matching but 
more efficient (compare the reduction of slp in Table 1 and Table 
2 for these examples). For examples with which the CPU is in- 
creased, the reasons for the increase of CPU time are different. 
Here the increase in CPU time is mainly caused by the compu- 
tation of matrix inverse of the normal equation (a 289 by 289 
matrix inverse needs about I minute and 11 seconds CPU time, 
which is the major part of the matching at the lower levels), 
which is the same for all levels. The more levels used, the less 
efficient. Here we used four successive resolution levels. It has 
been shown that it is not necessary to do so (Li, 1989). Some- 
times, two levels may give better results. 
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TABLE 1. COMPUTATIONAL WORK OF MULTIGRID MULTIPOINT MATCHING. 

data levell 3 X 3 level2 5 X 5 level3 9 x 9 level4 17 x 17 total one-level 17 x 17 red. 
set it CPU it CPU it CPU it CPU CPU dp it. CPU s/p (%) 

Aa 12 3'03" 4 1'11" 3 1 3 2'12" 7'39" 1.59" 17 6'19" 1.31" - 21.37 
'Ab 15 4'45" 3 1'11" 4 1'31" 3 2'28" 9'55' 2.06" 20 6'51" 1.42" - 45.07 
AC 11 2'49" 4 1'13" 4 1'13" 5 2'40" 7'55" 1.64" 15 5'42" 1.18" -38.98 
Ba 8 2'09" 2 43" 3 1'00" 3 2'12" 6'04" 1.26" 9 4'21" 0.90" -40.00 
Bb 73 17'21" 2 44" 2 44" 2 1'58" W48" 4.32" 247' 62'28" 12.97" 66.69 
BC 11 2'55" 3 58" 3 1'00" 3 2'14" 7'07" 1.48" 19 6'44" 1.40" - 5.71 
Ca 10 2'36" 1 29" 1 30" 1 1'41" 5'16" 1-09" U) 4'50" 1.42" 23.24 
Cb 39 9%" 52 12'25" 5 1'27" 3 2'10" 25'24" 5.27" 247' 62'04" 12.W 58.91 
Cc 42 1U'W 7 1'54" 6 1'43" 4 2'28" 16'14" 3.37" 167' 42'46" 8.9" 61.80 
Note: it = iterations spent on each level or total iterations; CPU = CPU time in minute (') and seconds (") spent on each level or total CPU 
time; dp= CPU time counted in seconds per grid point; One Zevel means the original single level multipoint matching. The last column (red. 
(%)) is the reduction of CPU time in (dp), where a minus sign(-) indicates that the CPU time is not reduced but increased. 'For image sets Bb, 
Cb, and Cc, the results are still not yet correct, the matching falls into local minimum. 

TABLE 2. COMPUTATIONAL WORK OF MULTIPOINT MATCHING WITH MULTIRESOLUTION. SEE TEXT NOTE IN TABLE 1. 

data levell 17 X 17 level2 17x17 level3 17x 17 level4 17 x 17 total one-level 17 x 17 red. 
set it CPU it CPU it CPU it CPU CPU d p  it. CPU dp (%I 

Aa 16 1'28" 10 1'30" 4 1'34" 3 2'11" 7'15" 1.51" 17 6'19" 1.31" - 15.27 
Ab 6 1'59" 5 1'22" 5 1'40" 3 2'23" 7'08" 1.48" 20 6'51" 1.42" - 4.23 
AC 13 1'25" 15 1'38" 10 2'01" 4 2'28" 8'04" 1.67" 15 5'42" 1.18" - 41.53 
Ba 15 2'01" 6 1'25" 3 1'31" 2 1'59" 6'56" 1.44" 9 4'21" 0.90" - 60.00 
Bb 25 1'37" 18 1'44" 4 1'36" 3 2'17" 7'46" 1.61" 247 62'28" 12.97" 87.59 
BC 20 2'05' 8 1'27" 4 1'34" 4 2'28" 7'34" 1.57" 19 6'44" 1.40" - 10.56 
Cb 61 2'10" 6 1'26" 3 1'32" 2 1'59" 7'08" 1.48" 247 62'04" 12.90" 88.53 
Cc 15 1'31" 8 1'32" 3 1'38" 2 2'07" 6'50" 1.42" 167 42'46" 8.9" 84.05 

Results from the previous subsections show us that neither 
multigrid or multiresolution alone in multipoint matching do 
not always improve computational efficiency for reasons we 
have explained, which suggests the use of multigrid and mul- 
tiresolution at the same time (lower grid level with lower image 
resolution), and vice versa, in such a wav that the comvuta- 
tional work can be reduced. Now we will I;resent the resdts of 
the matching with the combination of multigrid and multire- 
solution. The grid points are 3 X 3,5 X 5,9 x 9, and 17 x 17 
from lower level to higher level and the image resolution is 
reduced by a factor of 2 from higher level to lower level. The 
computational work for each level is shown in Table 3 together 
with the results of one-level multi-point matching for compar- 
ison. From Table 3 we can see the following: 

(1) In multigrid multipoint matching with multiresolution, the to- 
tal CPU time, counted in seconds per point, is drastically reduced 
compared with single level matching for all the image sets shown 
here. The reduction of CPU time (dp) ranges from 26 percent to 95 
percent, depending on the data, with an average reduction of 60 
percent for all the examples. 

(2) The CPU time is also reduced compared with multipoint match- 
ing with multigrid or multiresolution alone for all the examples. As 
we can see, the first two levels need only a few seconds compared 
with a few minutes in both multigrid and multiresolution alone. This 
is due to the fact that the pixels and normal equations are both 
reduced at the lower levels. This reduces the amount of computa- 
tional work for each iteration as well as the number of iteration. 

(3) Multigrid together with multiresolution has a very strong im- 
pact on convergency for high frequency texture and large parallax 
range. As we have shown in the previous two subsections, both 
multigrid and rnultiresolution alone show improvement in efficiency 
in images with poor initial value or large parallax range and high 
frequency texture, but by combining the multigrid and multireso- 
lution, the improvement is extremely high (see Table 3, example Bb, 

Cb, and Cc). These three examples are matched, as are all other 
examples, without any problem while, in the two previous subsec- 
tions, these three examples need more iterations than all other ex- 
amples. 

(4) The reliability is improved with the combination of multigrid and 
multiresolution compared with single level matching (see example Bb 
and C). This is similar to the multigrid and multiresolution alone. 

DISCUSSION AND CONCLUSIONS 

Multigrid and multiresolution structures for multipoint 
matching have been developed and investigated. They have 
also been tested on a variety of images. Results are encouraging 
and they show that the hierarchical structures have advantages 
with respect to computational efficiency and reliability over sin- 
gle levei multipoini matching, espe&ally the combination of 
multinrid and multiresolution. In a sense, this hierarchv also 
improves the pull-in range of the matching, in particufar for 
images with high frequency texture. This is similar to the fre- 
quency related average (FRA) approach by Korten et al. (1988). 
The hierarchical structures also improve the reliability of the 
matching in such cases, as has been shown by examples. 

The multigrid makes use of the structure of the matching 
problem, i-e., regular grid spaced points2, while the multire- 
solution makes use of the image resolution. Both structures can 
been viewed from the scale-space point of view (see, e-g., Witkin 
(1983), Lindeberg (1990), and Lindeberg and Eklundh (1990)). 
Objects and image structures have scales. At large (course) scale, 
dominant objects or image structure can be detected more eas- 
ily, while at finer scale more detailed objects or image structure 
can be detected. The multigrid structure of the matching points 

2Note here we do not use the multigrid algorithm, but rather, the 
structure of multigrid. So it may be bgtter to say that the multigrid 
structure is a multiresolution representation of the neometric object sur- 
face. See the late discussion ofscale-space. 

- 
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data level 1 3 x 3 level 2 5 x 5 level 3 9 x 9 level 4 17 X 17 total one-level 17 x 17 red. 
set it CPU it CPU it CPU it CPU CPU dp it. CPU dp (%) 

Aa 5 3" 6 8" 4 22" 4 2'30" 3'33" 0.73" 17 1 1.31" 42.28 

is a scale-space representation of the geometric surface of the 
object. Multiresolution of image is a scale-space representation 
of image gray values. In both scale-space from course to fine, 
we treat dominant objects first, and then use this information 
as constraints to guide the matching of fine detailed objects. 

The concepts of multigrid and multiresolution and their ap- 
plications in image analysis are not new to us, but the combi- 
nation of them developed in this paper is a new approach. 
Multigrid methods have been used in image analysis by Ter- 
zopoulos (1986). The use of multiresolution structure in image 
analysis is too numerous to list here. Our approach, in general, 
is an optimization problem combining similarity measure and 
smoothness constraints. The hierarchy is formulated in double- 
scale-spuce, i-e., in geometrical surface scale-space and image 
resolution scale-space. Some other similar approaches, but not 
quite the same, can also be found (see, for example, Poggio et 
al. (1985)). Poggio (1985) proposed an approach for stereo 
matching utilizing regukrization. This algorithm has been im- 
plemented by March (1988). In this approach, the similarity is 
as a penalty functional and the smoothness is as a stabilizing 
functional in the context of regularization. Horn (1986) also for- 
mulates the matching problem in a very similar way. Both these 
approaches have not been implemented in scale-space. Witkin 
et al. (1987) also formulated the problem as an optimization of 
energy functional. Here the energy functional consists of two 
parts: similarity functional, which is a normalized aoss-corre- 
lation, and smoothness functional. They solve the problem by 
continuation method over scale-space to avoid local minimum. 
Barnard (1989) described another approach - stochastic optim- 
ization. There the problem is posed as computational analogy 
to a thermodynamic physical system, i.e., simulated annealing. 
Barnard used hierarchy in image resolution scale-space. 

The structures and algorithm developed in this investigation 
have some generalities and can be generalized to many other 
image analysis problems, where the problem is formulated in 
such a way that the points in question are located in a regular 
grid form. For example, to the object space correlation problem 
by, e-g., Wrobel (1987, 1988), Helava (1988), and Ebner et al., 
(1988). Here the matching is performed in object space directly 
on two surfaces, the geometric surface and the radiometric sur- 
face. The surfaces are reconstructed discretely on regular grid 
points over a large area. This is similar to the multipoint match- 
ing but in object space and with two surfaces. The multigrid 
and multiresolution structures as well as the combination of 
them can be straightforwardly applied to the problem. 

The currently obtained results are encouraging, but there are 
still possibilities to improve the strength and efficiency of the 
method. As we pointed out earlier, we did not make full use 
of the multigrid methods in this investigation due to the char- 
acteristics of our problem. A further consideration would be the 
full use of the multigrid method in the matching problem. For 
this, matching through regularization (see, e.g., Horn (1986) 
and March (1988)) is a typical example, where the multigrid 

could be fully exploited to achieve high computational effi- 
ciency. This high efficiency has been demonstrated by Terzo- 
poulos (1986) by applying the multigrid method to other similar 
image analysis problems than matching. 

So far we have not given much consideration to the problem 
of computational efficiency of matrix computation, in particular 
the matrix inverse, which is a considerable part of the compu- 
tation. In this aspect, the array algebra techniques developed 
bv Rauhala 11987) are verv attractive. This technique subdivides 
adlarge ma& inio severh small submatrices, anh then inverts 
them. As the computational operations of inverting vary as O(n3) 
(n is is the dimension of the matrix), this technique can reduce 
computational work incredibly. How this technique can be used 
in the multipoint matching case, or in general in image match- 
ing, needs to be investigated. 

The main conclusions we can draw from this study are that 
the multipoint matching formulated in multigrid and multire- 
solution structure is a very efficient approach for stereo match- 
ing, in particular, for surface reconstruction and DTM generation. 
The hierarchy improves efficiency dramatically. It also improves 
reliability of the matching compared with single level matching. 
Our method has high flexibility and generality and can be ap- 
plied to many other similar problems in photogrammetry and 
computer vision. 
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1992 ASPRS AWARDS PROGRAM 

The Society has significantly expanded its awards program beginning in 1992. The ASPRS Awards Manual, printed in the January 
1991 issue of PEBRS (also available through headquarters) lists criteria for all new awards: Outstanding Service, Merit, Certificate for 
Meritorious Service, Honor, and Fellow. Nominations for these awards, plus the Honorary Member Award are open to deserving 
candidates in the public or private sector. 

Because of the August 1992 ISPRS Congress, the ASPRS Awards will be announced at the Spring Annual Meeting in Albuquerque, 
but presented at a special Awards Convocation at the August meeting so that all visitors to the ISPRS Congress may attend. 

If you have candidates, please send them to Headquarters. You can help to make the ASPRS Awards Program a success! 


