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ABSTRACT: Fractional Brownian motion is a surface model through which the topographic surface may be described. 
This model provides a simple method for estimating the fractal dimension of a digital elevation model. By computing 
the fractal dimension value at different scales and in different directions, interpolation artifacts may be revealed, 
contributing to digital elevation model quality assessment. 

INTRODUCTION 

A TOPOGRAPHIC MAP is generally required to describe the 
terrain surface as faithfully as possible, but the smallest 

shapes escape this requirement, and in most cases their rep- 
resentation depends on the surveyois appreciation or even on 
his imagination. Indeed, compared to classical geometrical forms 
(plane, sphere, . . .), natural terrain is such a chaotic surface 
that we cannot completely represent it but only provide an ap- 
proximate image, disregarding the smallest details. Neverthe- 
less, despite their random appearance, terrain forms seem to 
follow an underlying order. It is not true that each part of terrain 
is a copy of a larger part including it. However, we can fre- 
quently observe a stochastic self-similarity, because terrain seems 
to conserve the same statistical characteristics over a wide range 
of scales. 

This property of self-similarity is called self-affinity for vertical 
profiles or for the terrain surface itself (Vicsek, 1989). Beyond 
its intuitive obviousness, it has been confirmed by Richardson's 
experimental results (in Mandelbrot, 1982). Indeed, by measur- 
ing coastline lengths on maps, Richardson observed that the 
measured length varies in a regular way as the length unit var- 
ies: that variation, in log-log coordinates, is always represented 
by an almost straight line for length units ranging from a few 
kilometres to several thousands of kilometres. Hakanson (1978) 
obtained similar results. The self-affinity of terrain has been 
discussed by Goodchild (1980), Mark and Aronson (1984), and 
Andrle and Abrahams (1989). Mandelbrot (1982) gave a math- 
ematical expression to the self-affinity phenomenon by intro- 
ducing the fractal dimension concept. In the case of a surface, 
we can intuitively say that fractal dimension - extension of the 
Euclidean dimension - is a non-integer value which ranges 
from 2 to 3 and increases when the surface progressively changes 
from a plane (0-2) to a surface so folded that it would fill a 
volume (D=3). The physical significance of fractal dimension 
for landscapes has been analyzed by Mandelbrot (1982), Pent- 
land (1984), and Goodchild (1988). Fractal geometry has been 
applied in three-dimensional (3D) landscape synthesis and re- 
sampling (Voss, 1985; Miller, 1986; Barnsley, 1988) and in ter- 
rain shape analysis (Curl, 1986; Yokoya et al., 1989). 

Our purpose is to use the fractal dimension concept for raster 
digital elevation model quality assessment. Most DEM evalua- 
tion techniques, which consist in estimating a global accuracy 
with regard to a reference (Strory and Congalton, 1986), do not 

detgct artifacts such as those caused by digitizing and resam- 
pling. The aim of this article is to reveal DEM interpolation ar- 
tifacts using fractal dimension. In the first section we present a 
technique for computing fractal dimension based upon the frac- 
tional Brownian motion model. In the second section, we use 
this model to reveal some artifacts in digital elevation models. 
Finally, in the third section, the contribution of this technique 
to DEM quality assessment is discussed. 

FRACTIONAL BROWNIAN MOTION 

The fractional Brownian motion model is a continuous, non- 
differentiable surface model which is generally fit for describing 
chaotic surfaces such as terrestrial relief (Mandelbrot, 1982; 
Fournier et al., 1982). If we call z(x,y) this surface model, we 
have the following relationship between the horizontal distance 
and the expected elevation variation over this distance: 

where u and H are constant parameters for a given landscape. 
c i s  a vertical scaling factor, related to local slope (Yokoya et al., 
1989). In the case of terrestrial relief, a takes low values in plain 
regions, and high values in mountainous regions where height 
variations over a given distance are important. His  an indicator 
of the surface complexity (Burrough, 1981). This parameter may 
take values between 0 and 1. Its physical meaning is developed 
in Vicsek (1989) by considering two consecutive displacements 
along a profile in any direction, and over the same horizontal 
distance: 

if H <  l/2, then the two height variations are likely to have opposite 
signs; 
if H =  1/2, then the two height variations are independent; and 
if H > l / 2 ,  then the two height variations are likely to have the 
same sign. 

H is related to the fractal dimension of the surface. Indeed, 
Falconer (1990) shows that 

The smaller H, the larger D and the more irregular the surface. 
On the contrary, the larger H, the smaller D and the smoother 
the surface (Goodchild 1980). 

The fractional Brownian motion model allows one to estimate 
the fractal dimension of a digital elevation model in a very sim- 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 
Vol. 57, No. 10, October 1991, pp. 1329-1332. 

0099-1112/9l/5710-1329$03.00/0 
91991 American Society for Photogrammetry 

and Remote Sensing 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1991 

ple way. Indeed, writing Equation 1 in the log-log space results 
in a linear relationship between the expected height difference 
and the horizontal distance, the increment rate of which is H: 
i.e., 

log E[lz(x + dr,y + Ay) - z(x,y)ll 

= l o g ( ~ + H l o g . \ / d u 2 + A y i .  (3) " 

In a DEM, the average elevation difference 
E[Jz(x + Ax,y + Av) - z[x,y)J] may be plotted against the horizon- 
tal distance VdX2+Ay2 for all integer values of Ax and Ay in 
any direction, yielding the fractal plots in log-log coordinates. 
H is obtained from the fractal plots as the slope of the least- 
squares straight line, and D is derived from Equation 2. Other 
techniques for computing D from a DEM have also been devel- 
oped (Clarke, 1986). In fact, D is computed for a given distance 
interval by selecting Ax and Ay so that the resulting horizontal 
distance belongs to the required interval. Indeed, Mark and FIG. 1. DEM of Colombia. 
Aronson (1984) show that the fractal plots of most terrestrial 
landscapes present slope variations corresponding to typical 
lengths of the landscape. 

This fractal dimension value is not meaningful unless the DEM 
"fractalness," i.e., the linearity of the fractal plots over the con- 
sidered distance interval, has been previously checked. This is 
easily achieved by computing the correlation coefficient 0 be- 
tween log E I)z(x + Ax,y + Ay) -z(x,y)J] and log .\/@ + AyZ: p 
should be close to 1. Other "fractalness" indices have been 
defined (Yokoya et al., 1989). 

The properties of fractional Brownian motion have been ex- 
tensively studied in literature (Mandelbrot, 1982; Voss, 1985; 
Falconer, 1990). Two of these properties-self-affinity and iso- 
tropy -are considered here. They will be used in the next sec- 
tion. 

Intuitively, self-affinity means that each part of the surface is 
similar to the whole surface. Indeed, fractional Brownian mo- 
tion is statistically scale-independent, i-e., its statistical prop- 
erties remain unchanged by a similarity. In the case of terrestrial 
relief, the self-affinity property means that, according to this 
model, each terrain shape would be a set of similar smaller 
shapes, the concentration of which would be characterized by 
the fractal dimension (Mandelbrot, 1982). 

Falconer (1990) shows that the intersection of the fractional 
Brownian surface with a vertical plane, i-e., a vertical profile, 
has the fractal dimension 2-H, whatever the direction is. In 
other words, this surface is statistically direction-independent, 
i.e., its statistical properties remain unchanged by a rotation. 
Consequently, fractional Brownian motion is an isotropic sur- 
face model. 

APPLICATION TO REVEALING ARTIFACTS IN DIGITAL 
ELEVATION MODELS 

In this section we show that fractal dimension measurements 
may contribute to digital elevation model quality assessment by itized contour lines. The interpolation process we used con- 
revealing interpolation artifacts. To do so, we must assume that sisted in searching points k~ two directions (N-S and 
the real topographic surface has the same statistical properties W-E). Because the contour lines, of 50-metre vertical interval, 
as the fractional Brownian motion model, namely, self-affinity Were rather far apart On the map sheet the pixel 
and isotropy (this hypothesis will be discussed at the end of size, the resampling process had a great incidence on the data 
this section). Then we check whether the D m  satisfies these quality* the dimension for different 
conditions or not. distance intervals and for different directions, we revealed two 

 his experiment was carried out with a DEM over a by 15- interpolation artifacts: excessive smoothness and directional 
km test-site in Colombia, in the Paz del Rio region (see DEM on tendency. 
Figure 1 and locator map on Figure 2). This D M  was generated 
for geomorphological pattern recognition (Chorowia et al., 1989) 
but limitations due to resolution had to be taken into account The DEM fractal dimension may be computed at different scales, 
and a quality evaluation was required. i-e., over different distance intervals. Table 1 shows the fractal 

The DEM was obtained from a 1:25,000-scale topogfaphic map dimension values obtained over short distances (typically 1 to 
by interpolating a 40-metre interval raster grid between the dig- 5 pixels, i.e., below 200 metres) and over large distances (typ- 

FIG. 2. Locator map of the testsite. 



TERRAIN AS A FRACTAL SURFACE 

TABLE 1. D M  FRACTAL DIMENSION FOR TWO DIFFERENT DISTANCE TABLE 2. COMPARISON OF FRACTAL DIMENSION STATISTICS B€WEEN 
INTERVALS. INTERPOLATION DIRECTIONS (N-S AND W-E) AND COMPLEMENTARY 

DIRECTIONS (NW-SE AND NE-SW) FOR TWO DIFFERENT WINDOW SIZES. 
distance interval (pixels) fractal dimension 

1 - 5  2.07 mean standard deviation 
- - 
10 - 30 2.25 Fractal dimension over 5 by 5 windows 

N-S and W-E 2.01 0.01 
NW-SE and NE-SW 2.05 0.14 

Fractal dimension over 30 by 30 windows 
ically 10 to 30 pixels i.e., from 400 to 1200 metres). Those fractal N-s and W-E 2.12 0.10 
dimensions are obtained from Equations 2 and 3 by computing NW-SE and NE-SW 2.13 0.11 
average height variations corresponding to horizontal displace- 
ments in all directions, i.e., the four main directions N-S, NW- . . 
SE, W-E and NE-SW. 

The two distance intervals were chosen in order to discrimi- 
nate between distances over which the interpolation process is 
relevant (the shorter ones) and those over which it is not (the 
largest ones). Indeed, the horizontal interval between the map 
contour lines was generally larger than 200 metres (5 pixels) 
and shorter than 400 metres (10 pixels). Therefore, the contour 
lines were not close enough to depict the terrain shapes smaller 
than 200 metres, while they allowed the depiction of shapes of 
some 400 metres or more. 

We can observe that D has a small value, close to 2, for short 
distances, which means that the DEM is locally planar. On the 
contrary, for larger distances, D has a higher value. The dis- 
crepancy between small-scale and large-scale fractal dimensions 
may be interpreted as a consequence of the smoothing inter- 
polation process. 

The DEM fractal dimension may be computed in different di- 
rections by measuring height differences along particular pro- 
files. We did so over some 800 square windows uniformly 
distributed over the DEM. Table 2 shows the average D values 
obtained along the N-S and W-E directions on the one hand, 
and along the complementary NW-SE and NE-SW directions 
on the other hand, for two window sizes: 5- by 5-pixel win- 
dows, over which the interpolation process has an important 
effect, and 30- by 30-pixel windows, over which it has not. In 
each case, the fractal plots are obtained by averaging elevation 
variations in the selected directions, and for distances ranging 
from 1 pixel to the window size. The standard deviation of the 
fractal dimension distribution is also indicated, in order to eval- 
uate the homogeneity of this parameter. 

For short distances, over which the interpolation process is 
relevant, we observe an important discrepancy between the two 
direction categories: D is smaller in the N-S and W-E directions, 
which means that the ~ h r l  is smoother in the directions in which 
the interpolation is done. Besides, the standard deviation is 
very small, i-e., the fractal dimension is almost constant over 
the DEM. On the contrary, for larger distances, over which the 
interpolation process is less relevant, we do not observe such 
a difference, which was the expected result because interpola- 
tion has no effect at that scale. Moreover, the standard deviation 
is rather large in all directions, which means that D varies from 
one area to another, depending on the landscape characteris- 
tics. At that scale, a directional tendency could exist, but it 
would be due to some anisotropic large terrain feature and not 
to the interpolation prokess. 

The variations of fractal dimension with direction for short 
distances may be interpreted as a consequence of the aniso- 
tropic interpolation process. 

A DEM is required to provide a representation of the topo- 
graphic surface, and the purpose of DEM quality assessment is 
to detect discrepancies between the DEM and the real terrain. 

So far, however, we have only revealed discrepancies between 
the DEM and a theoretical surface model, namely, fractional 
Brownian motion. To what extent can these discrepancies be 
interpreted as consequences of interpolation artifacts? In other 
words, can the smoothg and anisotlopic interpolation process 
be held as responsible for the non self-affinity and anisotropy 
of the DEM? 

First, can the non self-affinity of the DEM be interpreted as 
an artifact? On the one hand, although it is intuitively true that 
terrain is self-affine within limited intervals only, Mark and 
Aronson (1984) observe that the limits of self-affinity intervals 
generally correspond to some typical terrain feature in the land- 
scape, while the limit distance observed here (between 5 and 
10 pixels) does not coincide with any dominant terrain feature 
in the area. On the other hand, this limit distance coincides 
with the approximate horizontal distance between contour lines. 
This coincidence shows that the interpolation process has an 
effect on the DEM fractal dimension over very short distances. 

Second, can the anisotropy of the D m  be interpreted as an 
artifact? Although terrain may be anisotropic for large distances 
due to the main ridges and valleys, it is intuitively isotropic 
over short distances. Besides, the anisotropy observed here co- 
incides with the interpolation directionality, and this coinci- 
dence shows that the DEM anisotropy is a consequence of the 
interpolation process. 

Finally, because the discrepancies between the DEM and the 
theoretical surface model have a correlation with the resampling 
technique peculiarities, the self-affinity / isotropy hypothesis 
may be reasonably accepted. 

DISCUSSION 

Modeling the terrain surface with fractional Brownian motion 
can contribute to digital elevation model quality assessment by 
revealing some artifacts, which are generally due to interpola- 
tion. In fact, the technique presented in the previous section 
aims at assessing the interpolation process. On the one hand, 
an excessive smoothing generally means that the grid interval 
is too small compared to the horizontal distance between con- 
tour lines, so that the kind of curve chosen for interpolating 
(often spline or polynomial) has a great incidence on the D m .  
On the other hand, a directional tendency means that the known 
points have been searched in too few directions. It can then be 
useful to compute fractal dimensions for revealing such inter- 
polation artifacts, all the more so as they may be undetectable 
by a mere visual analysis on a shadow or perspective image, 
although they can jeopardize the DEM reliability for many ap- 
plications. 

This quality assessment technique presents an important 
practical advantage, insofar as it does not require a reference 
DEM. Indeed, as mentioned by Carter (1988), most DEMs are 
produced in areas where no better data are available, so that 
they cannot be compared to a reference. Besides, even when a 
reference is available, the two grids are not always geometrically 
compatible, so that the comparison process may require one of 
the DEMS to be resampled. In this case, the interpolation as- 
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sessment would become meaningless. Therefore, computing 
fractal dimensions provides a n  intrinsic quality assessment 
technique, and the use of D as a numerical parameter allows 
one to define quantitative quality indicators. 

Obviously, this quality assessment technique is not sufficient 
for a complete data evaluation. Indeed, as well as the tech- 
niques based upon transfer function analysis (Elghazali and 
Hassan, 1986), it can only reveal high-frequency systematic ar- 
tifacts like those mentioned earlier. In other words, it can only 
reveal interpolation artifacts. It cannot be used for checking the 
global agreement of the DEM with the real landscape, or for 
revealing global errors such as those caused by rotations or 
translations, which may be detected more easily by comparing 
the DEM to a reference data set. The most classical quality as- 
sessment method, which consists in computing an  RMS error, 
i-e., the standard deviation of height discrepancies between the 
evaluated DEM and a reference DEM or set of control points 
(Torle&d, 1986), is not sufficient either because it is not sen- 
sible to interpolation artifacts. Consequently, both quality as- 
sessment techniques should be applied together to a resampled 
DEM for a more complete evaluation. 

CONCLUSION 

Generally, digital elevation model quality assessment is car- 
ried out by comparing the DEM to a reference, and an  RMS error 
is computed in order to estimate the DEM accuracy. However, 
this kind of evaluation is not sensitive to interpolation artifacts, 
like excessive smoothness and directional tendency. Such arti- 
facts may be detected by computing fractal dimensions at dif- 
ferent scales and in different directions. Therefore, fractal 
geometry can contribute to digital elevation model quality as- 
sessment through a simple technique which does not require a 
reference DEM. 

REFERENCES 

Andrle, R., and A. D. Abrahams, 1989. Fractal techniques and the sur- 
face roughness of talus slopes. Earth Surface Processes and Landforms, 
Vol. 14, NO. 3, pp. 197-209. 

Barnsley, M., 1988. Fractals Everywhere. Academic Press, San Diego, 406 

1989. A new technique for recognition of geological and geomor- 
phological patterns in digital terrain models. Remote Sensing of En- 
vironment, Vol. 29, No. 3, pp. 229-239. 

Clarke, K., 1986. Computation of the fractal dimension of topographic 
surfaces using the triangular prism area method. Computers and 
Geosciences, Vol. 12, No. 5, pp. 713-722. 

Curl, R., 1986. Fractal dimensions and geometries of caves. Mathematical 
Geology, Vol. 18, No. 8, pp. 765-783. 

Elghazali, M., and M. Hassan, 1986. Performance evaluation of two 
bivariate processes for DEM using transfer functions. Photogram- 
metric Engineering 6 Remote Sensing, Vol. 52, No. 8, pp. 1213-1218. 

Falconer, K., 1990. Fractal Geometry. John Wiley, Chichester, 310 p. 
Foumier, A., D. Fussell, and L. Carpenter. 1982. Computer rendering 

of stochastic models. Communications of the ACM, Vol. 25, No. 6, 
pp. 371-384. 

Goodchild, M., 1980. Fractals and the accuracy of geographical mea- 
sures. Mathematical Geology, Vol. 12, No. 2, pp. 85-98. 
, 1988. Lakes on fractal surfaces: a null hypothesis for lake-rich 

landscapes. Mathematical Geology, Vol. 20, No. 6, pp. 615-630. 
Hlkanson, L., 1978. The length of dosed geomorphic lines. Mathemat- 

ical Geology, Vol. 10, No. 2, pp. 141-167. 
Mandelbrot, B., 1982. The Fractal Geometry of Nature. Freeman, San Fran- 

cisco, 480 p. 
Mark, D., and P. Aronson, 1984. Scale-dependent fractal dimensions 

of topographic surfaces: an empirical investigation, with applica- 
tions in geomorphology and computer mapping. Mathematical Ge- 
ology, Vol. 16, No. 7, pp. 671683. 

Miller, G., 1986. The definition and rendering of terrain maps. Computer 
Graphics, Vol. 20, No. 4, pp. 39-48. 

Pentland, A. P., 1984. Fractal-based description of natural scenes. IEEE 
Transaction Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, 
pp. 661-674. 

Strory, M., and R. Congalton, 1986. Accuracy assessment: a user's per- 
spective. Photogrammetric Engineering 6 Remote Sensing, Vol. 52, No. 
3, pp. 397-399. 

Torleghd, K., A. bstman, and R. Lindgren, 1986. A comparative test 
of photogrammetrically sampled digital elevation models. Photo- 
grammetria, Vol. 41, pp. 1-16. 

Vicsek, T., 1989. Fracfal Growth Phenomena. World Scientific, Singapore, 
363 p. 

P - Voss, R., 1985. Random fractal forgeries. Fundamental Algorithms for 
Burrough, P. A., 1981. Fractal dimensions of landscapes and other en- Computer Graphics (R. A. Earnshaw, ed.), pp. 805-835, Springer- 

vironmental data. Nature, Vol. 294, pp. 240-242. Verlag, New York. - 
Carter, J., 1988. Digital representations of topographic surfaces- Photo- Yokoya, N., K. Yamamoto, and N. Funakubo, 1989. Fractal-based analysis 

gummetric Engineering 6 Remote Sensing, Val- 54, No. 11, PP. 1577- and interpolation of 3D natural surface shapes and their application 
1580. to terrain modeling. Computer Vision, Graphics and Image Processing, 

Chorowiu, J., J. Kim, S. Manoussis, J. P. Rudant, P. Foin, and I. Veillet, Vol. 46, pp. 284-302. 

1992 ASPRS AWARDS PROGRAM 

The Society has significantly expanded its awards program beginning in 1992. The ASPRS Awards Manual, printed in the January 
1991 issue of PE&RS (also available through headquarters) lists criteria for all new awards: Outstanding Service, Merit, Certificate for 
Meritorious Service, Honor, and Fellow. Nominations for these awards, plus the Honorary Member Award are open to deserving 
candidates in the public or private sector. 

Because of the August 1992 ISPRS Congress, the ASPRS Awards will be announced at the Spring Annual Meeting in Albuquerque, 
but presented at a special Awards Convocation at the August meeting so that all visitors to the ISPRS Congress may attend. 

If you have candidates, please send them to Headquarters. You can help to make the ASPRS Awards Program a success! 


