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ABSTRACT: Classification of digital satellite images involves a process similar to classification problems in artificial in- 
telligence. In a knowledge-based classification, ancillary data and knowledge are combined with spectral information. 
A method of knowledge-based classification based on temporal relationships between classes is introduced. Knowledge 
about crop rotations is represented by means of state transition matrices. Spectral image information, information stored 
in a geographic information system, and knowledge as represented in a matrix are combined in a Bayesian maximum- 
likelihood classification. This method is elaborated for a test area in The Netherlands. Depending on the spectral 
separation of the classes and the level of detail of the transition matrices, the overall accuracy of the classification 
increased by 4 percent to 20 percent with respect to the result based on only spectral information. 

INTRODUCTION 

I N THE EARTH SCIENCES, digital satellite images have become 
an important source of information. For many survey appli- 

cations, these images are spectrally classified into classes which 
are relevant for the user. When the recognition of classes on 
the basis of their spectral characteristics becomes difficult, other 
types of data (thematic or geometric) are included in the clas- 
sification process. Because this requires knowledge about the 
relationships between classes and the different ancillary data 
sources, the latter category is called "knowledge-based classi- 
fication" (e-g., Skidmore, 1989). Knowledge engineering tech- 
niques used in expert systems have common grounds with 
pattern recognition and can be applied for image interpretation 
and classification (Middelkoop ef al., 1989). The development 
of a procedure for knowledge-based classification involves 
knowledge acquisition and requires a knowledge representation 
formalism. 

This paper presents a specific method of knowledge-based 
image classification. First, a short review of image classification 
and knowledge-based classifications is given. Then a method 
of knowledge-based classification based on temporal relation- 
ships is presented using a case study in a test area in The Neth- 
erlands. It includes (1) knowledge acquisition, (2) knowledge 
representation, (3) implementation of the classification proce- 
dure, and (4) evaluation of the results. 

After pre-processing of the raw data and extraction of proper 
features (Mulder, 1985) from the original spectral bands, images 
can be separated into classes which are significant for the user. 
Classification of a satellite image involves a decision making 
process that assigns a class label of real-world object to a raster 
cell (pixel) on the basis of its spectral values (represented as an  
observation vector). 
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When the classes are spectrally well separable, a box-classifier 
can be applied using a feature space spanned by the different 
spectral bands. This is equivalent to Boolean IF <condition> 
THEN <conclusion> rules. Delineation of a box in this space is 
done by means of an AND function in the condition part; merging 
boxes is equivalent to an OR expression wddelkoop et al., 1989). 

The usual problem, however, is the spectral variability of the 
classes and the overlap between the clusters in the feature space. 
This requires finding the most likely class and providing an 
estimation of the associated probability of error. An intuitively 
satisfying and mathematically manageable classification theory 
is the maximum-likelihood or Bayes' optimal classification 
(Mather, 1987): i.e., 

P(W,IX) = P(X~Wi)*P(Wi)/SVMj{P(x/lWj)*P(Wj)} (1) 

P(WiIX) = the (a posteriori) probability that class Wi occurs, 
given the observation vector X; 

P(XIWi) = the probability that observation X will occur, given 
class Wi; in image classification: the spectral 
characteristics of class Wi. P(XIWi) is considered 
to be constant over the whole scene; and 

p(wi) = the a priori probability for class W, which can be 
considered as a weight factor. 

The values of all P(X(W,) are assessed using a set of training 
elements with a known class label. Ideally, P(XIW,) is based on 
relative freauencies of co-occurrence between X and W;. Ln manv -.-~ - -  

expert systems, the total uncertainty in a hypothesis depending 
on several observations is determined by means of a sequential 
accumulation of the separate pieces of evidence (e-g., Duda et 
al. (1976), Shafer (1976), and Shortliffe and Buchanan (1986)). 
For spectral image classification, P(XjJWJ is determined for the 
combination of (spectral) observations because in most instances 
the features are not completely uncorrelated (which is assumed 
by the current methods for accumulating evidence) and relatively 
large sample sets are available. When the number of dimensions 
increases and not enough training samples can be collected, 
P(XIWi) is estimated by an n-dimensional Gaussian probability 
density function (Mather, 1987). This function is described by 
a mean vector and covariance matrix of a representative sample. 
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Bayes' rule is then rewritten as a decision function gi(X) which 
selects Wi for which gi(X) is the largest: that is, 

where 

Xis the observation vector for the object under consideration, 
Mi is the mean vector for class i, 
(X-Mi)' is the transpose of the difference vector between X 
and Mi, 
Ci is the N ' N symmetric variance-covariance matrix for class 
i, and 
lCil is the determinant of matrix Ci. 

In practice, the spectral overlap between different classes may 
be so large that the overall accuracy (expressed as the percentage 
of correctly classified elements) of a classification result is still 
unacceptably low. Ancillary data are then used in addition to 
the spectral information. Such data can be a digital elevation 
model (elevation, slope angle, and exposition), or thematic maps 
such as soils and geologic maps. Examples are provided by 
Kenk et al. (1988), Wu et al. (1988), and Skidmore (1989). 

Ancillary data can be applied effectively only if they have a 
known relationship to the classes in the image. This means that 
the classification is extended with a further decision making 
process, based on the knowledge of the relationship class-ancillary 
data. 

The knowledge can be represented in several ways. Examples 
include IF < > THEN < > rules, implemented as Boolean look- 
up tables (e.g., Mulder, 1985) and frames (Wu et al., 1989). 
Attempts at implementation of uncertain knowledge include 
certainty factors (Desachy et al., 1988), the Dempster-Shafer theory 
(Shrinivasan and Richards, 1990), and even a neural network 
(Hepner et al., 1990). 

Kenk et al. (1988) used prior probabilities in a vegetation 
classification. The ancillary data used were terrain elevation, 
slope, and aspect. The relation between vegetation type and 
ancillary data was represented by prior probabilities that were 
assessed by wildlife habitat biologists. This resulted in a modest 
increase of the classification accuracy (5 percent at most). Strahler 
(1980) also used elevation data in combination with prior 
probabilities to improve forest classification. Relationships 
between forest type, elevation, and aspect were determined 
using aerial photographs. The classification accuracy of a Landsat 
MSS image increased 13 percent. 

A detailed overview on methodologies of pattern recognition, 
image analysis, and knowledge based classification is provided 
by Argialas and Harlow (1990). 

To date, only a few studies'have been concerned with temporal 
relationships between classes and ancillary data. Time sequential 
classifications were mentioned by Sirnonett et al. (1967), Swain 
(1978), and Strahler (1980). In these classifications, ancillary data 
were used to determine prior probabilities and these articles 
refer mainly to multi-season classifications. Van der Laan (1988) 
used a topographic map from 1980 to improve the classification 
result of a remotely sensed image acquired in 1986. A look-up 
table was constructed which defined the possible and impossible 
land-cover changes between these dates. The table was used to 
modify the result of the spectral classification. 

AIM OF THE STUDY 

The aim of this study was to develop a method for using 
land-cover data from preceding years, which are stored in a GIs, 
to improve the (overall) accuracy of land-cover classifications of 
a remotely sensed image. The application of temporal thematic 
information and knowledge meant that the following points 
had to be investigated: 

Acquisition of knowledge about the temporal relationships be- 
tween classes from the available data and experts. 
Representation of the knowledge. 
Implementation of the information and knowledge in the image 
classification mechanism. 

This is described for a test area in The Netherlands where there 
are clear temporal relationships between classes in the form of 
crop rotation schemes. 

TEST AREA AND DATA 

The test area is located in Oosteliik Flevoland, one of the 
polders in The Netherlands. A large part of this polder (a tract 
of low land reclaimed from the IJssel Lake), including the test 
area, is used for arable agriculture. Temporal relationships be- 
tween classes exist here in the form of distinct crop rotation 
schemes. The main crops are grass (GR), cereals (CE), potatoes 
(PO), sugarbeets (SB), beans (BE), peas (PE), and onions (ON). 

A Landsat Thematic Mapper (TM) image of the Flevoland area 
(acquisition date: 7 July 1987) of good quality was available. 
Bands 3 (0.63 to 0.69 pm), 4 (0.76 to 0.90 pm), and 5 (1.55 to 
1.75 pm) from this image were used. 

The ground reference data originated from a local agricultural 
institute (Rentambt Oostelijk Flevoland). Until 1988, this institute 
systematically gathered data about the crops grown in the area. 
Each year, small maps were sent to farmers who indicated the 
position and acreage of their crops. The maps were transposed 
to a 1:10,000-scale topographic map and were subsequently 
digitized for the situation in 1985, 1986, and 1987, and finally 
stored in a geographic information system. The digitized area 
comprises approximately 3,800 ha. 

KNOWLEDGE ACQUISITION 

Before an appropriate formalism for knowledge representa- 
tion could be defined, it was necessary to know at least quali- 
tatively which crops are grown in the area and what kinds of 
temporal relationships (rotation schemes) can be found. This 
information was acquired from different information sources, 
as listed below. 

From literature, it was known which crops were grown in 
the Flevoland area (RIJP, 1988). In this area, mainly three- and 
four-year rotation cycles are used. A crop succession scheme 
indicating suitabilities of crop successions and risk of disease 
and pests was also available (PAGV, 1989). 

Ground reference data for a series of four successive years 
were available for 60 fields. It was found that 

There was a four year cyde (Potatoes - Cmeals - SugarBeets - diverse 
- Potatoes) in this part of the test area. 
Field boundaries may change in time; the temporal relationships 
are therefore defined per raster cell. 

It might be possible to determine empirically prevalent crop 
transitions or successions by counting transitions over a period 
of N successive years for one field. To find prevalent transitions 
that are sigruficantly different from random transitions, however, 
a time series of at least 20 to  30 years must be available. These 
were not available for the test area. Furthermore, it is likely that 
within such a long period the crop rotation schemes would 
change. 
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Because counting transitions over a long period was not 
possible, we enlarged our sample by including a large number 
of land parcels. Because each phase of the cycle was equally 
presented in the area, we overlayed ("crossed") two rasterized 
ground-cover maps of two successive years. The transition 
frequencies from class Wj at t -  1 to Wi at t were counted and 
stored in a matrix. The classes of t - 1 was put as the row-index 
and t as the column index, and the values are normalized over 
t - 1. The matrix indicates the prevalent transitions in terms of 
percentage of class Wj at t - 1 that becomes class Wj at t. 

In addition to the information from literature and the ground 
reference data, agricultural experts from a consulting agency 
(Consulentschap Akker- en Tuinbouw, Lelystad) were 
interviewed. From these interviews, we learned which crops 
were relevant for inclusion in the classification. These are shown 
in Figure 1. At least five different crop rotation schemes are 
used in this area. The most dominant are a three-year cycle and 
two four-year cycles. These are illustrated in Figure 2 as 3yr, 
4yr1, and 4yr2. Quantitative descriptions of these rotations were 
obtained and also physical and economic backgrounds of the 
rotation schemes were explained by the experts. These, however, 
could not be included in the classification. 

REPRESENTATION OF TEMPORAL RELATIONSHIPS 

A land-cover class W, for a specific object (e-g., pixel, parcel) 
at a specific time can be defined as the state of that object. The 
change from a certain class Wj at t - 1 to another class W, at t 
can be interpreted as a state transition. The transitions from the 
state Wj,,, to the state W,, can be described by a transition 
matrix. 

The time lapse between t and t - 1 may be a season, a year, 
or even a five year period. The only condition is that both the 
land cover data at t - 1 and the transition matrix are based on 
the same time lapse. In this study, yearly land-cover changes 
were considered. 

An example is a three-year crop rotation in which PO (pota- 
toes), SB (sugar beets), and CE (cereals) are grown sequentially. 
The chain PO-SB-CE-PO-SB-CE-. . . is called a Markov chain (e.g., 
Fletcher (1972)) which can be represented by a state transition 
graph (Figure 3). This graph can be converted to the transition 
matrix M (Figure 4) which contains the same information as the 
graph. The rows in the matrix are transition vectors, indicating 
the transitions from the state Wj<,, to state W,,. 

In the three-year rotation which is used in the study area, 
not one but several different states may follow a preceding state, 
as illustrated in Figure 2. It means that it is not certain what 
the land-cover Wi at t will be given .the landcover Wj at t - 1. 
The three-year crop rotation shown in Figure 2 therefore can be 
transformed into a probabilistic state transition graph (Figure 
5). The widths of the arrows in the graph are proportional to 
the relative areas of Wi at t -  1 that will be covered by Wi at t. 
Thus, the arrows indicate the probability that a state Wj at t - 1 
will be followed by Wi at t. 

Matrix P shown in Figure 6 corresponds to the probabilistic 
transition graph in Figure 5. 

In a stochastic matrix, the values of all entries are equal to 
zero or larger and the sum of the entries in each row equals 1. 
Matrices M and F are examples of a stochastic matrix. The rows 
in these matrices are called "state transition probability vectors" 
P(W,,(Wj,,,), representing the probabilities that a transition from 
state W ,,,-, to state W,, will occur. 

The states in matrix F are described by both the land-cover 
class label and the year index, because the same land cover may 
be found in more than one year of the rotation cycle. In the 

crop type 

potatoes 

cereals 
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grass 

beans 

onions 

FIG. 1. Crop types 
classification. 
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example, "beans" are grown in both the second and the third 
years of the cycle. Thus, "beans" in the second year and "beans" 
in the third year of the cycle have to be interpreted as different 
states. 

The year-indexed matrix demands that the input to this ma- 
trix is defined also by both Wi and a year index. This means 
that, for this matrix, it is not sufficient to have a ground-cover 
map indicating Wj,,,, but this map must also indicate the year 
of the cycle (1,2, or 3) to which the crops refer. Because it may 
happen that these year-indices are not available, as in this study, 
the year indices were removed from matrix F, resulting in ma- 
trix G (Figure 7). The latter shows the state transition proba- 
bilities without regard to the year of the cycle. In the example, 
matrix N2 does not distinguish "beans" in the second year from 
"beans" in the third year. A little information was therefore lost 
in this matrix. 

The terms in the n th power of a transition matrix give the 
probabilities of a transition taking place in n time lapses. W, 
W, and M4 are the second, third, and fourth powers of matrix 
M, indicating the transitions over two, three, and four years 
(Figure 8). If "potatoes" was found at a certain time, it can be 
concluded from M2 that "cereals" will be found at the same 
spot two years later. The fourth power of M is the same as M, 
so there is a clear pattern that takes a period of three years. 

A transition matrix is said to be regular if all entries of some 
power are positive. As can be seen from the example, the matrix 
M is not regular. Also F is not regular, but matrix G is a regular 
stochastic matrix. An interesting property of a regular stochastic 
matrix is the following: the sequence of poweres G2, G3, 
G4,. . .,Gn (n + a) approaches a matrix whose rows are each 
the same probability vector V. 

The 100th power of G gives the matrix shown in Figure 9. 
The probability vector V = (0.33, 0.30, 0.16, 0.03, 0.04, 0.04, 
0.10) is one of the eigenvectors for this matrix. The eigenvalue 
corresponding to this eigenvector = 1.0. 

In a stable dynamic system such as the rotation system in the 
example, the relative areas covered by each class do not change. 
So these relative areas are thus represented by the eigenvector 
V. Moreover, the total size of the area is always the same. The 
eigenvalue of eigenvector V therefore equals 1.0. 

In terms of land-cover changes, GIoo gives the probability 
vectors for a time lapse of 100 years. The matrix can be inter- 
preted as follows: it means that the probability vectors for all 
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Three year crop rotation (3yr). 

Four year crop rotation type 1 (4yrl). Four year crop yotation type 2 (4y1-2). 

FIG. 2. Qualitative representation of the most dominant rotation schemes that are used in the study area. 

FIG. 3. Schematic represen- 
tation of a three-year crop ro- 
tation cycle. 

FIG. 4. Transition matrix M. 

TRANSITION MATRICES 

W, at t - 100 are the same; so, after too many rotation cycles, a DETERMINATION OF TRANSITION MATRICES 

ground cover map (like Wk,,-,,) is no longer relevant as ancil- The values in the transition matrices were assessed on the 
lary information. These limiting probability vectors actually rep- basis of both empirical estimations using the ground reference 
resent the prior probabilities that are based on the relative areas data from previous years, and expert knowledge. 
of the land-cover types. Empirical estimation. Because the crop rotation system(s) in the 
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FIG. 5. Probabilistic state transition graph of three-year crop rotation cycle. 
The width of the arcs is proportional to the transition probabilities. 

area are stable, the transition probability vectors between classes 
were assessed by overlaying rasterized ground-cover maps of 
two successive years. The frequencies of co-occurrences be- 
tween W,,-, and W,, are counted and normalized over Wj,,-,. 
The resufting matrices are called empirical matrices (MAR8586 
and MAR8687). Matrix MAR8586 is shown in Figure 10. 

Expert knowledge. Because different rotation cycles are used in 
this area, the empirical matrices reflect a mixture of rotation 
cycles. The agricultural consultants were therefore asked to es- 
timate the transition vectors for each of the three dominant 
rotation schemes separately. For each type a year-indexed ma- 
trix (Figure 6) was filled in. Because the classification only uses 
a ground reference map for t - 1, the year indices from these 
matrices were eliminated and a one-step transition matrix was 
created. 

As a test for consistency of the different information sources, 
an ensemble matrix was composed on the basis of the three 
separate dominant matrices. This is done by a weighted addi- 
tion of the three, where the weight is the relative area of oc- 
currence of each rotation type. The resulting matrix (MEXPERT) 
is shown in Figure 11. 

Empirical estimation of a single rotation matrix. Because the em- 
pirical matrices MAR8586 and MAR8687 reflect more than ro- 
tation cycle, an empirical matrix for one single rotation type 
was created. On the basis of a land-ownership map and the 
ground-cover maps of the three successive years (1985 to 1987), 
the area where the 4yrl rotation is used could be separated and 
masked. Within this mask an empirical matrix of the 4yrl ro- 
tation was made (M4YRl). 

INTERPRETATION OF THE MATRICES 
Comparison of the empirical matrices MAR8586 and MAR8687 

revealed only minor differences. These were found for classes 
which do not occur very frequently: grass, beans, peas. 

The 3yr and 4yrl rotations are clearly reflected by the highest 
transition probabilities in the empirical matrices MAR8586 and 
MAR8687. This illustrates that the latter two reflect an ensemble 
of different rotation matrices. 

FIG. 6. Transition matrix F for three-year rotation cycle; in this matrix, a state is defined 
by both crop type and year. 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1991 

FIG. 7. Transition matrix G representing the three-year rotation cycle. 
The year-index has been removed. 

The MEXPERT matrix is slightly different from the empirical 
matrices, but  the correspondence is satisfactory. The differences 
can be explained by the following factors: 

The expert matrix represents only the three dominant rotations. 
The expert expresses the situation in 1989, but the matrices are 
related to 1986 and 1987. 
Small errors occur in the digital ground reference maps. 
The expert did not predict the transition probabilities for these 
crops very accurately. 

It can be easily verified that both empirical matrices (MAR8586 
a n d  MAR8687) a n d  the  expert  matrix a re  regular. Thus, 
calculation of the n th power of each matrix provides an  
eigenvector which indicates the relative areas occupied by each 
ground cover class. As shown in Table 1, they agree well with 
the relative areas given by agricultural statistics and with the 
areas indicated on the ground reference maps. 

EVALUATION OF KNOWLEDGE SOURCES 

Both procedures for assessing of the  class transition 
probabilities have their costs and benefits in terms of effort of 
acquisition and expected accuracy of the matrices. The most 
important of them are mentioned below. 

The advantages of empirical estimation were 

The procedure is fast and easy when digital data are available; 
The transition probabilities are area-specific, unlike literature 
references which usually contain more general information; and 

The method is objective, not biased by the expert's opinion or 
wishes. 

The disadvantages of the empirical estimation were 

The ground reference data must be available in detail (in this case, 
more thematic information or classes than shown on topographic 
maps have been used); 
The method is laborious if data have to be digitized first; 
Errors in the ground-cover maps may cause incorrect and unlikely 
transition probabilities; and 
An empirical matrix may reflect an ensemble of different rotations, 
and it is difficult to separate these without other information. 

The advantages of estimation by means of a n  expert were 

No ground reference data are required for the determination of a 
transition matrix; 
Acquisition of knowledge by interviewing experts is faster than 
digitizing detailed ground-cover maps; 
There will be fewer errors caused by errors in the GIs (only for 
ground cover at f - I); and 
An expert can foresee minor yearly fluctuations and trends, so 
that these can be included in the transition probabilities. 

The disadvantages of estimation by  means of an  expert were 
The expert's knowledge can be different from the real situation. 
In this study the expert expected some transitions other than the 
farmers actually used; and 
The expert must be able to express hislher knowledge in terms of 
transition probabilities. 

IMPLEMENTATION IN THE MAXIMUM-LIKELIHOOD 
CLASSIFICATION 

As described above, Bayes' rule provides a n  appropriate 
method to assess the most likely class, given a n  observation 
vector and the class a priori probabilities. In this case study, the 
a priori probability for a class could be  specified more accurately 
than just using the relative occurrence of the class in  the whole 
area. Where there are temporal relationships between the classes, 
the prior probabilities depend on  the land cover at  the preced- 
ing year. P(Wi) in Equations 1 and 2 was therefore substituted 
by  P(Wi,,IWj,,-,), which is  read from a transition matrix. 
P(W,,IW. ) represents the relative area occupied by Wi within 
the mad;; area where W at 1 - 1 = W,. This means that P(W,,) 
is dependent on  the spatial distribution of Wj at  t- 1, so  it may 
vary per pixel. 

The complete classification procedure is shown schematically 
in Figure 12. 

(1) The mean vectors and covariance matrices for all classes were 
determined using training samples from fields where the current 
land cover was known. 

(2) From the mean vectors and covariance matrices, P(XIW,J was 
calculated for each class. 

(3) On the basis of two overlaid ground cover maps of successive 
years (A) or interviews with experts (B), a transition matrix con- 
taining probability vectors P(W,,IW,,,-,) was created. 

(4) For each pixel the land-cover class Wj at t - 1 was looked-up in 
the GIS. This class pointed to a probability vector in the transition 
matrix. 

Matrix M. ~ a t r k ~ ~ .  Matrix M . 
FIG. 8. Sequence of powers of matrix M. 

Matrix M~ ( = M). 
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i,t + 

FIG. 9. 100th power of regular matrix G. Each row contains the 
same probability vector. 

FIG. 10. Empirical transition matrix MAR8586. 

(5) The probability vector corresponding to W,,,_, was read from the 
matrix. 

(6) The computer program BAYE determined on the basis of P(XIW,,) 
(from step 2) and P(Wi,,JW,,,-,) (from step 5) for each pixel which 
was the most likely class. 

(7) The result was stored in the GIS. 

TESTING 

The performance of the knowledge based classification was 
tested by comparison with "standard" classification results using 
equal prior probabilities and class prior probabilities (using the 
relative frequency of the classes in the whole area). 

The classifications were carried out for a situation with a good 
spectral separation between the classes (using three bands of 

FIG. 11. Transition matrix MEXPERT, based on expert knowledge. 

TABLE 1. RELATIVE AREAS OF CROP TYPES (RIJP, 1988) AND EIGEN 
VECTORS OF TRANSITION MATRICES. 

relative area 
occupied in 

1985 1986 1987 

potatoes 0.28 0.28 0.26 
sugar beets 0.25 0.26 0.27 
cereals 0.31 0.27 0.27 
grass 0.01 0.02 0.02 
beans 0.03 0.01 0.01 
peas 0.05 0.08 0.08 
onions 0.08 0.08 0.09 

eigen vector after 100th power 
MAR8586 MAR8687 MEXPERT 

0.28 0.25 0.26 
0.25 0.26 0.24 
0.27 0.27 0.31 
0.02 0.02 0.02 
0.02 0.02 0.03 
0.08 0.09 0.1 
0.09 0.1 0.04 

the Landsat TM image) and a situation with poor spectral class 
discrimination (using band 4 only). Also, different transition 
matrices were evaluated. 

For every class, three to seven different fields (125 to 460 
pixels) were randomly selected to determine the class mean 
vector and covariance matrix. The overall accuracies of the clas- 
sification results were assessed by calculating a cross tabulation 
of the rasterized ground reference map and the classification 
result. They are shown in Table 2. 

When only spectral information was used (all prior probabilities 
were equal), the overall accuracy of the classification was 76 
percent: 

The improvement using class prior probabilities was very little: 
only 1 percent. This is striking, because the prior probabilities 
range from 0.01 to 0.30. Apparently, only a few pixels had values 
that fall into the overlap zones between clusters in the feature 
space. 

The improvement using class priors based on the empirical 
matrices MAR8586 and MAR8687 was larger: 4 percent. Both 
empirical matrices provided about the same result, but the 
improvement using the pixel priors from the matrix MEXPERT 
was less: 1.8 percent. 

The best result was obtained with matrix M4YR1 for the area 
with only the 4yrl rotation: the overall accuracy was 81.9 percent. 
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FIB. 12. Scheme of the classification procedure. 

But even with these most area-specific priors, the improvement 
is not more than 5.9 percent. 

From this it can be concluded that, if there is a good spectral 
separation between the classes, little is gained by incorporating 
additional data and knowledge. 

MAXIMUM-LIKELIHOOD CLASSIFICATION USING ONLY BAND 4 

The second series of tests was carried out in a situation with 
a poor spectral separation between the classes. This was simulated 
by classifying using only band 4. 

The overall accuracy using equal prior probabilities decreased 
to 61.4 percent. Also the other classifications provided a lower 
overall accuracy than when using three bands, but the effect of 
the prior probabilities was much larger here. 

The application of class priors gave a 3.6 percent better result, 
which was still rather small. 

The classifications based on the pixel priors, however, showed 
an important improvement of the overall accuracy. Using the 
empirical matrices for the whole area (MAR8586 and MARS687), 
a 12.9 percent better result was obtained, and matrix MEXPERT 
yielded a 12.6 percent better result. 

The most interesting result was based on the matrix M4YRl 
for this area. The overall accuracy here was still more than 80 
percent, which is 19.5 percent better than using equal priors, 
and 14.1 percent better than using class priors. In fact, this 
result was only 1 percent worse than the same classification 
using three bands. Because the spectral information from band 
3 and band 5 added only 1 percent to the accuracy, this additional 
spectral information can be seen as redundant. 

This classification was not only good just because the ground 
cover was usually as predicted by the matrix. A classification 
on the basis of the transition probabilities alone yielded an overall 
accuracy of only 60 percent. It was the combination of spectral 

prior probability TM B3,4,5 TM B4 
equal for all classes 76.0 61.4 
relative area per class 77.0 65.0 

MAR8586 79.6 74.3 ' MAR8687 E :c 'f: 79.9 not evaluated 
$ 2 ~  MEXPERT 77.8 73.6 

4d M4YR1 81.9 80.9 

information with proper predictions which led to a high overall 
accuracy of the classification result. 

This means that, where there is an important spectral overlap 
between classes, this application of pixel priors may be worth 
the effort, especially when a specific matrix, not reflecting an 
ensemble of rotations, can be found. 

CONCLUSIONS 

Markov chains and probabilistic transition matrices form a 
useful extension of the knowledge representation methods cur- 
rently used for knowledge-based image classification. They pro- 
vide a proper representation formalism for temporal relationships. 
These temporal relationships can be implemented as context 
(C,-,) dependent sets of prior probabilities. In this study we 
used crop rotations to develop the method. Other applications, 
however, of transition probabilities could be thought of, for 
example, developments of (natural) vegetation, forest manage- 
ment. For the assessment of the transition matrices, a lot of 
data are needed, but an expert may be available to provide the 
transition probabilities. The improvements which can be ex- 
pected from this application of temporal relationships depend 
on two factors: 
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(1) Spectral separation of classes. When there is a good spectral 
separation between the classes, there is little improvement from 
adding ancillary data and knowledge. On the other hand, a con- 
siderable increase of the overall accuracy can be obtained if there 
is a large spectral overlap between the classes. These situations 
occur when images with a low spectral resolution (such as SPOT 
data) are used. SPOT data lack a middle-infrared spectral band 
which is very important for land-cover discrimination. Images 
outside the optimal (growing) season are also possible candi- 
dates for this approach. 

(2) The best results can be expected when a transition matrix can 
be found which reflects only one distinct Markov chain. Such a 
matrix will contain probability vectors containing values close to 
either 0.0 or 1.0. 

The necessary knowledge about temporal relationships can be 
obtained both from analysis of a time series of ground reference 
data or from a human expert. The first requires a lot of data in 
digital format, which may be (time) expensive. Underlying 
processes and the existence of different transition chains are 
difficult to discover from these data. The expert's knowledge 
can be acquired easily and quickly, and background information 
will be available, but the expert should be able to provide reli- 
able and accurate information. 
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Air, Marine, and Land Radionavigationsystems Users 

1990 Federal Radionavigation Plan 
1991 Conferences 

The U.S. Department of Transportation is conducting open meetings for all users of U.S. government-provided 
radionavigation systems. The purpose of the meetings is to obtain user perspectives on federal policits and future plans 
for these services. Federal radionavigation policies and plans are outslines in the 1990 DOD/DOT Federal 
Radionavigation Plan, single copies of which are available from the VOLPE National Transportation Systems Center. 
Users are encouraged to attend the meetings to provide inputs for the 1992 plan. 

LORAN-C OMEGA TRANSIT RADIOBEACONS VOR/DME MLS/ILS GPS 

Spollsoxs: Research & Special Programs Administration; Federal Aviation Administration; U.S. Coast Guard 

Dates/Loutions: 19-20 Nw. 1991, Alexandria, Virginia; 5 Dee. 1991, Seattle, Washington. 

Information: Federal Radionavigation Plan: Elisabeth J. Carpenter, Volpe National Transportation Systems Ctr., Ctr. for Navigation @TS-52), 
55 Kendal Square, Cambridge, MA 02142-1093, tel. 617-494-2126. 
Conferences: Conference Office (DS930), Attn: Radionavigation Users Conference, 55 Kendal Square, Cambridge, MA 02142- 
1093, tel. 617-494-2307. 


