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ABSTRACT: A modification of the direct linear transformation (DLT) technique for solving the collinearity equations is 
proposed. The iterative linear transformation (KT) procedure involves incorporating photo-coordinate observations of 
non-control points in the least-squares adjustment leading to the determination of the calibration parameters. The 
reconstructed object-space coordinates so obtained in a subsequent adjustment are then treated as "approximate" 
control and the computation is repeated until convergence is obtained. In a study utilizing check-point control, the 
algorithm reduced the average root-mean-square (RMS) error in the conventional DLT solution from 3.3mm to 0.9mm 
in 16 iterations. This equates to a spatial resolution of 0.047 percent (about 1 part in 2130) in object-space dimensions. 
Applications to two test surfaces requiring reconstruction of a much larger number of spatial points yielded similar 
reductions in average RMS errors in 50 and 140 iterations, respectively. 

INTRODUCTION 

I N RECENT YEARS the direct linear transformation (Abdel-Aziz 
and Karara, 1971), 11-parameter (Bopp and Krauss, 1978), 

self-calibration (Fraser, 1982), and bundle adjustment (Gran- 
shaw, 1980) methods have all been proposed as competing tech- 
niques for solution of the collinearity equations in close-range 
photogrammetry. 

Fraser (1982) has demonstrated that relative accuracies of 
1:10,000 and higher in the object space an be achieved with the 
self-calibration / bundle adjustment technique as opposed to 
1:6,000 for a direct linear transformation (DLT) type procedure. 

Apart from its potential for greater accuracy, the bundle ad- 
justment method holds a number of advantages over competing 
DLT type solutions: 

Flexibility resulting from an ability to combine photogrammetric 
and surveying observations simultaneously in the adjustment. 
Lack of necessity to provide highly redundant object-space con- 
trol. 
Modeling of systematic errors such as lens and film distortion 
without recourse to making specific additional observations for 
this purpose. 
Strong agreement between estimates of precision as given by sta- 
tistical indicators such as root-mean-square (RMS) errors and ac- 
curacy determined with respect to check-point control. 

The main disadvantages relate to the computational expense 
required to achieve a solution in terms of time and storage, and 
the need for initial approximations to unknown parameters. 

Conversely, the DLT approach offers the following attractions: 
Substantially less computer resources are required. 
Being a direct method, no initial approximations are needed. 

The disadvantages of the DLT method are that it depends on 
the provision of a large redundant control-point configuration 
(particularly if high accuracy is demanded), and it does not lend 
itself to rigorous statistical analysis because standard errors quoted 
are often over optimistic (Fraser, 1982). The latter observation 
arises because the DLT equations contain 11 independent pa- 
rameters compared to nine in the original collinearity condition. 
In general, this approximation vidates orthogonality of the 
transformation between object space and image coordinate svs- 
tems implicit in the collinearity iestraint, thu i  resulting in s ia-  
tial reconstruction errors. This anomaly was later rectified by 
Bopp and Krauss (1978) who placed the method on a more 
rigorous mathematical footix!g by introducing two nonlinear 
constraints between the 11 DLT parameters. More recently, Hatze 
(1988) has shown that incorporation of at least one of the con- 

PHOTOGRAMMETR~C ENGINEERING & REMOTE SENSING, 
Vol. 57, No. 7, July 1991, pp. 913-919. 

straints in linearized form leads to a significant reduction in - 
reconstruction errors. 

It has been pointed out, however, that, in the presence of a 
"healthy degree" of redundant control, the DLT and ll-param- 
eter solutions can be assumed equivalent for practical purposes 
(Granshaw, 1980). Therefore, in applications where the provi- 
sion of a significant number of accurately coordinated control 
points presents no appreciable problems, adoption of the DLT 
technique need not lead to any significant loss in accuracy. For 
this reason the DLT method has proved particularly appealing 
in biomechanical applications of close-range photogrammetry 
(Shapiro, 1978; Van Gheluwe, 1978; Alem et al., 1978; Miller et 
al.. 1980). .. . , - - -  , - 

In this paper, therefore, we first review the DLT approach and 
the limitations in the original computer implementation of it 
(Marzan and Karara, 1975). We then preseit a modified algo- 
rithm which addresses these criticisms and improves the ac- 
curacy of the reconstruction, while still preserving the overall 
advantages of the technique. Finally, performance of the new 
algorithm is demonstrated with reference to a number of ex- 
perimental studies. 

OUTLINE OF THE DIRECT LINEAR TRANSFORMATION 
(DLT) PROCEDURE 

The collinearity condition may be expressed by the following 
equations (Marzan and Karara, 1975): 

with C, = CIA, ; Cy = C/Ay 

where X,Y,Z are the three-dimensional spatial coordinates of a 
point in space; 
x,y are the observed comparator coordinates of the image 
of the point in the photograph; 
xo,yo are the photo coordinates of the principal point; 
Xo,Yo,Zo are the spatial coordinates of the camera per- 
spective center; 
mq are the elements of the 3 by 3 orthogonal rotation 
matrix; 
C denotes the principal camera distance; 
AHA, are scale factors for the x,y comparator coordinate 
axes; and 
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Ax,Ay are the systematic errors in the comparator co- 
ordinates. 

The systematic error terms Ax, Ay can be ascribed to the non- 
linear components of symmetrical and asymmetrical lens dis- 
tortion, and take the following form: 

where x' = x - xo ; y' = y - yo ; r2 = xt2 + yf2; 
K,, K, K, are coefficients of symmetrical lens distortion; 
and 
PI, P, are coefficients of asymmetrical lens distortion. 

Abdel-Aziz and Karara (1971) rearranged the parameters in 
Equations 1 to yield the following relationships: 

where Lj, j=l, ..., 11 are the 11 DLT coefficients. 

Equations 3 are known as the DLT equations. 
Neglecting the systematic errors in image coordinates, Equa- 

tions 3 can be written as 

relating the image coordinates (x,' yl) of point i to its originial 
object-space coordinates (Xi, Yi, Z,) through the DLT coefficients. 
Thus, each known object-space (control) point yields two equa- 
tions in the form of Equations 4. Provided at least six such 
points are observed in any photograph, its calibration can there- 
fore be undertaken indirectly through the DLT coefficients; re- 
dundant control may be used to yield an overdetermined system. 
Assuming that n control points (i = 1, n) are employed, the 
resulting set of equations can be expressed in full matrix form 
as 

X, Y, z1 1 0 0  0  0  - xl'X1 -x,'Y1 -x,'Z, 

0  0  0  0  x, Y, z, 1 -yl'X, -yl'Y1 -y,'Z, 
. . . . . . . . . 
. , 

. . . . . . . . . 
Xi Y, zi 1 0 0  0 0  -x,'X, -x,'Y, -x,'Z, 

0 0  0 0  xi Yi zi 1 -y,'X, -yilyi -yi1zi 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 

X,, Y,,Z,, 1 0  0  0  0  -x,,'X,,-x,,'Y,,-x,,'Z, 

0  0  0  0  Y, y,, z,, 1 -y,,'X,, -y,'Y, -y,,'Z, 

This system has 2n-11 degrees of freedom, and conforms to 
the general form 

K - X  - r = v (6) 

where K is a real p x 9 matrix (p 3 9) of constants of rank 
41 

r is a column vector of q constants, 

X is the column vector of q unknowns, and 
v is the vector of 9 residuals, which for the exact 

solution to X are all zero. 

A solution to Equation 6 may be obtained using the principle 
of least squares as 

where W is a p x p weight matrix, the precise form of which 
for the present application may be found in Marzan and Karara 
(1975). 

The statistical errors in the above solution are usually as- 
sessed in terms of the variance-covariance matrix (Wong, 1975) 
given by 

where u,2, the variance of unit weight, is expressed as 

Thus, a solution for L. can be obtained using Equations 7 and 
8 utilizing any standard mathematical subroutine library. 

Following evaluation of the DLT coefficients LF for each of the 
m obtained images (i-e., k= 1, ..., m), the object space coordi- 
nates of the required unknown points can be determined as a 
multiray intersection problem. 

Regrouping the terms in Equations 4 in order to separate the 
unknown space coordinates (X, Y, Z) of a non-control point, it 
folIows that 

(L, - x1L9)X + (L2 - x'Llo)Y + (L, - x'L,,)Z + (L, - x ' )  = 0  

(L,-yJL,)Xf (Lg-ylLlo)Y+ (L7-ylLII)Z + (L8-Y') = O  

Let (X, Y, Z) represent the cartesian components of an un- 
known object point with image coordinates (x;, y;) and DLT 
coefficients (L,k, LZk,. . .,Lit) referred to a particular photograph 
k. Assuming that the point is imaged in m photographs (k = 
1,. . ., m), Equations 9 can be re-written in the form 

Equations 10 have 2rn - 3 degrees of freedom, and can therefore 
be solved to yield X, Y, Z coordinates for each point on the 
object surface, using a second least-squares adjustment. Again, 
the appropriate form of the weight matrix is given by Marzan 
and Karara (1975). 

The computer implementation of the above procedure, as 
presented by Marzan and Karara (1975), obtains an initial so- 
lution to Equations 5 using Equations 7 by awarding unit weight 
to all equations. The resulting set of DLT parameters is then 
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(r2)

(13)

used to yield an updated weight matrix taking account of the
consistency with which each equation fits the overall solution
according to Equation 8; Equation Z is then used to obtain a
second solution to Equations 5. A solution for the required un-
known object space points is then obtained from Equations 10
using Equation 7 in essentially the same manner.
. This.-p-r-ogram, which has apparently been used extensively

since (Miller et al., 1980; Wood and Marshall, 1985) without
modification, suffers from the following limitations:

o Photocoordinate observations of non-control points are not di-
rectly incorporated in the least-squares adjustnient leading to the
determination of the DLT and (when utilized) additional diitortion
parameters (aors). Thus, a useful source of redundant informa_
tion is wasted.

. It is a direct approximate method. Thus, there is no facilitv for
successive improvement of the obtained solution, which is there_
fore a strong function of the object space and control configura-
tion.

Modifications to the DLT procedure are now suggested, with
the aim of alleviating the above restrictions.

FORMUTATTON OF THE ILT (ITERATIVE LTNEAR
TRANSFORMATTON) METHOD

In order to-improve the performance of the existing DLT pro-
gram, the following modifications are proposed:

(1) An initial solution to the unkno*n object-space coordi-
nates through_Equations 5,7, and 10, assuming unit weight
matrices, can be readily obtained using one of the standard
mathematical subroutine libraries that are currently available.

(2) The initial solution for the unknown objecfspace coordi-
nates is then fed directly back into Marzan ind Karara's pro-
gram, along with the known control-point coordinates which
are maintained constant. Thus, photocoordinate observations
to-non-control points are used in an adjustment leading to the
solution of the calibration parameters, which has a greiter de-
gree of redundancy- Although this makds full use ofthe newly
available redundant equations involving the non-control points
and oLT parameters, it must be appreciated that the contrbl and
nol-control points have, in all probability, been surveyed to
different degress of accuracy. Nevertheless, reformulatiirg the
weight matrix as previously described automatically ensureJ that
each equation is awarded a weighting according to its consis-
tency with the previously obtained overall solution. As a con-
sequence,- a more robust solution to the object-space coordinates
of the unknown reconstructed points can'now be computed.

(3) It would then appear nitural to allow the compound
DLT solution to the object-space coordinates to serve as a bet-
ter trial approximation to ihe coordinates of the unknown
points and allow the procedure to be repeated in an iterative
fashion. In the process, a direct solution technique has been
converted into a simple iterative scheme and the DLT can be
re-christened appropriately as the ILT (iterative l inear trans-
formation) method.

The proposed modifications to the DLT scheme can be ex-
pressed more formally. When the image coordinates of all n
control points (i.e., j : 1,,. . ., rz) recorded on a given photo-
graph are substituted in turn into Equations 5, the resulting set
of 2n equations can be expressed in matrix form as

b,(xr') is the R.H.S. column vector whose elements are
a function of the observed photo-coordinates only; and
lo : (L1o,L2o, ..., Lrro) is an initial approximation to the
solution vector of the 11 DLT coefficients.

When the image coordinates of any unknown non-control point
imaged on m photographs (i.e., k=1,. . .,m), are substituted
into Equations 10 in turn, the resulting set af 2m equations can
be written similarly as

where Xo : (X,y,Z) is an initial approximation to the object
space coordinates of a typical non-control point;
[C-(xr',L0)] is the L.H.S. matrix whose elements are a
function of the observed photo coordinates of a non-
control point and the associated DLT coefficients of the
corresponding photograph; and
d-(x1',L0) is the R.H.S. column vector whose elements
are a function of the above stated parameters.

The trial solution Xt (i:0,1,. .) upon substitution into Equa-
tion 11, yields an updated set of DLT coefficients Lt,1 (i:0,1,,. . .),
which in turn produces a revised approximation to the object
space coordinates Xt*l utilizing Equation 12. The iterative pro-
cedure is repeated until a converged solution is obtained.

Algorithmically, for j = 1,. ..,r2 control and j : n*7,. . .,N
non-control points imaged on each photograph, the scheme can
be represented by

[C^(xr' ,Lo)l Xo : d^(xk' ,Lo)

[A"(xr',Xr)]Lr

and similarlp for everyfth non-control point (7 : n l_7,.
imaged in k : 1,. . .,rn photographs by

Systematic non-linear corrections to image coordinates of the
form

x . , i + 7 : x i i + L x , i

are_neglected- Furthermore, the image coordinate vector x/ (7
- 1,. ..,N) along with the corresponding object-space control
point coordinates X;t (j : 7,. . .,i) are maintained constant
throughout the iterative procedure. However, the vector of cal-
ibration parameters L' and the unknown object-space coordi-
na tes  XJ t  Q  :  n  *1 , .  . ,N )  a re  upda ted  by  success i ve
approximations. Then in an ideal case, provided a suitable con-
vergence criterion can be identified, the ILT scheme will con-
verge in such a way that as i increases

[C^(xr ' ,L) Xi+r - d-(xr ' ,L) (14)

x j ' * ' - x , ' ; ( j  : n +

Wong (1975) demonstrated empirically that the diagonal ele-
ments of Equation 8 provide reliable estimates to the actual RMS
errors of the elements of the solution vector to Equation 7, pro-
vided the iterative corrections are less than the computed RvS
errors- Accordingly, let (oyn o*, oz*) be the & Y, Z components
of the computed RMS error vector for the estimated object-space
coordinates of point k (k = 7,.. .,N), and define it's Euclidean
length as

op*: (cx*z + on2 i o.r')tn

whence the average length of the RMS error vector is given by

1A,,(xi ,x)l Lo : b,,(x;') (1 1)

where *i : $i ,Vi) are the measured photo coordinates of the
control points;
Xj : (Xi ,yi'.,Z) are the corresponding known object-
space coorolnates;
14,,1x1 ,X,71 is the L.H.S. matrix whose elements are a
function of the observed photo and object-space coor-
dinates;

1 N
_ r s
s p - - i L o p *

l Y  f t = 1
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Then convergence can be monitored by ensuring satisfaction, 
for n, successive iterations, of the criterion 

In Equation 15, TOL is a specified tolerance value, and 6 is ir, 
at the ith iteration. Appropriate values for both TOL and& for 
the class of problem under investigation must now be deter- 
mined empirically. 

EXPERIMENTAL STUDIES OF ANALMICAL 
RECONSTRUCTION 

To investigate the performance of the ILT procedure, the fol- 
lowing close-range photogrammetric studies have been under- 
taken: 

Reconstruction of check-point control - enabling a direct compar- 
ison of accurately coordinated and photogrammetrically recon- 
structed values for the same points. 
Half cylinder - a simple surface whose precise mathematical form 
is well defined. 
Breast surface of a mannequin - a complex shape for which no 
comparable solution is available. 

The photographic images were obtained using a Hasselblad 500U 
M non-metric camera in conjunction with the structured light 
technique (Renner, 1977; Frobin and Hierhoher, 1981; Lewis 
and Sopwith, 1986). In this method a well defined pattern is 
projected at the object-space control and surface to be recon- 
structed. A single photograph of the resulting distorted pattern 
then contains all the information for determination of that part 
of the surface visible to it. For the present application the struc- 

tured light was a regular square grid, and Figure 1 shows a 
representative image so obtained (mannequin breast photo 2 
and surrounding control-point configuration). Thus, the spatial 
points reconstructed comprise the object coordinates of the grid 
intersections and control points. Each photograph was digitized 
once manually; further details of the data aquisition system are 
described by Naftel(1989). 

For each study two independent photogrammetric recon- 
structions have been obtained, thus enabling a number of sep- 
arate statistical error measures to be used to study the accuracy 
of the results obtained. In the ensuing sections, therefore, the 
relevant error measures are first discussed prior to detailed con- 
sideration of the above-mentioned case studies. 

Let ax@ cr, o, be the X, Y, Z components of the RMS error 
(Wong, 1975) for point k (k = 1,. . .,N). Then a,, the Euclidean 
length of the RMS error vector can be expressed as 

whence the average Euclidean length of the RMS error vector is 

1 
i', = - apk 

N k-1  
(17) 

The magnitude of ep gives a statistical indication of the overall 
consistency of the data for any N reconstructed points, as 
determined by the least-squares adjustment process. However, 
we can expect CP to underestimate the reconstruction errors in 
an KT solution for the object space coordinates. This is partly 
due to random and systematic sources of error in observed 
comparator (digitized) coordinates, and partly to the 
approximation implicit in the DLT equations (Fraser, 1982). 

, IG. 1. Structured light image of mannequin breast. 
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Clearly, the residual or true error (rpk) in any photogrammetrically 
reconstructed point (with computed coordinates Xck, Y,,, Zck) 
can only be assessed if the true coordinates (X,,, Y,, ZTk) are 
known; in this case, the average Euclidean length of the residual 
error vector i, of N, such points can be similarly defined as 

The reconstruction of identical unknown object-space points 
from independent photographs facilitates the definition of a 
third error measure, known as the RMS deviation (to differentiate 
it from the RMS error). It can be shown (Taylor, 1982) that the 
RMs deviation for two observations x, and x2 of a single quantity 
x, is given by Ix, - x2pfl. Therefore, it follows that the X, Y, 
Z components (s,, s ,  szk) of the RMS deviation for two 
independent reconstructions of an unknown object-space point 
k are given by 

where the prime and double prime are used to distinguish spatial 
coordinates detennined from separate photographs. The average 
Euclidean length of the RMs deviation vector can now be written 
(cj. Equations 17 and 18) as 

where Np is the number of points common to separate 
reconstructions. 

The control points consisted of clearly visible target marks 
mounted on a rigid frame. In total, three independent coordinate 
evaluations were obtained for each of 58 controls using 
conventional theodolite survey techniques (Naftel, 1989). The 
average standard error for all the control point coordinates so 
obtained was 0.073mm, while the worst value for any point was 
0.220mm. Therefore, under the assumption that the 
conventionally surveyed coordinates represent the "true" values, 
the accuracy of photogrammetrically reconstructed values for 
the same points can be assessed. 

For the present study a total of 45 control points were 
employed, roughly mid-way between the upper (60) and lower 
(25) bounds suggested by Fraser (1982) and Karara and Abdel- 
Aziz (1974), respectively, from which smaller samples of 5, 10, 
and 15 points were drawn. These samples, evenly distributed 
thoughout the control space, were used as check point control. 
The results of the two independent reconstructions are 
summarized in Table 1. 

For these numbers of unknown object points, the RMS errors 

converged to three decimal places with TOL = 5 x ni = 5 
in the total number of iterations shown. Figure 2 illustrates the 
effectiveness of the KT procedure in reducing the errors in the 
initial DLT solution. It can be noted that convergence is rapid 
for all values of N,. However, as the ratio of the number of 
control to "unknown" points falls, up increases significantly 
with an associated decrease in the rate of convergence. Certainly 
there is no evidence in Table 1 to suggest that the optimum 
degree of redundancy (for accuracy) in control has been reached 
in this investigation. 

Further inspection of Table 1 reveals that eP consistently 
underestimates i, (i.e., the "true" error), as anticipated 
previously, although the trends of the two error estimates are 
always the same. Analytical reconstruction of identical check 
point controls from the second photograph yields larger residual 
errors than the first, although averaging the reconstructions 
from both images enhances the accuracy of the KT solution. 
Finally, we note that e, provides a good indication of i which 
for the well defined target marks used here was on ti; order 
of 1 mm, a figure consistent with previously published results 
(Abdel-Aziz and Karara, 1974). 

It can be appreciated from Equations 2 and 3 that the ADPs 
are readily incorporated into Equations 5 and 10 as additional 
"calibration" parameters together with the DLT coefficients. In 
an initial set of reconstruction studies to determine which of 
the ADPs were statistically significant, only the K, term (first 
component of symmetrical lens distortion) had any effect on 
the solution. The inclusion of the K, parameter can be applied 
to the final iteration of the ILT solution using an option in the 
standard program developed by Marzan and Karara (1975). A 
single iteration with the so-called 12th parameter proved 
sufficient, and the computed errors obtained including the K, 
term in the KT procedure are shown in Table 2. 

From a comparison of Tables 1 and 2, it is found that in the 
majority of cases there is a marked deterioration in the accuracy 
of the solution. Notable exceptions are an improvement in the 
residual errors for Nc=5 (photo 1) and Nc=15 (photo 2). Overall, 
however, on the basis of these results, there can be little 
justification for inclusion of the K, parameter in the ILT solution; 
using a healthy redundancy in control and assuming only linear 
distortion of image coordinates (which is automatically included 
in the solution for the DLT parameters) is the optimum procedure. 

It can be seen from Table 3 that the much higher number of 
unknown spatial points encountered in these studies resulted 
in a correspondingly slower rate of convergence. Nevertheless, 
convergence of &p to a value of TOL = 5X10-4 for ni = 10 
successive iterations ensured that the corrections to the object 
space coordinates were less than the corresponding computed 
rms errors, as suggested by Wong (1975), in each case. Figure 
3 illustrates the convergence paths obtained for both studies, 
which again demonstrate the effectiveness of the KT algorithm 
in reducing the errors in the initial DLT solution assuming equal 
weights for all observations. At this stage, it is perhaps pertinent 
to re-emphasize the s iwcance  of the weight matrix in obtaining 
an optimum overall solution based on both the values and relative 

TABLE 1. COMPARISON OF ERROR MEASURES USING THE ILT SOLUTION FOR RECONSTRUCTION OF CHECK POINT CONTROL 

No. No. fp (-1 sp (mm) 
No. check control items. GP (-1 f~ (mm) f~ (mm) photos photos 
controls points ni photo 1  photo 1 photo 2 1 & 2  1 & 2  
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TABLE 2. DEMONSTRATION OF THE EFFECT OF ~NCLUDING THE K, PARAMETER ON THE RESULTS PRESENTED IN TABLE 1. 

No. No. 4 (mm) 8, (mm) 
No. check control iterns. 6 (mm) ?P (m) SP (mm) photos photos 
controls points ni photo 1 photo 1 photo 2 1 & 2  1 & 2  

5 40 9 0.551 0.868 - - - 
10 35 10 0.764 1.123 - - - 
15 30 17 0.895 1.317 1.310 1.018 1.334 

FIG. 2. Convergence of ILT solution for analytical reconstruction of 
check point control. 

accuracies of control and non-control points: attempts to obtain 
ILT solutions more cheaply by retaining a unit weight matrix for 
all iterations have consistently lead to divergence. 

In the absence of check-point controls, S, is believed to be the 
most reliable available estimate of accuracy. Again, it can be 
noted that up is always less than e, while the trends of the two 
error estimates are the same. Comparison of the error estimates 
in Tables 1 and 3 suggests that the errors obtained in these 
studies were appreciably higher than those resulting from the 
check-point control studies. The main reason for this is thought 
to be that the grid line intersections produce less clearly 
identifiable points for manual digitization than control points, 
and consequently lead to larger random digitization errors. This 
effect is believed to increase with the shape complexity of the 
object surface, due to greater distortion of the structured light 
pattern. These matters are further discussed in the conclusions. 

CONCLUSIONS 

The iterative linear transformation (ILT) procedure, as described 
in the main body of this paper, has yielded converged solutions 
to all studies undertaken. Furthermore, the solutions so obtained 
have all exhibited considerably reduced m s  errors in comparison 
to the original direct linear transformation (DLT) results. 
The computed RMS error of the converged solution derived from 
the variance-covariance matrix consistently overestimates the de- 
gree of accuracy achieved by the ILT solution. However, it can be 
used both to monitor convergence and as a guide to the under- 
lying trend of the "true" (residual) error. 
The RMS deviation provides a more reliable indication of the "hue" 

TABLE 3. RECONSTRUCTION OF TEST SURFACE MODELS (FIGURES IN 

BRACKETS ARE NUMBER OF GRID INTERSECTION POINTS VISIBLE IN BOTH 
PHOTOGRAPHS) 

No. No. 
Test Control surface No. 6, SP 

Obiect Photo points points iterns (mm) (mm) 

Cylinder 1 45 325 69 0.520 1.851 
2 45 326 140 0.521 (240) 

Mannequin 1 45 117 47 0.744 2.092 
2 44 117 50 0.621 (39) 

half cylinder (photo11 

------- half cylinder (photo21 

E 1-8 -0- mannequin (phdol) 

(photo 2) 

Number of iterations 
FIG. 3. Convergence of ILT solution for analytical reconstruction of 
test surface models. 

error in the ILT solution, but does require redundant photogram- 
metric reconstructions for its evaluation. 
The errors in the three sets of reconstructed object-space coordi- 
nates presented here, as represented by the average RMS devia- 
tion, ranged from 1.1 mm for check point controls to 1.9 mm and 
2.1 mm for the test surfaces (cylinder and mannequin, respec- 
tively). These equate to spatial resolutions of 0.047 percent, 0.090 
percent, and 0.096 percent, respectively. The larger errors in- 
curred in the latter reconstructions are believed to be primarily 
due to manual digitization of the structured light procedure used 
in this study, and are not a function of the ILT procedure. 
The Iterative Linear Transformation (ILT) algorithm is an ex- 
tremely useful procedure for solution of the collinearity equations 
in close-range photogrammetry where the provision of highly re- 
dundant object-space control presents no problems. Under these 
conditions accuracy achieved using this method is not signifi- 
cantly inferior to that obtained using techniques requiring both 
an initial approximation to the unknown parameters and much 
greater computer resources. 
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Fifth Annual Geographic Information Systems Issue 

The November issue of PE&RS coincides with the 1991 GIS/LIS convention and includes 
information on applications, spatial database management, technological advances, and product 
developments in GIs technology. And, as an additional feature, this is also our Convention 
issue containing descriptions and photos of sustaining member company exhibits. 

Potential topics of the technical articles in the Fifth Annual GIs issue include: 

neural networks 

natural resources 

The extra distribution at the GISILIS meeting in Atlanta, Georgia brings you thousands more 
readers! Space reservations are due by September 1st and artwork is due on September 10, 
1991. 

To advertise in this issue, call Renee' Brescia or Julie Hill at 301-493-0290; send a fax to 301- 
493-0208; or write to ASPRS, 5410 Grosvenor Lane, Suite 210, Bethesda, MD 20814-2160. 


