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ABSTRACT: The purpose of this article is to describe a relationship that enables one to match a set of image-point 
coordinates in a pair of strip-mapping synthetic-aperature radar (SAR) images with a corresponding set of object-point 
coordinates without resorting to resection or triangulation, i.e., to classify the image points and the object points as 
being a match or a mismatch. This relationship is invariant and is shown, for an actual imaging system, to be inde- 
pendent of the exterior orientation of the SAR and of the rotation and translation of the object. Two SAR images covering 
five object points suffice to define this invariant quantity. The quantity so defined is a volume ratio (in object space) 
of the tetrahedra spanned by two subsets of four of the five points. The result of this study, which is based on simulated 
imagery, demonstrates that for the actual imaging system under consideration one can in theory use the invariance 
relationship to detect misidentified ground control points in a single image. Other potential applications of the invar- 
iance relationship, such as the classification of an object in a single SAR image, are also addressed. 

INTRODUCTION 

T HE PURPOSE OF THIS STUDY is to develop an invariance re- 
lationship for strip-mapping synthetic-aperture radar (SAR) 

imagery, and to apply it to the problem of comparing image 
coordinates and object coordinates (classification). The key to 
this invariance relationship is the fact that ratios of volumes 
defined by sets of points in three-dimensional object space are 
invariant under "perspective" transformation into two-dimen- 
sional SAR images. A general formulation of the invariance re- 
lationship will be developed, and also a special formulation for 
the STAR-1 synthetic-aperature radar system (Nichols et al., 1986). 
Furthermore, a simulation example will be presented that uses 
the invariance relationship to detect misidentified ground con- 
trol in a single STAR-I image. The geometrical aspects particular 
to the SAR collection will be discussed, and other potential ap- 
plications will be suggested. 

A SAR image is similar to a familiar optical image in that it 
encodes information from a three-dimensional object space in 
two dimensions. Because three dimensions are encoded in two, 
the encoding is ambiguous, and more than one image of the 
same object is needed to resolve the ambiguities. The nature of 
the ambiguities, however, is quite different for SAR and for op- 
tical images. 

In an optical image, the two image coordinates (x,y) deter- 
mine a line of sight from the camera station to the object point 
(Duda and Hart, 1973). From a single image of the object point, 
it is possible to ascertain only the point's line of sight, and not 
its position along the line of sight. Triangulation (intersection 
of lines of sight to the point from several images with known 
acquisition parameters) is necessary to determine the object 
point's three-dimensional coordinates. 

In a SAR image, the object-space point is determined to be on 
a particular circle (called a projection circle) instead of on a line 
of sight. This projection circle is the intersection of a sphere 
centered on the acquiring platform (called the range sphere, 
whose radius is known because radar measures the round-trip 
travel time of a pulse) and a plane perpendicular to the velocity 
vector of the platform. This plane arises from the intersection 
of the range sphere with the cone of constant frequency dilation 
(which is determined by a SAR Doppler measurement that is 
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independent of the range measurement). In spotlight-mode SAR 
(Ausherman et al., 1984; Brill, 1987) the phase-history data for 
an entire image is acquired and then the Dopplers and ranges 
are sorted to make an image. In strip-mapping SAR (Munson 
and Visentin, 1989), the image is acquired one projection-circle 
plane at a time, with evolving time t as one of the image co- 
ordinates and slant range R as the other. Both kinds of SAR 
have the same geometry insofar as the ambiguity in the image 
is concerned: the curve of ambiguity is a projection circle. It is 
possible to retrieve the three-dimensional coordinates of an ob- 
ject point by intersecting the projection circles from several im- 
ages whose acquisition geometries are known. The determination 
of the acquisition geometries, called resection, requires some 
ground-truth information in the form of control points. 

In the absence of resection, it is still possible to obtain usable 
information about the objects imaged in optical and SAR images. 
For optical images procedures exist called relative orientation to 
extract such information from several images (Slama, 1980). In 
the present paper we introduce a kind of relative orientation 
that can be used for strip-mapping SAR imagery. The method 
involves finding relationships between the image coordinates 
(on several images) of several object points, such that the eval- 
uation of these relationships does not depend on the acquisition 
parameters of the images. In object space, the relationships are 
simply ratios of the volumes of tetrahedra defined by the object- 
space points. These volume ratios are computable from image 
measurements because they are equal to ratios of determinants 
involving measured values of R and t from two images of these 
same object points. Because of the acquisition-invariance, the 
method can be used to classify objects by comparing the rela- 
tionships computed from radar image-point measurements with 
relationships computed between points for a menu of known 
objects. There is one important constraint on the method: The 
two platform velocities must be nonparallel to each other. 

This article will develop the basic theory, present an illustra- 
tive example using computer simulation, and identify the as- 
pects of strip-mapping SAR that render it particularly amenable 
to our analysis (as compared with frame optical imagery-see 
Barrett et al. (1991)). Testing of the concept on actual SAR images 
is deferred to future study. 
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GENERAL FORMULATION 

To reach the objective of computing object-point relationships 
from image measurements, our mathematical method will be 
(a) to write the condition equations of strip-mapping SAR; (b) 
to extract from the full set of condition equations all the equa- 
tions that are linear functions of the object-space coordinates; 
(c) to rearrange these linear condition equations until the coef- 
ficients of the object-space coordinates all depend on image- 
acquisition parameters but not on which object-space point is 
considered; (d) to note that the inhomogeneous term of each of 
the linear condition equations is the sum of a term that depends 
only on image-acquisition parameters and a term that depends 
on measured image coordinates (Kt) but not on the unknown 
image-acquisition parameters; and (e) to note therefore that a 
ratio of determinants of measurement vectors among the image- 
space points is the same as a ratio of volumes of tetrahedra 
subtended by the points in object space. Along the way, the 
geometric significance of the various equations will be noted. 

First of all, we write the condition equations of strip-mapping 
SAR. Let the image index be i, where i=1,2; also, let Xj be the 
position of object-space point j. The image coordinates of Xj in 
image i are given by a slant range qj and a time tq. (measured 
from a zero of time that is near the center of the zth imaging 
window). The ith platform moves with velocity vi (whose mag- 
nitude vi is assumed known and which is assumed constant 
over the time of acquisition of the image), and starts out at 
position Si when the ith imaging time is zero. The Doppler- 
cone angle of the ith platform is 0,. Given these definitions, the 
condition equation for the slant range is 

and the constant-Doppler condition equation is 

where ui = vi cos 0,. The geometry underlying these equations 
is illustrated in Figure 1 (for the special case of broadside view- 
ing, in which 8, = 90"). Equation 1 defines the range sphere for 
point j on image i, and Equation 2 defines the plane perpen- 
dicular to the ith velocity vector that passes through the point 
Xj and also through the instantaneous platform position Si + 
vi tii. given RP tii, S, and v, the point Xj is constrained to lie 
on a circle that is the intersection of the sphere defined by 
Equation 1 and the plane defined by Equation 2. This circle is 
the projection circle of point j as constrained by image i. Corre- 
spondingly, the plane defined by Equation 2 is the ith projection- 
circle plane through point j. Of course, because neither the di- 
rection of vi nor the position Si are known in the present prob- 

lem, the identity of the projection circle for image i is also 
unknown. 

The second step in our method is to extract from Equations 
1 and 2 (which comprise four equations, two for i = 1 and two 
for i-2) as many equations as possible that are linear in the 
coordinates (XI, Yj, Z,) of point Xi. No further work needs to be 
done to Equahon 2, for it is already linear in Xi. Equation 1 is 
nonlinear in Xj, but it actually represents two range conditions 
(for i = 1,2), and hence a single linear equation in XI can be 
retrieved by subtracting Equation 1 for i= 1 from Equahon 1 for 
i=2: 

This equation also defines a plane, and it is the plane containing 
the circle of intersection of the range spheres. 

Taken together, Equation 2 for i = 1,2 (representing the two 
projection-circle planes) and Equation 3 (representing the plane 
of range-sphere intersection) constitute three linear equations 
in the object-space coordinates (XI, Yj, Zj). 

The third step in our method is to rearrange Equations 2 and 
3 so that the coefficients of Xj depend only on the acquisition 
parameters (i-dependence), and not on the object-space point 
(j-dependence). Equation 2 satisfies this condition, for i-1, 2. 
Equation 3 can be made to satisfy the condition, by subtracting 
from it 2tlj multiplied by Equation 2 for i = 1, and then adding 
to it 2tq multiplied by Equation 2 for i=2. The result is as fol- 
lows: 

where S, and S, are the magnitudes of the position vectors S1 
and S,. For compactness of notation, we have defined plZj as 
the left-hand side of Equation 4. 

The fourth step in our method is to examine the inhomoge- 
neous terms in Equations 2 and 4. It can be seen that the in- 
homogeneous term in Equation 2 does not depend on acquisition 
parameters other than the known value v,. The inhomogeneous 
term in Equation 4, on the other hand, consists of the term ply 
that depends only on the measured image coordinates (and of 
course on v,2 and on Oi), and aIso a term on the right-hand side 
that depends only on the acquisition parameters and not on the 
object-space point j. 

The fifth step in our method is to rewrite Equations 2 and 4 
in a vector form so a 4-vector of measured and known quantities 
occur on the left-hand side and a 4 by 4 matrix multiplied by 
the enhanced vector (1,X.) occurs on the right-hand side. De- 
terminants of the left- and right-hand sides will then reveal the 
desired theorem. A convenient first step is to rewrite Equation 
2 as follows: 

Once again, for compactness of notation, we have defined qij 
as the left-hand side of Equation 5. 

Now Equation 4 can be written as one vector component of 
a linear system, and Equation 5 for i = 1 and 2 can be written 
as two other vector components. A fourth equation (the first in 
the system below) is an identity. The vector equation is 

FIQ. 1. Strip-mapping SAR acquisition geometry. where F is the 4 by 4 matrix 



SYNTHETIC A1 

and Gj is the column 4-vector 

Gj = (1, P12j, q,, q2jIT- (8) 
Here, once again, Gj is a function of only the measurements 
Xi, tq and of the known values vi and Bi in each image i, and F 
is constant for the two images. 

Now consider four object points j=  1,2,3,4. Then, from Equa- 
tion 6, 

Because the matrix on the right-hand side of Equation 9 is equal 
to the matrix on the left, their determinants are equal. The de- 
terminantal equation is 

where 

is the determinant of the left-hand side of Equation 9, and 

is six times the volume of the tetrahedron formed by the four 
object points 1,2,3,4. In other words, the determinant of the 
matrix containing only measurements of four points in two im- 
ages is proportional (by the factor 6 det[F]) to the volume of a 
tetrahedron formed by the points. By considering a set of five 
points, one can cancel the constant of proportionality, and write 

D1w Vl, = -  
Dl, v1235' 

and so forth. This is the desired theorem relating measurements 
on the left-hand side of the equation to volumes formed from 
sets of object points on the right-hand side of the equation. The 
left-hand side of the equation will be referred to as the D-ratio 
and the right-hand-side as the V-ratio. 

SPECIAL FORMULATION 

The general formulation above requires prior knowledge of 
the Doppler cone angle Bi and the speed of the aircraft vi. By 
considering the operational STAR-I SAR system (Nichols et al., 
1986), one can eliminate these variables and write the measure- 
ment Equations 4 and 5 simply in terms of image pixel coor- 
dinates. 

STAR-1 contains an inertial guidance system that provides ve- 
locity measurements. These measurements are filtered, and the 
difference between the filtered velocity and measured velocity 
is used by the real-time signal processor to construct lines of 
imagery that are parallel and perpendicular to the filtered ve- 
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locity vector. Because of the characteristics of the filter, the di- 
rection of the filtered vector changes slowly and may be assumed 
constant over short periods of time. This being the case, one 
may then assume that vi represents the filtered velocity vector 
and Bi = 90". One can then set ui = 0 in the measurement 
equations. 

STAR-1 clocks out the lines of imagery at a rate depending on 
the forward speed of the aircraft. This achieves a constant pixel 
width in the direction of flight. Because we have assumed that 
the aircraft position changes linearly with time, we can write 

vitij = I ,  AI, 

where lij is the image line number for point j in image i, and A1 
is the ground pixel width in the in-flight direction. 

The range from the aircraft to a ground point in the STAR-I 
system can be written as 

R, = R', + sij As, 

where R, is a constant range delay (range from the aircraft to 
the first ground pixel), sq is the image sample number in the 
slant-range plane, and As is the pixel width in range. 

Substituting Equations 14 and 15 into Equation 4 with ui = 0 
and dividing through by 2RoAs results in a new definition of 
pIzj and also a new second row of matrix F in Equation 7. Be- 
cause dependence on matrix F cancels out in our final result, 
we need to consider only the new expression for pIzj, which is 

which depends only on the image pixel coordinates (kj, sij) and 
on known constants. 

In a similar manner, substituting Equation 14 into Equation 
5 for tii and dividing through by viAl results in a new definition 
of qq and a new last two rows of matrix F. Again, because F- 
dependence cancels out of our final result, we need consider 
only the new expression for q,, which is 

q.. = l... 
'I 'I 

Equations 16,17,8,11,12, and 13 in that order constitute the 
theorem for the special case. 

A simulation example applying these equations is presented 
in the following section. 

A SIMULATION DETERMINING MIS-IDENTIFIED GROUND 
CONTROL POINTS 

The simulation examples presented here are intended to show 
how to use the invariant relationship together with template 
image matching. The examples will not address subtleties of 
the method (but some of these subtleties are discussed in the 
section that follows). 

The sample problem to be addressed is as follows. Given the 
measured image pixel coordinates of five control points iden- 
tified in a STAR-1 image, and the corresponding object-space 
coordinates of these points, determine if one or more of the 
control points has been mis-identified on the image. In other 
words, the problem is to de-termine whether the object points 
and image points are a match or a mismatch. 

To solve the problem, we introduce the idea of a template 
image, which may be thought of as a blueprint or drawing of 
how the ground points should appear from some perspective. 
A template image is generated from the ground-control-point 
object-space coordinates by applying the appropriate image 
projective relationships for a given (invented) acquisition ge- 
ometry. 
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To recognize mismatches between ground control and the 
points in the real image, the real image is compared to the 
template image by combining the real image coordinates with 
the template image coordinates according to the left-hand side 
of Equation 13. If the points are correctly matched, the appli- 
cation of Equation 13 should yield the same value as computed 
from the volume ratio formed from the object-space coordinates 
on the right-hand side of the equation. If the volume ratio is 
different from the quantity derived from the image coordinates, 
then there is a mismatch. 

Because the ratio-of-determinants theorem given by Equation 
13 is independent of the exterior orientation, one is free in prin- 
ciple to select arbitrarily the perspective of the template image 
(with some constraints as are discussed in the following sec- 
tion). 

Consider five ground-control points distributed over a 10-km 
by 10-km area as shown in Figure 2. The points are numbered, 
and their elevations (in metres) are given in parentheses. The 
values of the control-point coordinates are given in Table I. 

Next, consider a STAR-1 SAR, flying due southward and to the 
west of the area at an altitude of 33,000 feet. This S A R  sensor 
uses the following nominal parameter values: 

range delay R, = 20 km; 
ground pixel width in in-flight direction dl = 4.2 metres; and 
pixel width in range As = 5.7 metres. 

The resulting STAR-1 image coordinates (for an image labeled 
image 2) are given in Table 2. 

For image 1, we generate a template image with a perspective 
we are free to choose. The perspective is chosen to be from 
north of the area and crossing from east to west. The resulting 
template image coordinates are given in Table 3. 

In the first case considered (Case I), the image coordinates 
and the template coordinates are combined in the left-hand side 
of Equation 13, forming a ratio (D-ratio) of 0.55. The same value 

- 10 kin- 

FIG. 2. Ground control-point distribution. 

TABLE 1. GROUND CONTROL POINT COORDINATES. 

Point 0) X (metres) Y (metres) Z (metres) 

(V-ratio) is found by evaluating the right-hand side of Equation 
13 using the ground-control-point object-space coordinates. This 
equality of D-value and V-value ratios indicates that the image 
coordinates match the ground-control points. 

Next, consider a case (Case 2) in which one has mis-labeled 
image points 4 and 5 (reversed them). This produces a D-ratio 
of -1.12. 

Finally, consider a case (Case 3) in which image point 5 has 
been misidentified by +25 pixels in sample number. This re- 
sults in a D-ratio of 0.83. 

The three cases are summarized in Table 4. 
To produce Table 4, the standard deviation of the difference 

is obtained by assuming random, independent mensuration er- 
rors of one pixel (at one sigma) in line number and also in 
sample number, and propagating the errors to the D-ratio (using 
the standard technique-see, e.g., Deming (1948)). Case 1 is 
clearly consistent with the expected difference of zero, and 
therefore properly indicates a match of image measurements 
with the ground control. Cases 2 and 3 are clearly inconsistent 
with the expected difference of zero, and therefore properly 
indicate problems in the image measurements. 

GEOMETRICAL DISCUSSION 

The SAR result derived above has no simple analog in frame 
optical imagery. In frame optical imagery, the image invariants 
are the more complicated cross-ratios of object-space volumes, 
and extraction of the invariants requires an algorithm (Barrett 
et al., 1991) using 34 images and eight object-space points. 
Therefore, it is instructive to examine the geometrical aspects 
of SAR which render it privileged among image-gathering sys- 
tems insofar as the computation of invariants is concerned. 

As noted earlier (Brill and Williamson, 1989), an analog of 
triangulation between two S A R  images can be done by solving 
three linear condition equations for X, = (Xj, Y,, Z,). Solving 
these equations amounts to finding the intersection of three 
planes: ihe plane of the projection-circle in image 1 passing 
through Xj; the plane of the projection circle in image 2 passing 
through Xi; and the plane of the intersection of the range spheres 
from image 1 and image 2, corresponding to Xi. 

TABLE 2. STAR-1 IMAGE COORDINATES OF CONTROL POINTS. 

Point (j) Line number (l ,J Sample number (s,,) 
1 0 795 
2 595 1616 
3 1190 353 
4 1786 1202 
5 2381 0 

Point @ Line number (I,> Sample number (s,,) 
1 1190 68 

10000 0 
7500 100 Case D-ratio minus V-ratio Standard Deviation 
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The first and second of these planes-the projection-circle 
planes-are represented by Equation 5 above, for fixed object 
point Xj and for image i = 1 or 2. The third of these planes- 
generated by the intersection of the range spheres-is defined 
by Equation 4, for object point Xj fixed. Note that the normal 
to the plane in Equation 4 is proportional to the "stereo" base - - 
S, - S1. 

One feature of SAR imagery that enables the evaluation of the 
ratio of object-space volumes is that all the planes of intersection 
of range spheres from the same images 1 and 2 are parallel, 
because they have the same normal S, - S1 independent of the 
object point Xi. Similarly, all the projection-circle planes from 
an image share a normal (the velocity vector of the vehicle gen- 
erating that image), and are hence also parallel to each other, 
independent of the imaged object j. This commonality of the 
normal (i.e., j-independence of the normal) is what allows the 
determinant of acquisition geometry generated by matrix F to 
cancel in the ratio-of-determinants operation. The same process 
did not happen with optical imagery, because the normals to 
the planes used for intersection depended on the object point 
j as well as on the acquisition geometry. That was the reason 
the determinants of much larger matrices were needed to re- 
trieve invariants in the previous formulation (Barrett et al., 1990). 
Although frame optical imagery is not amenable to the simple 
approach developed here, it should however be noted that strip 
electro-optical imagery is amenable to a similar approach. In 
that case, one condition equation for image i can be used: 

This equation describes the instantaneous plane at time tii that 
passes through the sensor and is perpendicular to the sensor's 
velocity vector. When this equation is rewritten 

it is clear that three images made with linearly independent 
vectors vi will permit a 4 by 4 matrix equation analogous to 
Equation 9. A ratio of determinants of the left-hand side of the 
equation (which consists of time measurements and a known 
platform speed) is then equal to a ratio of volumes in object 
space, as was the case in SAR. Note that, once again, the method 
is based on the parallelism of all the broadside planes from a 
single sensor (assumed to move in a straight line). 

By examining matrix F for the SAR images, it is possible to 
determine conditions for geometric strength of the volume-ratio 
computation. The determinant of F is proportional to the de- 
terminant of the 3 by 3 matrix consisting of the velocity vectors 
vi of the two platforms and the stereo-base vector S, -Sl between 
the platforms. Hence, the greatest geometric strength is ex- 
pected when these three vectors are orthogonal to each other. 
Conversely, no volume ratio is defined when any two of these 
vectors are parallel to each other, for then the determinant of 
F is zero. In particular, the methods of the preceding section 
do not apply to acquisition geometries in which the velocity 
vectors of the platforms are parallel to each other. However, 
the addition of more images and more object points will en- 
hance the geometric strength even if some of the velocity vec- 
tors are parallel to each other. Such an addition will enlarge 
(from 4 to some number n) the column dimensions of matrices 
G and F in Equation (9), but then the equation can be rendered 
into a 4 by 4 matrix equation by premultiplying both sides by 
a constant 4 by n matrix. The computed 4 by 4 matrix left-hand 

side can then be used to compute determinants, which as before 
are proportional to the object-space volumes. 

CONCLUSION 
The purpose of this article has been to develop the invariant 

relationship existing in SAR imagery, and to demonstrate a sim- 
ple example of its application to the problem of detecting mis- 
identified control points in a STAR-1 image. The working of the 
simple example suggests that the method may be practical, par- 
ticularly in view of our error analysis using SAR image-coordi- 
nate measurement errors. Ultimately, a statistical evaluation of 
the method should also be performed with consideration of the 
geometry (perspective of tKe template image and control point 
distribution), as well as measurement error in the ground-con- 
trol object-space coordinates. 

Other applications of the volume-ratio invariance include 
classification of manrnade objects. In this case, one could con- 
struct a library of template images and their corresponding V- 
ratios. One could then compare the D-ratios in a SAR image to 
each object in the library. This of course requires identification 
and mensuration of distinctive points such as the bow, stem, 
or mast of a ship. It also requires a much finer SAR resolution 
than is available in the STAR-1 system discussed here. 

The extraction of invariants from imagery in the way outlined 
in this paper is an analog of relative orientation in frame optical 
imagery. The method provides information about object space 
without prior resection. It also seems to be computationally 
robust, judging from the simulation results and error analysis 
presented here. 
SAR imagery particularly lends itself to classification methods 

of this kind: the invariance relationships are simple, imaging 
though cloud cover is practical, and the image resolution is 
invariant with respect to slant range. 
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