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ABSTRACT: In this paper, the supervised nonparametric classifier proposed by Skidmore and Turner (1988) is discussed. 
Because the notation in the Skidmore and Turner paper is enigmatic with a published erratum (Skidmore, 1989), the 
algorithm has been restated in a consolidated form. The computational efficiency of the original algorithm is improved. 

INTRODUCTION 

P ARAMETRIC CLASSIFIERS assume that the form of each class 
probability distribution is known. To obtain the exact class 

probability distribution, only certain parameters need to be es- 
timated from training samples (Swain and Davis, 1978). For 
instance, the commonly used maximum-likelihood classifier (mc) 
is a parametric classifier. It assumes that the class probability 
distribution is multivariate normal (i.e., unimodal). The prob- 
ability distribution for a particular class is modeled completely 
by the means vector and the covariance matrix. Estimates of 
these parameters are obtained from training samples. However, 
for certain types of classifications, researchers find that the par- 
ametric assumption of a class used by the m C  does not hold 
(Ince, 1987; Kliparchuk and Eyton, 1987).- To circumvent this 
problem, researchers have attempted to develop andlor evalu- 
ate nonparametric classifiers, because they do not assume any 
form for the probability distributions of the classes. All the in- 
formation about the class probability distribution comes from 
the analysis of training samples. 

Recently, Skidmore and Turner (1988) proposed a new su- 
pervised nonparametric classifier. A modification to the original 
algorithm was suggested by Lowell (1989) and rebutted by Skid- 
more and Turner (1989). A 14 to 16 percent overall accuracy 
improvement in the classification of forest cover types was ob- 
tained in comparison with the results obtained by using the 
MLC with SPOT High Resolution Visible (HRV) (Skidmore and 
Turner, 1988) and Landsat Thematic Mapper (m) data (Skid- 
more, 1989). 

In this paper, the supervised nonparametric classifier pro- 
posed by Skidmore and Turner (1988) is examined. Its com- 
putational efficiency is improved. Because the notation in the 
Skidmore and Turner paper is enigmatic with a published er- 
ratum (Skidmore, 1989), the algorithm will first be restated in 
a consolidated form. The confusion arises in the Skidmore and 
Turner notation because of the ambiguous use of summation 
symbols and subscripts. None of the summation notation shows 
which variable is being summed over. In some equations, it is 
meant to be summation over X (the random variable) while in 
the others what is meant is summation over i or j (classes). The 
symbol Fj is used inside a summation over j which leaves the 
reader wondering because F, is the total number of training area 
pixels, which is constant. This notion was not clarified, even in 
the response article (Skidmore and Turner, 1989). 

SKIDMORE AND TURNER'S ALGORITHM 
Each pixel in the m (N in Skidmore and Turner (1988)) channel 

multichannel image has m gray-level values which are consid- 
ered as a measurement vector X = (x,, x ,,..., x,J in the m- 
dimensional gray-level space. Provided the image is quantized 
into 8 bits, it is possible for each axis in the gray-level space to 
have gray levels ranging from 0 to 255. Labeled training samples 
are obtained for each of k classes (Skidmore and Turner (1988) 
used j in three ways: to denote the number of classes, subscript 
variable in their Equations 1 and 2, and subscript for the total 
number of samples used. In this paper, j is only used as a 
subscript variable). For class i, a probability density function in 
the m-dimensional gray-level space, Fi(X), can be obtained from 
the training samples 

where niO<) (Fi(X) in Skidmore and Turner (1988)) is the number 
of pixels with a gray-level vector X and N, (Fi in Skidmore and 
Turner, (1988) is the total number of sample pixels for training 
class i: 

Ni = xni(X) for all X. (2) 
X 

According to Skidmore and Turner (1988), class densitiesf,O<) 
are used to approximate the class conditional probability dis- 
tribution 

P(Xli) = f i (X)  i = 1,2, ..., k. (3) 

To classify a pixel with its gray-level vector X into one of the k 
classes, the a posteriori probability P(iIX), for X belonging to class 
i, is estimated through 

In the above equation P(i) is the a priori probability of class i. 
Skidmore and Turner (1988) used class areal proporations re- 
sulting from unsupervised clustering of the image to estimate 
these a priori probabilities. Substituting Equations 1 and 3 into 
Equation 4, Skidmore and Turner (1988) have 

(niO<)mi) P(i) 
P(iIX) = k (5) 

2 (n,(x)lN) PO 
j- 1 
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(Equation 1 in Skidmore and Turner (1988)). This is exactly what 
we want from Bayes' theorem in deriving the a posteriori prob- 
abilities (or empirical probabilities). Skidmore and Turner (1988, 
p.1416) further proposed "a weighting factor to normalize train- 
ing area fields of different size." The normalization, however, 
caused some confusion. A correction was made on p.900 in the 
June 1989 issue of the PE&RS which, unfortunately, is still mis- 
leading. Based on our interpretation of the context in Skidmore 
and Turner (1988), the. correct expression with normalization 
factors is 

(Equation 2 in Skidmore and Turner (1988)) where the normal- 
ization factor N is the sum of all training area pixels, 

For each vector X in the training sample of class i, Skidmore 
and Turner (1988) estimated its a posteriori probability using 
Equation 6. Subsequently, they constructed a look-up table for 
each class, with its entries being every possible vector X and 
output the conditional a posteriori probabilities. For a pixel with 
gray-level vector X, they compared all the a posteriori probabil- 
ities taken from look-up tables and assigned the pixel to the 
class with the greatest probability of being correct. 

DISCUSSION OF THE ALGORITHM 

From Equation 6 it is obvious that N is a common factor in 
every term of the summation and therefore It can move in front 
of the summation symbol Z. The N fn the denominator then 
cancels with the N in the numerator, making Equation 6 math- 
ematically equivalent to Equation 5. This means that "the 
weighting factor to normalize the training area fields of different 
size" (Skidmore and Turner, 1988, p.1416) is a redundant term 
which has no beneficial effect on the classification. Because 
Equation 6 is made more complex by including the multiplica- 
tive term, it is therefore computationally less efficient. 

From Equation 5, it can be seen that the denominator is a 
constant in all the a posferiori class probabilities for a given gray- 
level vector X. This implies that, when the a posteriori probabil- 
ities are compared, only the numerator contributes to the dis- 
crimination. Therefore, in construction of the look-up table for 
class i, only the numerator [ni(X)/iVi]P(i) needs to be calculated. 
The decision rule is thus simplified to 

X +class i iff for j = 1,2, ..., k 

For classification purposes, the decision rule in Equation 8 is 
equivalent to comparing empirical probabilities as Skidmore and 
Turner (1988) did. But Equation 8 is computationaUy more ef- 
ficient. If empirical probabilities are needed for purposes other 
than classification, Equation 5 should be used. If P(i) i= 1,2, ..., k 
are not known beforehand, as is frequently the case in practice, 
an equal a priori probability for each classis assumed. This sim- 
plifies Equation 8 to the following: 

X + class i iff for j = 1,2, ..., k 

ni(X)/N, r nj(X)/y 

label is then assigned. For those gray-level vectors in the m- 
dimensional space which were not sampled during training of 
any class, a label "unclassified is assigned. 

The advantage of this algorithm lies in the fact that it does 
not require any assumption of the probability density function 
for a class. The class probability density function is exactly the 
density of the class training sample. Because the density can 
take any form, the algorithm is not limited to the Gaussian 
probability density as is the case with the MLC. 

Similar to histogram-based clustering (Letts, 1978), the Skid- 
more and Turner (1988) classifier requires large look-up tables 
when the number of image channels is large. For a two-channel 
image, both channels quantized to 8 bits, there are 256 by 256 
gray-level combinations between the two channels. The look- 
up table therefore requires 256 by 256 entries in order to handle 
all the possible gray-level vectors that an image pixel may have. 
The number of entries in the look-up table increases exponen- 
tially as more channels are added to the image. In practice, it 
is difficult to classify an image with more than three channels 
at an 8-bit quantization level. To employ this algorithm, one 
has to either reduce the quantization level or use fewer image 
channels. To reduce the number of image channels, one may 
apply principal component analysis or other types of data trans- 
formation to the original images. Judicious channel selection is 
also useful. 

Skidmore and Turner (1988) suggested using a "collapsing 
factor" to merge similar gray-levels. However, the collapsing 
factor is discussed only in terms of empirical results without its 
statistical basis or its historical development being addressed. 
In fact, Parzen (1962) formalized the compromise between res- 
olution and statistical significance inherent in the estimation of 
probability density estimation. He established the conditions for 
convergence of the estimated density p,(X) to the true density 
p(x)  and he also developed a method for ensuring convergence 
known as Parzen Windowing. 

The practical significance of this, as applied to the Skidmore 
and Turner algorithm, is that the number of samples must be 
large enough that every possible vector X has a statistically sig- 
nificant chance of being sampled. If there are 256 possible mea- 
surement vectors, then, based on random chance, 256 samples 
give vector a 1/256 probability of being sampled. If this seems 
low, then consider that for a three channel image 16,777,216 
samples are required to get the same probability of populating 
any arbitray X. This is known as "the curse of dimensionality" 
(Duda and Hart, 1973, p.95) because typically the image will 
not contain this many samples. By increasing the collapsing 
factor, each vector has a greater chance of being sampled and 
thus there are fewer gaps or holes in the density estimate which 
can lead to unclassified measurement vectors. In practice, there 
is always a compromise that must be made between the col- 
lapsing factor and the total sample size. The optimum classifi- 
cation accuracy can only be achieved by a careful balance of the 
two. Although very densely clustered classes may be estimated 
accurately with a small number of samples, confidence that the 
density estimate is accurate can only be achieved by adhering 
to Parzen's convergence criteria. In the nonparametric method, 
if a gray-level vector is not included in the training samples, 
pixels having that gray-level vector cannot be labeled during 
classification. In this respect, the MLC is more flexible because, 
since MLC uses the continuous Gaussian normal distribution to 
model the class probability distribution, it can assign a class 
probability to any gray-level vector. 

(9) CONCLUSION 

In fact, only one look-up table is needed for the nonpara- By analyzing Skidmore and Turner's supervised nonpara- 
metric classifier. For each gray-level vector X to be classified, metric classifier, some computational considerations have been 
the corresponding entries in the look-up table are extracted and identified to simplify the classifier and to enhance its efficiency. 
compared using Equation 8 or Equation 9. The resultant cIass One of the most important aspects of probability density esti- 
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mation, the relationship between the total number of samples 
and the size of the sampling window, was seemingly over- 
looked in their analysis. 
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Response 

W E WOULD LIKE to thank P. Gong and J. D. Douglas for re- 
expressing the supervised nonparametric classifier algo- 

rithm in a form which assisted their understanding of the al- 
gorithm, and which may help other readers in interpreting the 
algorithm. 

However, we wish to comment on a number of points that 
Gong and Douglas raised. 

(1) The denominator in Equation 2 (Skidmore and Turner, 
1988) is needed if the empirical probabilities are to be 
calculated. If the empirical probabilities are not required, 
then the denominator is not needed for the discrimination 
of the classes at vector space X. 

(2) The questions posed in the last paragraph of the section 
titled "Discussion of the Algorithm" may be simply an- 
swered: 

(i) Five Euclidean distance units were the rejection cri- 
teria used for the Euclidean distance classifier. 

(ii) As explained on page 1419 of the original paper, only 
those pixels with a 75 percent empirical probability of 
correct classification were chosen (from the 316 test 
pixels). This probability was chosen to indicate that as 
the empirical probability increases, so does the map- 
ping accuracy. Additional empirical probabilities could 
be taken to further investigate the relationship be- 
tween empirical probability and mapping accuracy. 

(iii) As stated in the original paper, only those vector spaces 
with the denominator in Equation 2 (Skidmore and 
Turner, 1988) equal to 0 will remain unclassified (i.e., 

those vector spaces with no training area pixels and 
therefore an empirical probability of 0 percent). 

Referring specifically to the conclusions by Gong and Douglas: 
(3) We claimed that the classifier is new for the analysis of 

remotely sensed data, not that the underlying mathe- 
matics was original (see reference to Geisser [I9821 in the 
original paper). Neither Parzen (1962) nor Duda and Hart 
(1973) developed their concepts into a classification al- 
gorithm. 

(4) The modification to the supervised nonparametric clas- 
sifier proposed by Gong and Douglas, and discussed in 
point (1) above, would appear to offer some improve- 
ments in processing efficiency, provided the empirical 
probabilities are not required. 

(5) Parzen (1962) and Duda and Hart (1973) refer to proba- 
bility density functions, while we consider the probability 
at individual vector spaces. Gong and Douglas do not 
establish (or test) the relationship between the collapsing 
factor approach we used and Parzen windows. 

We welcome the opportunity to address the issues raised by 
Gong and Douglas, and find it gratifying that the algorithm is 
generating this interest. 
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