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ABSTRACT: We present a method to automatically compute the orientation of digital stereopairs. The system that we 
developed is based on feature-based, hierarchical matching combined with precise point determination. We use the 
LOG operator to determine zero crossings which we then match in the $-s domain. No assumptions are required 
because the $-s representation is rotation and scale invariant. In order to obtain maximum possible accuracy for 
corresponding points, a precise point matching scheme is employed. With the approximations obtained from matching 
zero crossings, corresponding points with sub-pixel accuracy are determined by using the Forstner interest operator 
combined with area correlation. The orientation parameters are computed by a rigorous bundle adjustment with blunder 
detection. The detailed description of our approach is followed by an example. Finally, we summarize results obtained 
with four different stereopairs. 

INTRODUCTION ing. assumptions and constraints. Previously, we reported about 

W r r ~  THE EMERGENCE OF DIGITAL PHOTOGRAMMETRY, ex- 
pectations are raised that photogrammetric processes may 

be automated. A fundamental process is the orientation of a 
stereopair. Not much has been reported about determining the 
orientation parameters automatically. It is virtually always as- 
sumed that this step is performed by a human operator at an 
earlier stage. In machine vision applications, it is the basic as- 
sumption that the cameras are mounted in parallel and are per- 
pendicular to the base, rendering images of epipolar geometry. 
That is, scan lines are thought to be epipolar lines. 

Most of the stereovision algorithms are based on epipolar 
geometry and are quite sensitive to this condition. Initially, the 
cameras of a moving robot may be perfectly aligned, but this 
condition is likely to change i~ time. We argue that the camera 
positions should be periodically surveyed and, if necessary, 
readjusted. Obviously, this can best be performed with an au- 
tomated orientation. By that, we mean the determination of the 
camera parameters with respect to an object space. 

We do not differentiate between relative and absolute ori- 
entation as we are taking a more general view and determine 
the camera parameters with respect to an object space. This 
requires eliminating the datum defect by introducing some 
common information between image and object space. If the 
object space is identical to the ground control system, the com- 
mon information is usually the control points. If the object space 
is an arbitrary coordinate system, usually called the model sys- 
tem, then a variety of possibilities exist to eliminate the datum 
defect. We leave it to the particular application on how common 
information is introduced. 

The problem of automatic orientation can easily be formu- 
lated. Select a sufficient number of points in one image and find 
the corresponding points in the other image, followed by an 
adjustment with the orientation elements as parameters. The 
crucial step is obviously to find the corresponding (conjugate) 
points. This task is accomplished by image matching methods, 
such as gray level correlation or feature matching. As long as 
good approximations (a few pixels) are available and the gray 
levels yield enough signal within the correlation windows, tra- 
ditional correlation methods Hark well. 

In this paper we present a general solution that does not 
require approximations or is not otherwise limited by introduc- 

so&e asp6cts of our approach (e.g., various matching proce- 
dures in Greenfeld and Schenk (1989) or about preliminary re- 
sults in Greenfeld (1987). The purpose of this paper is to present 
the current status in a coherent fashion, and to report about 
results and experiences gained over the last three years. 

In the next section we provide the reader with some back- 
ground information concerning the overall framework, and 
concepts used. In the third section we explain how initial ap- 
proximations are found by employing the scale space concept 
and edge matching. Next, the problem of how to determine 
points with sub-pixel accuracy is addressed. For this task we 
use interest points and gray level correlation. Finally, we report 
about results obtained with several digitized aerial stereopairs, 
followed by conclusions and future research. 

BACKGROUND 

The automatic orientation is the first module of an automated 
mapping system whose conceptual schema is depicted in Figure 
1. The major building blocks reflect the computer vision para- 
digm with three distinct levels. On every level specialized mod- 
ules process image information and pass it to the next level 
where it is analyzed and integrated. Often, the result of indi- 
vidual modules may not be robust, but their combination is. 
That is, the synergism of multiple information arising from dif- 
ferent image modules improves the robustness. 

Figure 1 should not be confused with the architecture of a 
real system, say a vision work station, where much more care 
regarding efficient communication between modules and im- 
plementation of hardware and software components is re- 
quired. The concept serves more as a master plan to coordinate 
our experiments which are being performed on all levels. 

In the context of the conceptual mapping system, the orien- 
tation module serves three purposes. Obviously, the main pur- 
pose is to establish the relationship between image space and 
object space. After having determined the orientation parame- 
ters, the images are then resampled to epipolar geometry. An- 
other important result is a first approximation of the surface. 
We determine many (hundreds) of well distributed correspond- 
ing points whose object coordinates can be used to interpolate 
a digital elevation model (DEM). This approximate DEM plays an 
important role in the surface reconstruction module (see Schenk 
et al.. 1990). 

~ i & e  2provides an overview of the orientation module. The 
*Currently with Holcomb Research Institute, Butler University, ~n- first part is concerned with determining approximation, fol- 
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FIG. 2. Overview of orientation module. 
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sible. Clearly, the first task is more challenging as we only make 
weak assumptions about the geometrical configuration of the 
stereopair. 

Newer theories about the impressive stereo vision capability 
of the human visual system suggest that edges are extracted 
and matched at various scales. Results obtained from small scales 
constrain the matching process on larger scales. Representing 
and processing an image at different scales and integrating the 
results on subsequent finer resolutions (larger scales) has gained 
much interest in computer vision.' Our approach follows this 
paradigm. The representation of an image at different scales is 
obtained by smoothing it with filters of varying spatial extent. 
Smoothing and detecting edges is combined with the Laplacian 
of Gaussian (LOG) operator. 

We begin with building an image pyramid from original im- 
ages by filtering it with a Gaussian operator. Matching edges 
obtained on the coarsest level and finding corresponding points 
are probably the most crucial steps of the entire orientation 
module. Thus, we explain the procedure at some length in the 
next section. 

The other tasks are concerned with tracking the initial posi- 
tions through the image pyramid. In windows centered around 
the matched vertices, interest points are determined and matched 
to sub-pixel accuracy. Their matched positions serve as new 
window centers on the next level in the image pyramid. Note 
that, up to the identification and measuring of control points, 
all steps are performed automatically. We use Intergraph's In- 
terpro 3055 workstation to compute, to display results, and to 
measure control points. 

COMPUTING INITIAL APPROXIMATION 

Objects represented in the image space vary enormously in 
size and extent. In order to identify and qualitatively describe 
events in the object space, it is necessary to evaluate and com- 
bine the image at different scales, a procedure known as the 
multispace technique. Smoothing the original image with a low 
pass filter of varying size results in images at various scales. 
The filter size is a parameter of the scale space of the image 
function. The Gaussian filter has some interesting properties 
that make it unique for this smoothing process. Furthermore, 
because object space events are implicit in the image, function 
primitives are uskd to help make such events explicit. Originally 
proposed and described in M a -  (1979), the zero-aossings of 
the Laplacian of Gaussian (LOG) operator combine the Gaussian 
smoothing filter with the Laplacian intensity change operator 
into a very popular method of describing the image function in 
the scale space. 

In the disaete case of the multiscale approach, the sizes of 
the smoothing filter, chosen a priori, define the scale levels. The 
choice is somewhat arbitrary. We exploit the scale-space tech- 
nique for finding corresponding points on a coarse level and 
tracing them through the scale space. 

We have implemented the multiscale concept by first smooth- 
ing the original image with Gaussian filters of various sizes. 
The corresponding images are also called an image pyramid, a 
term we have adopted throughout this paper. The second step 
then involves convolving the image pyramid with the LOG op- 
erator. Obviously, the same result would be obtained by con- 
volving the original image with a LOG with larger w. It should 
be noted that the representation of the disaete scale space as 
an image pyramid is strictly an implementation question. 

Most of our digitized aerial photographs have a resolution of 
4096 by 4096 pixels. At the top of the pyramid the image is 
usually represented by 512 by 512 pixels. As indicated in Figures 
2 and 3, edges are matched and corresponding points are de- 
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FIG. 3. Image pyramid as a representation of the discrete scale 
space. The figure also illustrates the concept of tracing corre- 
sponding points through the pyramid by computing new corre- 
sponding locations within the windows on every level. 

termined on the coarsest level (matched vertices of segmented 
zero-crossings). The positions of matched vertices serve as cen- 
ters of windows on the next level (1024 by 1024 pixel resolution). 
Here, interest points are determined and matched which in turn 
are centers of windows on the next Iwel. In this fashion, the 
original matched vertices are traced through the pyramid and 
the positions of corresponding points are refined on every level 
(Figure 3 illustrates that concept). 

With a standard deviation of 1 pixel for matched vertices, the 
maximum error will be -c 3 pixels. Thus, the centers of windows 
on the next level may be off by 2 6  pixels at most. In order to 
assure 80 percent overlap between two corresponding win- 
dows, their size should be 37 by 37 pixels. 

Edges correspond to abrupt light intensity changes in the 
image. The subject of determining edges is intensively discussed 
in computer vision, and many operators with different properties 
have been proposed. For reasons explained above, we use the 
LOG operator in most of our experiments. 

We briefly summarize. The Gaussian filter, 

is ideal because it optimizes the two conflicting constraints of 
being limited in the spatial and frequency domain. The second 
derivative of the smoothed image indicates abrupt intensity 
changes. The two operations, that is smoothing and taking the 
second derivative, can be combined. Taking the second derivative 
of the Gaussian G(x,y), we obtain in Equation 2 the definition 
of the LOG operator; i.e., 

FIG. 4. Cross section through LOG operator. The 
width of the central lobe, w, determines the degree 
of smoothing. 

Figure 4 shows a cross-section of the LOG operator. From 
Equation 2 we conclude that the width of the central lobe, w, 
is related to a, the parameter of the Gaussian filter, by w 
= 2fl a. 

Convolving the image Z(x,y) with the LOG, we obtain the 
convolved image 

Edges are found at locations where C(x,y) = 0, called zero 
crossings. The average distance between neighboring zero 
aossings is approximately w. 

We now address the question of the initial w, with which the 
top level of the image pyramid is to be convolved. The selection 
is motivated by the desire to obtain just enough zero crossings 
that can be unambiguously matched. Suppose the coarsest scale 
corresponds to an image resolution of 512 by 512 pixels. In our 
implementation we have chosen a truncation radius of the LOG 
operator of 1 .8~.  Coefficients outside the radius are smaller 
than 1/204Sth of the maximum coefficient in the center. With w 
= 15 pixels, we may expect (512 - 2 x 27)115 = 30 zero aossings, 
taking the border effects into account. Figure 9 confirms these 
statistical considerations. Assuming that one-third of zero 
aossings can be matched, we will obtain over 100 corresponding 
points. 

Because of the discrete nature of data representation, the 
determination of zero crossings is not without problems. We 
have developed a method which conceptually corresponds to 
intersecting the convolution surface with a horizontal plane at 
convolution value zero as shown in Agouris et al. (1989). This 
assures not only closed contours but also correct connections at 
T-junctions. Starting with a seed pixel, the neighborhood is 
expanded until a sign change occurs. Pixels on the boundary 
are flagged as zero crossings. We use the extended Freeman 
chain-code representation to avoid the discontinuity from code 
7 to code 0. 

In most feature-based methods the matching is performed in 
identical scan lines, assuming epipolar geometry. Matched pixels 
of neighboring scan lines are then checked for continuity. 
However, digital stereopairs are not in epipolar geometry, that 
is, corresponding points are not in scan lines. Thus, we attempt 
to match entire zero crossings as proposed, for example, in 
Schenk and Hoffmann (1986). 

A closer examination of Figure 9 reveals that zero crossings 
in both images are similar in shape, but may be differently 
connected or may be only present in one image. Therefore, the 
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problem of finding corresponding edges must be formulated 
quite general. For a set of edges L = L,,. . . ,L, in one image 
find in set R = R,,. . . ,R, of the other image matching edge 
segments S = {S$J with Sj E L and S, E R. It is important to 
note that neither the beginning nor the end of edges can be 
assumed to be identical. 

The matching criteria are similar shape, similar convolution 
gradients, and certain consistency constraints in terms of location 
in both images. What are reasonable primitives suitable for inexact 
shape matching, independent of rotation and scale differences 
in both images? 

To that end, we transform the zero crossings into the $-s 
domain. It is not possible to repeat the entire development here, 
but we will attempt to touch on salient points. The reader is 
referred to more detailed descriptions provided in Li and Schenk 
(1990a). 

Representation of Edges in $ - s Domain. The $- s representation 
of a line is a function a = Ns) where the length s is the parameter 
of the tangent $. The function a is known as the $-s curve 
(see Ballard and Brown, 1982). Some $-s representations use 
the curvature. Using the tangent proved much more robust in 
our application. 

In the chain-code representation of the edges, s corresponds 
to the number of pixels. The curvature is the difference between 
neighboring chain codes, and the tangent amounts to the sum 
of differences. 

The following properties of the JI - s representation prove 
advantageous in matching edges (compare also Figure 5): 

The representation is invariant with respect to the position in the 
original x,y domain. More importantly, it is rotation invariant. 
Degree of original line is reduced by one. Straight lines are 
represented as horizontal straight lines, circles as straight lines 
with the slope being proportional to the curvature. 
Vertices of straight lines cause discontinuities in the 4-s curve. 
Symrneby of $-s curve if the sequence of the original curve is 
reversed. 

The most important advantage of the $-s domain is certainly 
the fact that it reduces the matching to a one-dimensional 
problem, making an otherwise almost intractable problem 
solvable. 

Matching Edges in $-s Domain. The edges represented in the 
$- s domain are now approximated by polygons. Vertices indicate 
changes in curvature. This piecewise linear approximation 
corresponds in the original x,y domain to a piecewise circular 
approximation where vertices would be found at positions of 
large curvature. Changes in curvature convey more information 
and are more meaningful contrasted with large curvatures. 

Edges of similar shape are characterized by similar vertices. 
That is, the angles as well as the orientation are similar. Let P,. 
be vertex j of edge Li in one image. The first stage is concerned 
with finding all vertices in the other image with similar angles 
and orientations, resulting in a set of candidate matches M = 
M,, . . ., Mi,, for every vertex. 

The next steps in our matching scheme are governed by the 
following considerations: 

FIG. 5. Lines and curves are shown on the left in the x-y coordinate 
system and on the right as the (I. - s representation. 

(1) For wery vertex Pg there exists only one true match M, assuming 
the surface is continous. 

(2) For the same reason, the x- and y-parallaxes of true matches 
must be within limits. 

(3) In case of several plausible matches, the one with maximum line 
consistency is chosen. 

The second constraint is implemented by a two-dimensional 
histogram of the x- and y-parallaxes. True matches are clustered 
around a point, the average model parallax. The size of the 
cluster in the x-direction is a function of the topography (elevation 
differences) while the size in the y-direction depends largely on 
the orientation parameters. This simple but rather effective 
approach eliminates the majority of wrong matches but preserves 
all true matches. 

The third constraint deals with global consistency. Suppose 
we have several plausible matching candidates for vertex Pij. 
The neighboring vertices with their matching candidates are 
now examined. We would select those matching candidates 
which belong to the same edge and are somewhat consistent 
in their sequence. 

This method of inexact matching is further complicated by 
the fact that corresponding edges are not necessarily segmented 
in the same way in both images. Vertices may be at different 
locations and their number may be different too. The result of 
the matching procedure is a list of matched vertices. Figure 10 
depicts the matched zero crossinns. 

in summary, our matching metGod is independent of rotation 
differences between the two hazes.  Our experiences indicate 
that this method may be quite"useful for iolving matching 
problems in other applications, such as registering digital images 
to a map or to other images. 

POINT DETERMINATION TO SUB-PIXEL ACCURACY 
Theoretically, it is possible to use the matched zero crossings 

as observed entities for the orientation. In that case, the colli- 
nearity model would have to be extended to cope with lines 
instead of points. A bundle ray, for example, would correspond 
to a surface defined by the projection center and the zero cross- 
ing (sequence of pixels in the digital image). The reader should 
bear in mind that individual pixels of matched zero crossings 
do not correspond because the images are not registered in epi- 
polar geometry. 

In our system, the matched zero crossings serve as approxi- 
mate locations for determining corresponding points as accu- 
rately as possible. From the matching procedure described in 
the previous section we have a set of matched points which 
correspond to maximum changes in curvature of zero crossings. 
These points define centers of windows within which interest 
points are computed monocularly. The next step is concerned 
with determining which of the interest points are in fact corre- 
sponding (interest point matching). Finally, sub-pixel accuracy 
is computed for the matched interest points. 

The procedure requires that the windows refer to the same 
object patch. How close are the matched zero-crossings points 
to corresponding points? It is well known that zero crossings 
are not accurately located, particularly at positions of sigruficant 
curvature. Here, the basic assumption of infinitely extended 
straight edges is violated most. Also, the larger the central lobe 
of the LOG operator, the larger the deviations from object con- 
tours. However, the displacements are similar in both images, 
because the image function does not change a great deal, except 
perhaps in areas of occlusions. Our experiments confirm that 
the majority of matched zero-crossings points are within a few 
pixels of the corresponding location. In fact, when performing 
a relative orientation with matched vertices, all points that ex- 
ceed a y-parallax of 2 pixels are rejected. This assures that image 
patches centered around matched vertices sufficiently overlap 
(see also Figure 3). 



ORIENTING DIGITAL STEREOPAIRS 

1 DETERMININQ AND MATCHINQ ~NTEREST POINTS 

We use the interest operator proposed by Forstner (1986). The 1 operator determines comer points in zero crossings in the 
1 following fashion: 

1 with fx, fy the first partial derivatives of the image function f(x,y). 
The solution is constrained by the request that the error ellipses 1 should be close to a circle and should be as small as possible. 
The reader is referred to Forstner (1986) and Li and Schenk 
(1990a) for more details. 

The interest operator computes several points in windows of 
37 by 37 pixels. We turn now to the problem of determining 
corresponding interest points. 

At the outset we have two sets of interest points, {L,, L, . . ., 
L,} and {R,, R, . . ., RJ, corresponding to the windows in the 
left and right image, respectively (see also Figure 6). Every 
matched pair must satisfy the following conditions: 

The x- and y-parallaxes cannot exceed certain threshold values. 
That is xq - XR c x, and y,, - yR c y-. 
For points satisbg the above req&ements, the cross-correlation 
factor of gray levels of a subwindow, size 5 by 5 pixels, is computed. 
The pair with the highest correlation factor is accepted as the 
matching pair. 

The result is a set of matched interest points. In our example 
of Figure 6 we find L, matched with R,, 5 with R, and L4 with 
R, No acceptable match was found for L, L, R,, R, &. 

Finding the precise location of corresponding points is achieved 
in two steps. First corresponding pixels are found at locations 
of maximum correlation. Then sub-pixel accuracy is computed 
by interpolating correlation values in a 3 by 3 window. 

Suppose we are concerned with the first matching pair L,, 
R,. The corresponding position to L,, Rs, may be off from the 
position of R, by a few pixels. The correlation coefficients for 
an area of 7 by 7 pixels, with R3 at the center, is computed, 
based on a 5 by 5 correlation window. Figure 7 illustrates the 
concept for pixel -3, 2, assuming a local coordinate system 
with R, as origin. The maximum correlation coefficient within 
the 7 by 7 window is considered to be the corresponding pixel 
RF, to L,. 

by determining the maximum of the surface constructed by the 
correlation cdcients  cc in a 3 by 3 window around RS. Equation 
5 is used to approximate cc: i-e., 

The coefficients a, - a, are obtained by a least-squares 
adjustment of the second order two-dimensional orthogonal 
polynomial. In the interest of brevity, we skip the detailed 
derivations and refer the interested reader to Li and Schenk 
(1990b) and Haralick (1984). The sub-pixel location x,,, y,, is 
obtained from Equations 6 and 7: i.e., 

All corresponding points are now checked for global 
consistency in a relative orientation with blunder detection. All 
accepted points are transferred to the next level of the image 
pyramid where they serve as initial approximations. The 
procedure is repeated until the final level with the highest 
resolution is reached. 

Finally, we would like to comment on the use of interest 
points. Because they are not corresponding points per se, one 
could argue not to use them. After all, corresponding points 
are found by gray level correlation in an area of 37 by 37 pixels 
centered around the matched vertices of zero crossings. For one 
thing, matched interest points are better approximations than 
are vertices. But more importantly, interest points signal locations 
of significant changes in gray levels. In turn, more reliable 
correlation coefficients can be expected. 

RESULTS 
In this section we present experimental results. All the ster- 

eopairs we have been using are digitized aerial photographs. 
The geometrical relationship between aerial photographs and 
their digitized versions, the pixel image, is established by a 
projective transformation. The eight transformation parameters 
are determined by a least-squares adjustment with reference 
points known in both images. We used fiducial marks as ref- 
erence points and, in model "Campus," reseau marks. De- 
pending on the aerial camera used, the fiducial marks are printed 
at specific locations, and their shape is unique, too. Therefore, 
it is not difficult to develop an automatic procedure to detect 
and subsequently compute the precise location of the fiducial 

"~inali~,  the sub-pixel location RgUb is found within pixel Rz marks- 
The stereopair, shown in Figure 8, is part of a block covering 

the campus area of The Ohio State University. The photoscale 
is approximately 1:4000. We used our reseau camera RMK-AR 
from Zeiss, equipped with a wide-angle cone. The diapositives 

FIG. 6. Windows of 37 by 37 pixels, centered around matched vertices. 
The interest operator detected five points in the left window and six in 
the right window. FIG. 7. Matching interest points to sub-pixel accuracy. 
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were scanned by The Intergraph Corporation, using their new 
scanner with a pixel-size resolution of 30 micrometres. To be 
consistent with the other models, however, a resolution of only 
60 micrometres was used. This corresponds to 4096 by 4096 
pixels. 

We measured 25 well distributed reseau points (crosses) on 
Intergraph's Interpro 3055, and determined the interior orien- 
tation of the pixel image with a projective transformation to an 
accuracy of one third of a pixel. 

Figure 9 shows the zero crossings obtained with a LOG, width 
w = 15 pixels. The matched zero crossings are displayed in 
Figure 10. The matching process, descri%ed in the section on 

edge detection, rendered 179 vertices which were checked in a 
relative orientation for consistency with the cohearity model. 
With a threshold value of 1 pixel, 69 points were rejected. The 
standard deviation of the remaining 110 points is one pixel or 
half a millimetre. Note that this procedure is only performed 
on the top level of the image pyramid (512 by 512 pixels). 

In Figure 11 we show a window of 37 by 37 pixels from the 
2048 by 2048 image pyramid, left and right image. The windows 
are centered around matched vertices. Also, the interest points 
are shown as detected with the Forstner interest operator. 
Matched interest points on this level of the pyramid serve as 
new window positions on the 4096 by 4096 pixel resolution 

FIG. 8. Model "Campus." Photoscale approximately 1:4000 (reduced to approximately 1:11,400). 

FIG. 9. Zero crossings obtained with a LOG operator, w = 15 pixels on the coarsest level of the image pyramid (512- by 512-pixels resolution). 
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FIG. 10. Matched zero crossings from Figure 9. 

level. The matched points on all levels are always checked for 
blunders. 

Finally, the exterior orientation of the two images is deter- 
mined by a rigorous bundle adjustment. The program copes 
with any number of corresponding points. The reduced normal 
equation matrix contains only the exterior orientation parame- 
ters. The simple, but robust, blunder detection module takes 
advantage of the large redundancy. The exterior orientation pa- 
rameters are relatively stable, even in the presence of blunders. 
In a first pass, the orientation parameters are determined. Now, 
every point is computed by spatial intersection and the resid- 
uals are checked with a tolerance that is a function of the stan- 
dard deviation obtained by the adjustment. Points exceeding 
this tolerance are flagged as blunders and do not take part in 
the following adjustment. Howwe, blunders are checked again 
with the new orientation parameters. 

We identified and measured the control points manually on 
the Interpro 3055 with an estimated accuracy of one third of a 
pixel, or 20 mimmetres. For the campus mapping project, mostly 

natural points were selected for control points. The accuracy is 
approximately 2 cm. The adjustment is performed with photo 
coordinates obtained from the pixel image by using the inverse 
projective transformation. As shown in Table 1, the standard 
deviation is 0.5 rniaometres for x and 4.2 micrometres for y. 

As a final quality control test, we placed the same model on 
the Zeiss PC1 analytical plotter, performed an absolute orien- 
tation, and visited all the points computed automatically. An 
experienced operator measured the difference in z between the 
points and the ground. That is, the x-parallax, which cannot be 
determined in the bundle adjustment, was recovered. The RMS 
computed from the measured differences is 5.1 miaometres, 
corresponding quite nicely to the standard deviation in' the y- 
direction from Table 1. 

CONCLUSIONS 
We have presented the automatic orientation, which is the 

first module of a conceptual system to produce maps automat- 
ically, and have elucidated some principles of our approach. 

FIG. 11. Windows of 37 by 37 pixels (white 
squares) centered around the matched 
vertex pair highlighted in Figure 9. The 
windows are from the image pyramid, res- 
olutlon 2048 by 2048 pixels. The two 
matched Interest points serve as centers 
for windows on the next level of the image 
pyramid. 
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TABLE 1. RESULTS OF AUTOMATIC ORIENTATION PERFORMED ON FOUR 
DIFFERENT STEREO MODELS. ALL MODELS HAVE BEEN DIGITIZED WITH A 

RESOLUTION OF 4096 BY 4096 PIXELS. 
- -  

Number 
-- 

o Iuml Control Photo .. 
Model of Points Blunders x Y Points Scale 
carn~us 112 12 0.5 3.5 6 1 : 4,000 
~ u n i e r - ~ i ~ ~ e t  112 15 0.2 3.3 4 1 : 80;000 
Munich 88 11 1.4 3.9 6 1 : 3,800 
Daun-Mehren 121 13 1.5 3.7 6 1 : 12,000 

The basic notion is to determine approximations by exploiting 
scale space methods and matching entire edges, in our case zero 
crossings. It is important to note that the method does not de- 
pend on the LOG operator. That is, edges obtained with other 
operators can be used instead of zero crossings. In our experi- 
ences, matching entire edges as opposed to more traditional 
point matching methods substantially increases the robustness 
of the solution. On the other hand, it is more difficult to im- 
plement. In fact, edge matching presented the most difficult 
task, and there is still room for improvement. Currently, we 
are exploring the potential of graph matching for the task of 
edge matching. 

While matched edges are more reliable than matched points, 
they are less accurate. Clearly, the highest accuracy is obtained 
by correlating gray values of small image patches, assuming 
that the image patches cover the same surface patch, are not 
too grossly distorted, and yield a reasonable signal. We have 
co~hined  the advantages of edge matching with gray level cor- 
relation in a hierarchical approach. The results, which we have 
obtained from several stereopairs of varying scale and ground 
coverage, are encouraging and evidence seems to be accurnu- 
lating in the right direction. We see great promise in this ap- 
proach and what it will bring to bear on future work. 

Future experiments will involve convergent photography and 
close-range applications to test the limits of edge matching. We 
expect that our method will work as long as the edges in both 
images are still similar in shape. If this does not hold, for ex- 
ample in cases of extreme base-height ratio or large convergent 
angles, objects (and their boundaries which are detected as edges) 
are imaged very differently. Matching, then, could no longer 
rely on similar edges, but would have to include image seg- 
mentation, their classification, and matching. 

Idenbfyhg and measuring control points as necessary for the 
orientation with respect to the ground control system is pres- 
ently performed manually. Some of our research efforts are aimed 
towards finding control points automatically by using associa- 
tive memory techniques and neural networks. From admittedly 
limited experiences, it appears that control points whose shape 

is similar to a pattern stored in a library can be located, even in 
a noisy background as shown in Al-Tahir et  al. (1990). 
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43rd Photogrammetric Week 
Stuttgart, 9-1 4 September 1991 

This internationally-recognized "vacation course in photogrammetry" has been held at Stuttgart University since 1973. Because Professor Dr.- 
Ing. Friedrich Ackermann, one of those responsible for the scientific program, is to retire soon, this 43rd Photogrammetric Week will be his 
farewell seminar. Essential lines of his work have been chosen as the main topics for the meeting 

GPS for Photogrammetry Digital Photogrammetric Image Processing Photogrammetry and Geo-Information Systems 

Lectures and discussions will be held in the mornings. Technical interpreters will be available for simultaneous translations into German or 
English. Demonstrations are scheduled for the afternoons. For further information, contact: Universitat Stuttgart, Institut fur 
Photogrammetrie, Keplerstrasse 11, D-7000 Stuttgart 1, FRG, telephone 0711/121-3386 or FAX 0711/121-3500. 


