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ABSTRACT: Digital processing of remotely sensed data is typified by both large multispectral datasets and computation- 
ally demanding software algorithms. Such a situation leads not only to a major consumption of computing resources 
but also to time delays in processing. Because there are certain instances, such as during classroom training, when 
time delays in image processing are intolerable, we have developed a multispectral image-analysis procedure which 
allows execution of principal components, classification, and other standard analysis techniques on three channels of 
864 by 1024 pixels in near-real time using a VAXstation IVGPX. There is little or no difference between the results 
produced by our instantaneous approach and those produced by conventional computational algorithms. 

INTRODUCTION 

D IGITAL IMAGE PROCESSING TECHNIQUES have been widely 
used to analyze remotely sensed data since the early 1970s 

(e.g., Berstein, 1973; Hoffer, 1973; Bernstein and Ferneyhough, 
1975; Goldsbrough, 1977). Several authors have described soft- 
ware and/or procedures for the teaching of image processing 
techniques (e.g., Kiefer and Gunther, 1983; Jensen, 1983; Eyton, 
1983; Williams et al., 1983; Harrington et al., 1986; Merchant, 
1989). -. .- I - 

One well-known advantage of computer-assisted analysis of 
image data is the greater signal-level discrimination by the com- 
puter than is possible by means of visual interpretation. The 
majority of all digital image analyses focus on the tone/color of 
objects in a scene, not only because of the computer's capability 
for signal-level discrimination but also because it is more diffi- 
cult to develop software algorithms to address spatial infor- 
mation such as size, shape, texture, pattern, shadow, etc., than 
it is to write software to manipulate the gray levels of a digital 
image. 

~ F ~ i c a l  digital procedures developed to exploit multispectral 
image tonelcolor include histogram manipulation, multispectral 
data transformations such as ;fast-~ouri& (FFT), principal com- 
ponents (PCA), intensity-hue-saturation (IHS), image ratios, and 
multispectral data classifications (both supervised and unsu- 
pervised). Most of these techniques are computationally inten- 
sive (i.e., time consumptive), and when the number of input 
bands, the sophistication of the calculation, and/or the number 
of output classes are increased, the CPU-time requirements in- 
crease exponentially. Thus, digital processing of remotely sensed 
data is typified by both large multispectral datasets and inten- 
sive, computationally demanding algorithms. 

PROBLEM 

In a training environment, whether for formal classroom in- 
struction or for short-course/workshop, the delays typically as- 
sociated with the processing of image data often become 
intolerable. Indeed, the learning process is hindered when stu- 
dents are forced to wait several minutes, or even longer, for the 
processing of large datasets to be completed. One "solution" 
to the problem is to reduce either the size of the array of pixels 
or the number of channels being processed, but both the eval- 
uation of results and the appreciation of certain conceptslalgo- 
rithms are diminished in effectiveness when such an approach 
is taken. Therefore, it is necessary to develop a mechanism to 
increase significantly the processing speed of large, multi-chan- 
nel datasets. 
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PURPOSE 

In previous papers (Di and Rundquist, 1988; Di and Rund- 
quist, 1989), we described a technique for displaying three- 
channel color-composites on an eight-bit graphics workstation. 
The purpose of the current paper is to introduce a new multis- 
pectral image-analysis procedure to accomplish fast processing 
on a similar display device while retaining a higher level of 
accuracy in the result than was possible with our earlier com- 
positing method. Although the new technique introduces mi- 
nor error in precision, we feel that the tremendous speed of 
processing more than compensates for this disadvantage; es- 
pecially when viewed from the perspective of classroom train- 
ing. Even though we believe the errors to be small, we do not 
propose our method as a research tool. 

HARDWARE 

We implemented our approach on specific hardware, the Dig- 
ital Equipment Corporation VAXStation-IVGPX.' The GPX is a 
relatively inexpensive engineering-oriented graphics worksta- 
tion. The CPU time to complete a color-composite display of an 
image of 864 by 1024 pixels is about one minute (Di and Rund- 
quist, 1989). The GPX has one eight-bit graphics plane with a 
hardware 24-bit (eight bits for each color) color look-up table of 
length 256. 

GENERAL THEORETICAL BACKGROUND 

In order to explain our technique for fast multispectral image 
processing, we begin with a hypothetical multispectral image 
containing b bands where every pixel has an eight-bit gray level 
(0 to 255). Thus, every pixel in the multispectral dataset can be 
represented as a point in b-dimensional spectral space; in our 
case, b equals 3 and we call this 3-d space "color space." There- 
fore, the total number of possible points is 256"b. Each pixel in 
our hypothetical space can be summarized by a b-dimensional 
vector which, for our purposes, we term a "spectral vector." 
For three channels, we use the term "color vector." 

In the case of standard multispectral image-processing algo- 
rithms, computations proceed on a pixel-by-pixel basis. For a 
one-channel image array which is n by n in size, an analysis 
algorithm must, of course , be executed n by n times. For a 
digital array n by n in size with b bands, a given calculation 

'Any use of trade names and/or trademarks in this publication is for 
descriptive purposes only and does not constitute endorsement by the 
University of Nebraska-Lincoln. VAXstation-IVGPX is a trademark of 
Digital Equipment Corporation. 
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must still be executed n by n times, but calculation is more 
difficult because the array is b-dimensional. In such a dataset, 
the distinct spectral vectors far outnumber the actual physical 
objects or terrain phenomena (e.g., crop types) found on an 
image, but are far fewer than the number of pixels in a scene. 

Common (remote sensing) logic tells us that the spectral re- 
sponse for the same or similar ground objects/phenomena should 
also be the same or similar. Pixels corresponding to the same 
or a similar group of ground objects in a certain part of spectral 
space can be described by a "mean spectral vector." Because 
the number of distinct ground objectslphenomena in an image 
usually is far fewer than the number of distinct spectral vectors, 
the number of mean spectral vectors is also far fewer. 

The spectral vectors for a given land-cover group are either 
the same or very similar. Therefore, when a processing function 
is applied to that group, the result as it applies to pixels within 
the group will also be the same or similar. But, suppose that 
we apply a processing function to just the mean spectral vector 
and use that result to represent the result for every pixel within 
a group. Such an approach will, of course, lead to error. How- 
ever, because the groups are defined, in the first place, by clus- 
tering similar pixels, the error is actually minor (as explained 
below in the section on "Error Analysis"). In other words, a 
substantial time savings will result if we apply a given image- 
processing function to only mean spectral vectors instead of 
every pixel, as is the case with traditional image-processing 
methods. 

PROCEDURE 

According to the contention presented above, we propose a 
three-step fast multispectral image-processing approach. 

We begin our procedure by clustering all pixels comprising 
the hypothetical image of interest into L groups (classes); i.e., 
we conduct an unsupervised classification. A "membership 
image" is created by assigning every pixel to groups ranging 
from 1 to L, and each group can be summarized by a mean 
spectral vector. The membership image which we have prepared 
is merely a record of the group number for each pixel. Thus, 
the input b-band image becomes a one-band membership image, 
which is used later as an index to a look-up table. The bit length 
for each pixel comprising this image depends on the number 
of groups (e.g., eight bits for up to 256 groups). The mean 
spectral vector for a group is merely an arithmetic average of 
the spectral vectors comprising the group (Di and Rundquist, 
1989). 

suppose we have a b-band image iwhich is n by n pixels in 
size. Then, each pixel can be represented by a vector 

T 
l(i,j) = {l1(i, j), &(it j), - . -, lb(i, j)} 

i , j= l , 2 ,  ..., n 

Let there be L data groups denoted where W, is the group name 

into which image pixels are to be grouped. 
The grouping procedure reduces the original image to L groups, 

and a membership image is created by 

with a mean vector for a specific group k: 

where Cv(k) is a b-dimensional vector and H(k) is the frequency 
of the kth group in the membership image. So, His the histogram 
of the membership image. If required, we can calculate the 
covariance matrix for the kth group: 

where CV(k) is a b by b covariance matrix. The detailed method 
to create a membership image and mean spectral vectors can be 
found in Di and Rundquist&989). 

From the mean vectors MV and membership image, we can 
derive the estimated description of the original image: 

The difference between the original image and the estimated 
image is 

+ 3 
E (i,]] = t(iJ1] - I (i, j) 

where, is an error image. At this point, we have derived the 
membership image M, the mean vector fi and the histogram 
H of the membership image. This first step is the most time- 
consuming of the procedure because the calculations are based 
upon the entire original image. 

In the second step of our procedure, we apply an image 
processing function to the L mean spectral vectors instead of 
every pixel in the original image, and L outputs are obtained. 
If L is 256 and the image size is 512 by 512 pixels, the 
computational time is 1024 times (512r5121256) faster than would 
be the case for a standard ixel-by-pixel computation. 

Because the length of M -PI is L, any selected operation must 
be executed L times on MT. We denote the selected operation 
(function) as F. Some functions may use histogram information; 
some may use the group covaziance matrices. Then, the 
processing result (vector table), R, is the function of MV, H, 
and/or CV, which can be written as 

The dimension of g(k) varies from 1 to b depending on the 
choice of analysis operation. For example, the dimension of + 
R(k) is 1 when the analysis is a classification alogri3m. If PCA 
is the function selected, however, the dimension of R (k) is less 
than or equal to b depending on the number of component 
images desired. 

Once 3 is obtained, the resulting image is formed by using 
the formula 
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where is a pixel sector of the resulting image at lsation (i,j& 
The dimension of G depends on the dimension of R. Here, R 
actually is a lookup table. 

The membership image is used as an index to the L outputs 
and, thus, every pixel has an output. This final step is completed 
by use of the look-up table and requires little time if realized 
by software (and can be ignored if realized by hardware). 

It is clear that once the membership image, the mean vector, 
and the histogram of membership are formed, any multispectral 
image-analysis operation can be applied to the mean vector and 
histogram instead of the whole original image. Different results 
can& obtained by merely changing the algorithm as applied 
to MV and H. The membership image does not have to be 
recalculated in any later processing. Such a procedure allows 
for very fast processing, due largely to the fact that the 
membership image remains in refresh memory and our procedure 
involves minimal computation and 110. If the table-looking 
operation is not considered, the speed gain of processing for 
an n by n image array can be calculated using 

where g is speed gain and L is the length of look-up table. We 
also do not include the time for creating the membership image 
and mean spectral vectors in this calculation because those 
computations occur as part of the ordinary image display when 
using our hardware configuration (Di and Rundquist, 1989). 

ERROR ANALYSIS 

As was demonstrated in the previous section, we can ap- 
proximate the original image by using the group number of a 
pixel in the membership image as an index to the mean spectral 
vectors. Differences between the approximated image and the 
original image are errors caused by the first step in our ap- 
proach. Therefore, the original image may be expressed as 

where qi,j) is a b-dimensional spectral vector at pixel (i,j), fii,j) 
is r(i, ) s estimation and is one of the+mean spsctral vectors, d '  and (i,j) is the error vector between I(i,j) and I(i,j). Suppose 
we want to apply an image processing function F to the original 
image. Thus, 

If the function is derivable, the above formula can be written 
approximately as 

where F {qi,j)} is the exact result of$e original image, F{;i(i,j)} 
is the result of our approach, and F'{I(i,j]} is$e derivative value 
of an image-processing function at vector I(i,j). Then, the av- 
erage error brought by our approach is 

Many multispectral image-processing functions are linear, such 
as FFT, PCA, IHS, etc. For the~e~functions, the derivative values 
are constant for the different I,(i,]). Therefore, the upper limit 
of the average error brought by our method for linear transform 
function is 

Because the average error brought by the first step of our ap- 
proach is a mere one grey level (Di and Rundquist, 1989), e,, 
e,, ... , and eb are equal to 1. Then, 

Because the result of a linear-transform function always retains 
the same gray scale as the original, the summation of the coef- 
ficients is always near 1 and the upper limit of the average error 
will be near one grey level. For example, the first component 
of a PCA transform, described later as Figure 3, can be obtained 
by (Table 2): 

where C is a constant. If the average error brought by the first 
step of our approach is equal to one grey level, the upper limit 
of the average result error brought by our approach in the first 
component of PCA is 

The error analysis described above is based on applying a 
derivable function to a multispectral image. However, image 
classifications are not always entirely derivable. For a given pixel, 
image classifications first compute similarity values between the 
pixel and classes and then assign the pixel to the class with the 
highest similarity value. Although the function used to calculate 
the similarity values is derivable, the actual assigning of a pixel 
to a class with the highest similarity value is not derivable (i.e., 
cannot be differentiated). Therefore, the above formulas can be 
used to analyze the error of similarity values brought by our 
approach, but the error of the final result cannot be predicted. 
The classification error brought by our approach is determined 
both by error inherent in the first step of our approach and by 
the separability of classes. If there are no errors caused by the 
first step, then the final result will be error free. 

High separability between two classes means that there is 
minimal overlap between the distributions of classes. A highly 
separable class will have large differences between first- and 
second-highest similarity values, which means that the small 
change in similarity value caused by the error of first step of 
our approach will not result in the switch of a class number 
between the first- and the second-highest similarity values. Low 
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separability means that this switch may occur, and, therefore, 
results from our approach may differ from those of traditional 
methods. Our approach produces the most errors when it treats 
those pixels whose first- and second-highest similarity values 
are nearly equal (i.e., near the decision boundary between any 
two classes). Of course, we are considering our classification 
error in terms of results produced through the traditional ap- 
proach, and it does not necessarily follow that results obtained 
from our approach are lower in classification accuracy than the 
traditional approach with respect to actual ground truth. While 
the highest occurrences of error with our approach are in the 
overlapped part of two classes, it is worth noting that classifi- 
cation algorithms always have a higher mis-classification rate 
in this part of spectral space. 

As noted above, the first step of our approach actually is an 
unsupervised classification of the raw data into a maximum of 
L classes (in our case, hardware limits us to 256 data groups) 
(Di and Rundquist, 1989). For a real appIication, the number of 
classes is rarely over 30. The second step of our approach con- 
tinuously groups L classes into a user-specified number of in- 
formation classes iflwhen the user selects either a supervised 
or unsupervised classification function. A large number of data 
classes insures high classification accuracy in our approach. 

According to above analysis, we find that any error in the 
result tends to be caused by the first step of our approach. To 
reduce the error, two things are critical: (1) the number of groups 
(L); and (2) the algorithm which creates both the membership 
image and mean spectral vectors. If the number of groups (L) 
equals the number of distinct spectral vectors in a given image, 
we merely use the distinct spectral vectors as mean spectral 
vectors and the result is error-free. But the number of the dis- 

which normally would consume 57.6 minutes of cpu time on a 
VAXstation-II will require only 1 second with our method. 

Several functions were executed on a test image in order to 
compare the speed and quality of results of our method with 
traditional procedures. Because our processing proceeds so 
quickly, it is difficult to record the expenditure of time. There- 
fore, we cannot provide the reader with data on CPU usage in 
deriving the results shown in the example which follows. Suf- 
fice it to say that results appear on the display screen instan- 
taneously when a keyboard command is given. 

The test array (200 by 200 pixels) consists of three channels 
of airborne MSS (Daedalus AADS-1260) data acquired on 20 May 
1984 over Clay County, Nebraska (Plate 1). First, PCA was run 
on the test dataset. With a PCA transformation, the covariance 
matrix and the mean of every band for the image must be cal- 
culated first. With the conventional method, the covariance ma- 
trix and the means can be obtained by using 

and 

Notice that CV is the covariance matrix for the whole image; it 
is not the CV(z] which is the covariance matrix of the ith data 
group (discussed above). It is easy, using our technique, to 
obtain the mean and covariance matrix from the hiiogram for 
the membership image (H) and the mean vector (MV): 

tinct spectral vectors in a given image is usually very large. + 1 256 

Correspondingly, the processing time in the second step of our M = - 2 H(k) 
4 

n*n 
* MV(k) 

approach will increase. For a fixed L, an algorithm is required 
which groups a given multispectral image into L groups with and 
minimum error, but this algorithm has no known fast solution 
(Gray et al., 1980). 1 "6 3 + CV = - 2 H(k) * (MV(k) - hfi) * (MV(k) - a)' 

IMPLEMENTATION n*n k-1 
To test our approach, we implemented the technique on a 

Digital Equipment Corporation VAXstation IVGPX, an engi- 
neering workstation which runs both ELAS and LAS software at 
the Center for Advanced Land Management Information Tech- 
nologies (CALMIT), University of Nebraska-Lincoln (Junkin et 
al., 1981; Goddard Space Flight Center, 1987; Di and Rundquist, 
1988). 

We developed a method which compresses a three-band (eight- 
bitsband) image to one eight-bit composite image and uses a 
look-up table to form the color-composite image on a GPX (Di 
and Rundquist, 1989). The hardware feature of the color look- 
up table makes the "looking operation" very fast; it only takes 
one refresh period (1/30 second) to convert an entire image (in 
refresh memory) to the desired corresponding image on screen. 

As described above, when a three-band image is displayed 
on the GPX, the membership image M, thehistogram of mem- 
bership image H, and the mean vector MV have all been cal- 
culated and stored. The length of the hardware lookup table is 
256, so the number of groups in the membership image is also 
256. 

The flow chart for multispectral image processing using our 
procedure on a GPX is depicted as Figure 1. The first part of 
the illustration is the display procedure for color-compositing, 
while the second part is the procedure of instantaneous three- 
band image processing. 

To examine the speed of our technique, consider a hypo- 
thetical situation where we wish to process an image of 864 by 
1024 pixels on a GPX. Thus, g, equals 3456(864*1024/256), which 
means the anaIysis of a three-band image sized 864 by 1024 

In our example, the number of bands is three; hfi is a three- 
dimensional vector representing the means of three bands and 
the CV is a matrix 3 by 3 in size. 

Once the CV has been obtained, the transformation matrix T 
can be formed by the eigenvectors solved from CV. T is a 3 by 
3 matrix which is used to transform the three-band image into 
a three-component image. The lookup table can be calculated 
by 

where g(i) is a three-dimensional vector which represents the 
three component valuss of pixels belonging to the ith group. 
Of course, values of R(i) are real numbers which should be 
converted to eight-bit integers for display and other purposes. 

Figure 2 is the first component image (of Plate 1) created by 
the traditional method, and Figure 3 is the first component im- 
age (also of Plate 1) created by out method. Visual inspection 
leads us to conclude that there are no differences between two 
images. Figure 4 is the difference image between Figure 2 and 
Figure 3 (multiplied by 100 to convert small real-number differ- 
ences to displayable integers). Table 1 summarizes the mean 
vectors and the eigenvalues for both methods, while Table 2 
contains the covariance and transformation matrices. The sta- 
tistics seem very similar. 

In order to further compare the traditional and our procedure, 
two superviseal classifications, minimum distance and Bayes 
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I PART II 
I 
I 
I 

PART I 

FIG 1. Schematic illustrating fast image processing using 
one eight-bit graphic plane. 

PLATE 1. Histogram-equalized color-composite image of test dataset. FIG 2. First-component image of Plate 1 created by the conventional 
method. 

(maximum-likelihood) were conducted on the test image (Plate 
1). Five classes of objects have been identified by visual in- 
spection and knowledge of the site: (1) water, (2) vegetation, 
(3) non-vegetated farmland, (4) wet soil and (5) wetland vege- 
tation. The same size and location of training areas were used 
for both the traditional and new procedures. 

Figure 5 is the difference image between the two procedures 
for the minimum distance classification. The statistics (Table 3) 
show that the new and traditional methods classified most of 
the pixels (in fact, 98 percent) in the same class. Thus, it can be 
said there is no difference between the two methods for mini- 
mum-distance classification. 

Figure 6 is the difference image between the two procedures 
for the maximum-likelihood classification. We can detect some 
differences on Figure 6, especially for the water class (compare 
to Plate 1). The statistical results (Table 4) again show general 
classification agreement (90 percent) between the traditional and 
new methods. This small discrepancy is no doubt the result of 
using the mean vector to represent all pixels in each of the 
groups, which, in turn, leads to slight differences in the con- 
variance matrix. Bigger (or mulit-polygon) training areas would 

probably alleviate this difficulty because a given information 
class could consist of several data classes. Another solution to 
the prolem would be to calculate the covariance matrix within 
the data class while the original image is being grouped and 
keep the matrices for later processing. In our case, it would 
mean that we need to keep 256 matrices of 3 by 3. From the 
standpoint of memory, this would not be a big burden, but it 
would increase computing time slightly during the formation 
of data classes. The latter adjustment would solve the covari- 
ance matrix problem completely. 

CONCLUSION 

The method described in this paper increases processing speed 
from several hundred to several thousand times depending on 
the size of the image under consideration. In our implementa- 
tion on a VAXstation IVGPX, almost all multispectral analyses 
involving three bands of 864 by 1024 pixels can be done within 
one second. As presented above, the processing precision 
achieved by this method is relatively high, with little or no 
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FIG 3. First-component image of Plate 1 created by the look-up table 
method. 

Covariance 
Matrix 

46.5 83.5 -6.4 
Conventional 83.5 153.2 - 12.3 

-6.4 -12.3 365.6 

45.6 83.0 -6.4 
Look-up table 83.0 151.4 - 12.4 

-6.4 -12.4 362.1 

Transfer 
Matrix 

0.0389 0.0728 
- .4788 - 3740 
- .8771 0.4803 

FIG 5. The difference image between the conventional method and the 
look-up table method for a minimum distance classification. 

Look-up Table 
CIS 1 2 3 4 5 
1 2225 6 

- -- -- - - -- 

Method Means Eigenvalues 
Chl Ch2 Ch3 

Conventional 80.0 99.9 64.6 366.8 197.7 0.781 
Look-uptable 80.0 99.9 64.6 383.3 195.8 0.130 

FIG 4. The difference image between Figure 2 and Figure 3 (multiplied 
by 100). 

difference between the results produced by traditional and new 
methods. 

In the experiment, our method is realized on a particular 
hardware display device, but the configuration of the GPX is 
similar to many popular microcomputers and workstations. 
However, our technique can be implemented totaly by soft- 

ware. But, if done with software, both the membership image 
and look-up table must be stored in inner memory instead of 
in refresh memory. Another difference is that the looking op- 
eration must be done by software instead of hardware; but, 
even so, such an operation will require little computation time. 
In fact, there are some benefits when the new method is real- 
ized completely by software; there are no limitations on the 
image size, the number of bands, and the length of lookup table 
(a hardware limitation). 

As we mentioned before, the processing precision depends 
both on the performance of the grouping algorithm and the 
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niques of digital image processing. Students receive instanta- 
neous response after keyboard input, thus enriching the training 
experience significantly. 
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43rd Photograrnrnetric Week 
Stuttgart, 9-1 4 September 1991 

This internationally-recognized "vacation course in photogrammetry" has been held at Stuttgart University since 1973. Because Professor Dr.- 
Ing. Friedrich Ackermann, one of those responsible for the scientific program, is to retire soon, this 43rd Photogrammetric Week will be his 
farewell seminar. Essential lines of his work have been chosen as the main topics for the meeting: 

GPS for Photogrammetry Digital Photogrammetric Image Processing Photogrammetry and Geo-Information Systems 

Lectures and discussions will be held in the mornings. Technical interpreters will be available for simultaneous translations into Gennan or 
English. Demonstrations are scheduled for the afternoons. For further information, contact: Universitat Stuttgart, Institut fur 
Photogrammetrie, Keplerstrasse 11, D-7000 Stuttgart 1, FRG, telephone 0711/121-3386 or FAX 0711/121-3500. 




