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ABSTRACT: This paper is an attempt to discuss the effects of the characteristics (accuracy, number, and distribution) of 
the set of check points used for experimental tests of DTM accuracy on the resulting accuracy figures. In this paper, 
first of all, the concept of reliability in the context of DTM accuracy tests is introduced and alternative measures for this 
are sketched. Then, the effects of the characteristics of a set of check points on the DTM accuracy estimates are inves- 
tigated both through a theoretical analysis and by experimental tests. 

INTRODUCTION 

I N THE EXPERIMENTAL TESTS ON THE ACCURACY of digital ter- 
rain models ( m ) ,  a set of check points is used as the "ground 

truth." Then the points interpolated from the constructed DTM 
surface are checked against the corresponding check points. 
After that, the difference of the two heights (DH) at each DTM 
point is obtained. These differences are used to compute statis- 
tical values such as the mean and standard deviation which are 
used as a measure of DTM accuracy. In these circumstances, DH 
is considered as a random variable. 

In the case of the experimental tests on DTM accuracy, it is 
clear that the final DTM accuracy figures estimated from the test 
results - in this case, the mean and standard deviation values 
- are definitely affected by the characteristics of the set of check 
points. In other words, it can be said that the characteristics of 
the set of check points which were used as the ground truth in 
the experimental tests have effects on the reliability of the final 
DTM accuracy figures obtained from these tests. 

It is obvious that the reliability of the accuracy figures, es- 
timated from an experimental test, is also a problem which is 
of considerable importance in D M  accuracy tests, becuase 
only if the accuracy figures are reliable to a certain level, can 
one use the accuracy estimates to evaluate the "goodness" of 
the digital terrain model which has just been tested. There- 
fore, this study is an attempt to obtain an insight into the 
effects of the set of check points used in the experimental 
tests on the reliability of the DTM accuracy figures estimated 
from the test results. 

In this paper, the concept of reliability in the context of DTM 
accuracy tests will be introduced and alternative measures for 
this will be sketched. Then, the effects of the characteristics of 
a set of check points on the DTM accuracy estimates will be 
investigated both through a theoretical analysis and by exper- 
imental tests. 

RELIABILITY IN THE CONTEXT OF DTM ACCURACY TESTS 

Reliability is a concept which is widely used in engineering 
(including photogrammetric engineering) and industry. It seems 
pertinent to have a look at how this concept is defined and used 
in these areas before it can be adopted into the methodology 
and context of experimental tests on DTM accuracy. 

"Presently with the North East Regional Research Laboratory, Centre 
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THE CONCEPT OF RELIABILITY IN ENGINEERING AND INDUSTRY 

Due to the many differing operational requirements and vary- 
ing environments existing in engineering and industry, the con- 
cept of reliability may mean quite different things to different 
people. Nevertheless, a generally acceptable definition given by 
the B.S.I. (British Standards Institution) is as follows (Dummer 
and Winton, 1986): 

"Reliabiity is the characteristic of an item expressed by the proba- 
bility that it will perform a required function under stated conditions 
for a stated period of time." 

For example, suppose that the life of the bulbs made by a 
lamp manufacturer is declared to be 1,000 hrs (which is the 
stated period of time required by the above definition), then 
the reliability is 98 percent if one tested 100 bulbs of this make 
and found that 2 of them had shorter lives than declared. This 
might belong to one of the simplest examples. In practice, the 
reliability of an engineering system or structure is much more 
complicated. However, the detailed discussion of this matter 
lies outside the interest of this study. What is intended here is 
to adopt the concept of reliability into the context of DTM ac- 
curacy estimates. 

REUABILIN IN THE CONTEXT OF DTM ACCURACY TESTS 
Obviously, in the context of experimental tests on the accu- 

racy of a digital terrain model, there is nothing which is con- 
cerned with "a required function under stated conditions for a 
stated period of time." Instead, what is of concern in this con- 
text is "with what probability are the estimated accuracy figures 
(i-e., the mean and standard deviation values) likely to be cor- 
rect" or "to what degree of correctness will the accuracy results 
have been estimated." In any case, it is an obvious fact that the 
D m  accuracy results obtained from experimental tests are not 
absolutely certain and one can accept these results only to a 
certain confidence level. Therefore, the concept of reliability can 
be adopted into this context because reliability is concerned only 
with uncertainty. 

In some sense, the concept of reliability in this context might 
be defined as the degree of correctness to which the DTM ac- 
curacy figures have been estimated. 

Of course, the reliability of DTM accuracy estimates in the 
context of experimental tests may be affected by several factors 
such as the capabilities of the person who has undertaken the 
work; the program by which the accuracy figures have been 
calculated and recorded; and the characteristics of the set of 
check points which have been used as ground truth against 
which the DTM points have been checked. However, in this 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 
Vol. 57, No. 10, October 1991, pp. 1333- 1340. 

0099-1112/9l/5710-1333$03.00m 
81991 American Society for Photogrammetry 

and Remote Sensing 



PHOTOGRAMMETRIC ENGINEERING 8r REMOTE SENSING, 1991 

study, it is assumed that other factors are absolutely reliable; 
therefore, only the effect of certain characteristics of the set of 
check points on the reliability of DTM accuracy estimates will be 
considered. 

A set of check points can be characterized by three main 
parameters: (1) the sample size (i.e., the number of points in 
the data set); (2) their accuracy; and (3) the distribution of the 
data points. The main discussion in this paper will be about 
how each of these three main parameters of a set of check points 
affect the reliability of D m  accuracy estimates in the context of 
experimental tests. 

As one can imagine, a measure is required for the reliability 
of D m  accuracy estimates. There may be two types of measure 
available. One is qualitative (or descriptive) and the other type 
is quantitative (or numerical). For the former, words such as 
absolutely reliable, most reliable, very reliable, quite reliable, 
fairly reliable, not so reliable, not reliable, unreliable, most un- 
reliable, absolutely unreliable, etc., can be used. However, in 
the scientific community, such a statement is not acceptable 
because the definition of such a term is usually too loose. 

For the quantitative (or numerical) measures, there are three 
alternatives as follows: 

One possible measure is to use the absolute values of the accuracy 
of each of the obtained accuracy estimates, e.g., the value of stan- 
dard deviation of the obtained standard deviation estimate. Sup- 
pose that the estimated standard deviation values for the DH 
accuracy is SD@H), then such an absolute value may denoted as 
SD(SD@H)). 
Another possible measure is to use a relative value, similar to the 
term "per mil of flying height" which is commonly used to state 
the accuracy of photogrammetrically measured data. Thus, in this 
case, a percentage value may be quite adequate and thoroughly 
acceptable. For example, the percentage value of the ratio 
SD(SD@H))~D@H) might well be adequate. 
The third possible way is to use the concept of "membership" as 
used in the context of fuzzy sets. Percentage values between 0 
percent and 100 percent can be used and these values represent 
the degree of reliability to which an accuracy estimate belongs. In 
this case, it is not necessary that the percentage value be obtained 
from the ratio SD(SD@H))/SD@H). Instead, the SD(SD@H)) value is 
converted into a figure expressing the degree of reliability by a 
pre-defined function. 

There is no fundamental difference between the second and 
the third approaches. The second value will become the same 
as the third if the former is stretched into the range of 0 percent 
to 100 percent. 

After these introductory discussions and definitions, it is time 
to look into the matter of the effect of check points on the DTM 
accuracy estimates. 

EFFECT OF SAMPLE SIZE (NUMBER) ON THE RELIABILITY 
OF THE DTM ACCURACY ESTIMATES 

It seems obvious that the inclusion of more check points in 
the data set will lead to a more reliable result. So researchers 
try to use large sample sizes in order to ensure that the obtained 
accuracy values will be reliable. For example, in the ISPRS DTM 
test which was conducted by Commission III's Working Group 
No. 3 (Torlegi3rd et al., 1986), more than 1,800 check points were 
used in each test area. However, a large number of check points 
may sometimes be costly to produce and, in some cases, even 
impossible to provide in the context of DTM accuracy testing. 
Therefore, an important question which arises is whether such 
a large number of check points is necessary. If not, then the 
obvious follow-up question is "what is the minimum number 
of check points required for a given degree of reliability for the 
accuracy estimates?' That is to say, the important matter in this 
case is to determine the required minimum sample size (num- 

ber) for the given degree of reliability required for the accuracy 
estimates (i.e., the estimated mean and standard deviation val- 
ues). 

Ley (1986) tried to provide a solution to this problem based 
on his own experience and pointed out that "a sample size of 
150 points will guarantee that the subsequent accuracy state- 
ment possesses a standard deviation of 10 percent (of the ob- 
tained value of standard deviation estimate). This number (150 
points) is over 10 times smaller than that used in the ISPRS test. 
However, he didn't provide any information about how this 
figure was obtained nor the context in which it occurred. There- 
fore, a theoretical deduction may be both revealing and impor- 
tant. 

In an attempt to answer the questions raised above, this see 
tion starts with a theoretical analysis; then the theoretical results 
will be validated with experimental data. The theoretical analy- 
sis in this study is based on the assumption that the check 
points are free of error. 

EFFECT OF SAMPLE SIZE ON THE ACCURACY OF THE ESTIMATED 
MEAN VALUE 

From statistical theory, it can be found that the sample size, 
required with a given degree of accuracy requirement for the 
accuracy fimres to be estimated, depends on the variation as- 
sociated with the random variable, Le., DH in the case of the 
DTM accuracy tests. The smaller the variation, the smaller the 
sample size that is needed to achieve a given degree of accuracy 
required for the accuracy estimates. For an extreme example, 
suppose the standard deviation (SD) of the height difference 
(DHs) was equal to zero, then one check point would be enough 
no matter how large the test area or the size of the data set. 
The required minimum sample size also depends on the given 
degree of the accuracy requirement itself. A general discussion 
about the relationship between the sample size, the value of 
SD, and the given degree of the accuracy requirement is given 
in the following paragraphs. 

Let M be the mean of a random sample of size n from a 
particular distribution, and u be the true value of the random 
variable. Then the ratio as follows: 

is the standardized variable and has approximately the normal 
distribution N(0,1), even though the underlying distribution is 
not ngrmal, as long as n (the sample size) is large enough (Hogg 
and 'i'anis, 1977). 

Suppose the SD of a distribution is known but the value of u 
(the true value of the random variable) is unknown. Then, for 
the probability r and for a sufficiently large value of n, a value 
Z can be found from the statistical table for N(0,l) distribution 
such that the probability that Y will be within the range from 
- Z  to Z is approximately equal to r; or mathematically 

The closeness of the approximate probability r to the exact 
probability depends upon both the underlying distribution and 
the sample size. When the underlying distribution is unirnodal 
(with only one mode) and continuous, the approximation is 
usually quite good for even a small value of n (e-g., n=5). If 
the underlying distribution is "less normal" (i-e., badly skewed 
or discrete), a large sample size is required to keep a reasonably 
accurate approximation. However, 20 or 30 is the number which 
is quite adequate for n in all cases (I-Iogg and Tanis, 1977). 

Substituting Equation (1) into Equation (2) and rearranging 
it, the following expression can be obtained: 



For a given constant S, the percentage of the probability, 
IwoNO. 

(100~) percent, of the random interval M 2 S including u is called 
the confidence interval, where S is the specified degree of ac- qw 1 !, \ 

curacy for the mean estimate, M in this case. In general, if the 
required confidence interval (100~) percent = 100(1- a) percent, , I I I 
then the sample size n can be expressed as the following ac- ', , 1 \ 
cording to Equation 3: 600 

'8 \ 

A. SAMPLE SIZE WITH REWIRED MEAN ACCURACY 

TOP LINE WITH 99% CONFIDENCE, nIo 9ez. BorTon 95% 

where SD is the standard deviation of the random variable, S is 3w 

the given degree of accuracy for the mean estimate, and Z is 2,,,, 

the limit value within which the values of the random variable 
1 : :\ : : : -- 

=?:-.- 
Y will fall with a probability of r. Its value can be found in the 'QO 
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statistical table 6 r  the N(0,1] distribution. The mathematical o 
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and the commonly used values are as follows: 
(5) NO. 

0. S N R E  SIZE W1TH REWIEO RELIABILITY OF 50 

and n is the required minimum sample size for the check points -- 
with a given confidence level which is expressed by Z,. 

In the case of a DTM accuracy test, the SD in Equation 4 is the ~o - -  
expected standard deviation of the m, and an approximate 
estimate is required before starting to measure the check points. 'os-- 

The discussion of how to estimate such a rough value lies out- 
side this study but has been given elsewhere (e-g., Li, 1990). 
The value of r is commonly selected as 95 percent, 98 percent, m-. 
or even 99 percent. 

It seems that the ratio S/SD is a value which can be used as loo-- sox 
the reliability of the estimated mean value. If it is denoted as 
R(M), then Equation 4 can be rewritten as follows: O~ : + 

2 4 6 0 10 12 14 I6 1 1  20 

(6) FIG. 1. Sample size (number of check points) with required accuracy. 

The diagrammetric presentation of Equation 6 is given in Fig- 
ure l(a). Equation 6 can also be rewritten as follows: 

Next, the influence of sample size on the reliability of the SD 
estimate should be considered. It can be shown that the vari- 
ance of the standard deviation estimated from a sample can be 
approximately expressed as follows (Burington and May, 1970, 
p.194): 

Vm(SD(DH)) = V m  (DH) / 2(n - 1) (8) 

In the context of a DTM set, this would mean that the esti- 
mated standard deviation of the DTM errors possesses a stan- 
dard deviation of t/- times itself if the check points are 
free of error, or with a variance smaller than the critical value 
which will be discussed later. 

This can be expressed as a percentage of the estimated vari- 
ance. It can be rewritten as follows: 

very close to that presented by Ley (1986). To give another 
example, a sample size of 1,800 will produce a standard devia- 
tion of 2 percent times itself for the standard deviation estimate. 

Accordingly, if the reliability requirement for the standard 
deviation estimate of the DTM is given beforehand, then the 
required minimum sample size can also be computed from the 
following: 

n=- + 1  
2-R2 (SD) (10) 

In practice, a relatively large sample size is usually used for 
experimental tests on Dl'M accuracy; therefore, for convenience, 
Equation 10 can be approximated as folows: 

1 a=- 
2-R2(SD) (11) 

where R(sD) is a percentage value. For example, if R(SD) = 10 
percent is the reliability required, then from Equation 11, it can 
be computed that the required number for this example is 50. 
The graphical presentation of Equation 11 is shown in Figure 
lb. 

1 
R(sD) = x 100% (9) EXPERIMENTAL VALIDATION flq'xj 

The discussion given in the previous two sections is purely 
where R(SD) is used as the reliability of the SD estimate. For theoretical. One very important question arising from this dis- 
example, a sample size of 150, which was given by Ley (1986) cussion is whether these criteria can really be applied in prac- 
as an example, will provide a standard deviation of 6 percent tice. To answer this question, some experimental tests are 
times itself for the standard deviation estimate. This value is necessary. 
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This has been done using the data sets which had been gen- 
erated and used in the ISPRS test (Torleghd et al., 1986). Detailed 
information about these data sets is omitted here, but it has 
given in the author's thesis (Li, 1990) and in a previous paper 
(Li, in press). Two areas, i-e., Uppland and Sohnstetten, were 
selected for this experiment because, from the tests which have 
been described in the previous paper (Li, in press), it was found 
that the occurrence frequencies of large residual errors was very 
low. Thus, the data sets for these two areas were assumed to 
be very reliable. 

The-check points were originally arranged in a grid form. For 
Uppland and Sohnstetten areas, the grid sizes are 69 by 36 = 
2,484 points and 20 by 104 = 2,080 points, respectively. How- 
ever, not every point was measured because a certain number 
fell in a woodland area or on some other unsuitable features. 
In fact, only 2,314 grid nodes were measured for Uppland and 
1,892 for the Sohnstetten area. From these points, several sub- 
sets were selected. These data sets were selected simply by 
choosing every nth point from the data file. The test results are 
shown in Tables 1 and 2, where the symbol " ?" before SD and 
RMSE values is simply omitted. 

Table 1 shows the variation in the parameters defining the 
accuracy of the DTM from composite data sets for Uppland with 
the number of check points used. The SD is estimated as 0.59m 
as determined from the entire sample. According to Equation 
4, if the estimated mean should lie within a range of k0.05m 
from the true value with 95 percent confidence, then 535 check 
points are required for the purpose. However, with the same 
confidence level and value for SD, 134 and 273 points will give 
estimated means within a range of +0.10m and 20.07m from 
the true value, respectively. From the same table, it can also be 
seen that the results obtained using more than 578 check points 
are very consistent not only for the mean values (varying within 
a range of k0.016m) but also for the SD and RMSE. Below this 
number, the mean, the SD, and the RMSE all show bigger vari- 
ations. When the number of check points lies within the range 
between 257 and 578, the mean varies within the range of 
+0.065m. When fewer than 115 check points were used, the 
figures of these accuracy parameters become very unstable. The 
results in this table show more or less similar trends to those 
expressed by Equations 4 and 10. 

TABLE 1. VARIATION OF DTM ACCURACY WITH NUMBER OF CHECK 
POINTS FOR THE UPPLAND THE AREA 

Parameters for check points Parameters for DTM accuracy 
Fraction Percent Number RMSE (m) SD (m) Mean (m) 
V 1  100.0 2,314 0.636 0.590 0.238 
5/6 83.3 1,928 0.618 0.575 0.227 
3/4 75.0 1,735 0.614 0.573 0.222 
7/12 58.3 1,349 0.618 0.574 0.229 
In 50.0 1,157 0.615 0.574 0.222 
V 3  33.3 771 0.622 0.576 0.235 
1/4 25.0 578 0.612 0.571 0.220 
1/5 20.0 462 0.592 0.566 0.175 
116 16.7 385 0.619 0.579 0.218 
in 14.3 330 0.597 0.547 0.240 
1/8 12.5 289 0.587 0.545 0.218 
1/9 11.1 257 0.623 0.568 0.256 
1/10 10.0 231 0.606 0.586 0.155 
1/20 5.0 115 0.566 0.545 0.166 
1/30 3.3 77 0.574 0.571 0.058 
V40 2.5 58 0.570 0.548 0.157 
V50 2.0 47 0.759 0.743 0.154 
1/60 1.7 39 0.580 0.580 0.016 
1/70 1.4 34 0.437 0.346 0.268 
V80 1.25 29 0.554 0.546 0.095 
V90 1.1 26 0.630 0.613 0.148 

Table 2 shows the variation in DTM accuracy with the number 
of check points for the Sohnstetten area. The sD value for the 
Sohnstetten data set using all check points is +0.401m. Also 
according to Equation 4, with 95 percent confidence, 683,245, 
125, and 62 check points will give the estimated means within 
the ranges of 2 0.03m, +0.05m, +0.07m, and +0.10m from 
the true value, respectively. From Table 2, it can be found that 
the mean varies from 0.153 to 0.173 in a range of 0.02m. At this 
stage, the SD and RMSE values are very stable. 

When the number of check points falls within the range 379 
to 237, the mean varies over a greater range of 0.035 (0.154 to 
0.189). Also, the SD and RMSE values vary over a greater range. 
When the number of check point lies within the range of 211 
to 119, the means vary with a range of 0.063m (0.144 to 0.207m). 
When the number of check points lies within the range between 
106 to 64, the mean varies from 0.085m to 0.236m. It is 0.068m 
lower and 0.083m higher than the value of 0.0153m which is 
that obtained using all the check points (i.e., 100 percent) in 
this test. Accordingly, the RMSE and SD values also vary with a 
greater range when fewer check points are used. This test again 
shows that Equations 4 and 10 are appropriate. 

More intuitively, these data values are presented graphically 
in Figure 2 and Figure 3. The continuous lines represent the 
variation ranges which are predicted from purely theoretical 
considerations. The lines in Figure 2 are produced according to 
Equations 3 and 4, where a 95 percent confidence level is se- 
lected; SD = 0.590m and 0.401m; and 0.220m and - 0.155m are 
used as the "true" values of the means for the Uppland and 
Sohnstetten areas, respectively. Here it needs to be pointed out 
that the term S used in Equation 4 is the given degree of ab- 
solute accuracy but not the precision. The latter is well-known 
to topographic scientists as follows: 

The lines in Figure 3 are produced according to Equation 10, 
using 0.575 and 0.395 as the SD values for Uppland and Sohn- 
stetten areas, respectively (because it can be seen from the ta- 
bles that these two values seem more alike than 0.590 and 0.401). 

TABLE 2. VARIATION OF DTM ACCURACY WITH NUMBER OF CHECK 
POINTS FOR THE SOHNSTETEN AREA - - 

Parameters for check points Parameters for DTM accuracy 
Fraction Percent Number RMSE (m) SD (m) Mean (m) 
ID 100.0 1.892 0.429 0.401 -0.153 
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FIG. 2. Variation of mean with sample size (number). " +" represents the 
experimental results. Solid lines represents "mean of the tested means" 
plus (higher line) and minus (lower line) the achievable accuracy of the 
mean with the given sample size. 

Symbols " + " represents the points obtained from experimental 
tests which have been listed in Table 1 and Table 2. These dia- 
grams appear to prove the validity of the theoretical discussions 
of the previous two sections, at least in the context of the ISPRS 
test data. 

EFFECTS OF ERRORS IN THE CHECK POINTS ON THE 
RELIABILITY OF THE DTM ACCURACY ESTIMATES 

Next, the matter of the errors in the check points which were 
used as ground truth in the experimental tests and their effects 
on the reliability of the DTM accuracy estimates requires discus- 
sion. An attempt is made to establish the relationship between 
the accuracy of the check points and the reliability of the re- 
sulting DTM accuracy estimates so that the maximum tolerable 
accuracy for the check points can be determined for a given 
degree of reliability for the final DTM accuracy figures to be 
estimated. 

ACCURACY REQUIREMENT FOR THE CHECK POINTS 

In the context of topographic science, in most cases, the ac- 
curacy of the check points is specified in terms of root-mean- 
square error (RMSE). In the present discussion, this RMSE value 
is assumed to be the same as the standard deviation (SD). There- 
fore, in this context, the important thing is to find the relation- 
ship between the SD value of the check points and the given 
degree of reliability required for the final standard deviation 
estimate which depends on the sample size of the check points. 

B. SO VARIATION WITH SAMPLE SIZE FOR SOHNST 

FIG. 3. Variation of SD with sampling size (number). "+" represents the 
experimental results. Solid lines represents mean of the tested sw, plus 
(higher line) and minus (lower line) the SD of the SDs. 

Let DH, be the error involved in the check points and DHl be 
the true height difference. Then the overall error (DH) is as 
follows: 

DH = DHl + DH,. (13) 

By applying the error propagation law to Equation 13, the 
following expression can be obtained: 

VAR(DH) = VAR(DH,) + VAR(DHJ. (14) 

The variance of DH could be the sum of a few random vari- 
ables. In this study, it is split into two, i-e., VAR(DH,) and 
VAR(DH& The value of VAR(DH) itself is not of interest, but 
the value of VAR(DH,) is. An attempt may be made to estimate 
the latter through the former because only the former can be 
known. The attempt which is made here is to find a critical 
value for VAR(DHJ so that the value of VAR(DH) is still ac- 
ceptable as being representative of VAR(DH,). 

Also, as expressed as Equation 8 in the section on sample 
size, the standard deviation SD(DHl) estimated from a sample 
of size n has a variance approximately as follows: 

Therefore, the acceptable range for SD(DH) to deviate from 
SD(DH,) can be expressed as follows: 



It L mu& more convenient to use a single vhe ,  so ihe square 
root of these two t e r n  is used as the representative value be- 
cause they are independent. Then the following equation can 
be obtained. 

Combining Eqrrations 17 and 14 with a shpiificatim, the fol- 
lowing expression can be derived: 

It is more convenient to express this csiterion in terms of the 
standard deviation. Ss Equation 18 can be converted to the 
fobwing fom 

Let K = SD[DI~&D[DH), then Equafion 19 can be rewritten as 
fotlows: 

Where X is a function of the sample size, n. A graphic presen- 
tation is shown in Figure 4. For a given sampk size which is 
determined by the reliability requirement discussed in the pre- 
vious sections, the critical value for the required accuracy of the 
check points can be determined by Equation 19. In which case, 
SD(DH& may be given a special annotation, thus denoted as 
SD(t) in this context. 

Obviously, the value of K decreases with an increase in n. 
This means that, with the increase in n, the variance of the 
estimated SD(DH,) value becomes smaller, And the smder the 
variance of SD(DH,), the greater the influence of the check points 
with the same accuracy on the reliability of the estimated SD(DH,) 
which is approximated by SD(DH). 

As discussed before, if the accuracy of the check points is 
higher than s ~ ( t ) ,  then SD(DH) can be used to approximate SD(DH,) 
and reliability of SD(DH) can still be approximated by Equation 
10. 

On the other hand, if the standard deviation of the check 
points is larger than the value of §D(t), then the estimated value 
of SD(DH) is not as reliable as it should be in theory with the 
same sample size. Alternatively, it can be said that the value of 
~D(DH) possesses a larger variance than the theoretical value for 
that sample size. Therefore, the value of SD(DH) is not reliable 
enough to be used to represent SD(DH~). 

From the discussions conducted in the previous section, it 
can be ronduded that, if the standard deviation of the check 
points is smaller than the critical value set out in this section, 
then their effect is negligible. However, if the check points have 
a standard deviation larger than the critical d u e ,  then the M- 
curacy of check points itsell affects the reliabiity of the esti- 
mated accuracy figures. In ;this section these effects are discussed. 

Substituting Equation 20 into Equation 9, the following rela- 
tiomhip can be obtained: 

This f o m h  expresses the zela60nship between K (the ratio 
of the standard deviation of the check points to the standard 
deviation of the final m) and the reliability of the standard 
deviation estimate. For example, if K=0.09, then R59.0 per- 
cent. The graphical representation of Equation 21 is shown in 
Figure 5. 

The ~eliabiIity of the estimated standard deviation figure R('3D) 
derived from both Equation 19 and Equation 21 should be very 
similar if the accuracy of the check points is higher than the 
critical value. However, when the accuracy of the check points 
is lower than the criterion which has been set, then the value 
of &ability computed from Equation 21 will be much lower 
than that from Equation 10. Equation 21 aim shows that, if the 
SD of the check points is 70.7 percent of the DTM SD, then the 
SD of the estimated standard deviation, SD(SD(DH)), will be equal 
to the SD(DH) itself. This confirms what has been stated before 
- namely, that the accuracy of the check points affects the 
reliability of the standard deviation estimate if it is lower than 
the critical value set by the formula given in Equation 19. 
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FIG. 4. Required accuracy of check points (in terms of the ratio of the SD 
of check points to that of the DTM) with sample size, 

EFFECT OF THE LHSTRlBUTlON OF CHECK POINTS ON 
THE RELIABILITY OF THE ACCURACY ESTIMATE 

Ansther important concern with the check points used for 
the DTM accuracy test is &eir distribution. The distribution of 
the check points can be characterized by their locations and 
patterns. In the ISPRS test, the check points are in a grid pattern. 
The question must be raised as to whether such a pattern is 
suitable. If not, then it poses the question as to what kind of 
distribution is desirable. Ley (1986) has made some efforts to 
answer this question. He stated that "an accuracy assessment 
of a D m  should be based on a sample of heights taken from 
the entire model." He also points out that such "a sample of 
points should include both the recorded (measured) and inter- 

FIG. 5. The reliability of the estimated SD of the DTM with the accuracy of 
the check points (in terms of the ratlo of the so of the check points to that 
of the DTM). 
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polated heights." However, the answer to the question as to 
their distribution is still not complete. 

Therefore, it is of interest to know how this factor affects the 
reliability of the accuracy figures for the DTM to be estimated 
from test results. If this were known, then the desirable distri- 
bution of check points could be determined. In this section, an 
attempt will be made to discuss this particular matter from the 
viewpoint of statistical theory. An experimental test has also 
been carried out to see if such a theoretical analysis is applicable 
to DTM practice. 

A serious shortcoming of using check points located in a grid 
pattern is that they then represent a systematic sample. In this 
case, if the first point is sampled, then the positions (locations) 
of all other points are definitely determined. Such a sample is 
evenly distributed whereas the procedure which has been dis- 
cussed for use in a DTM accuracy assessment is based on ran- 
dom sampling. From this point of view, a gridded data pattern 
is not so appropriate. Thus, from the purely theoretical stand- 
point, in order to make such a statistical procedure applicable, 
random sampling is desirable. 

The use of a grid pattern for check points may be the result 
of the thought that the OH values in some parts of the area 
being tested may be greater than those in other parts and that 
the sample is representative only if the points are so distributed. 
Such a line of thinking would ignore the prerequisite for such 
a statistical test; namely, that the sample should come from the 
same distriiution, because of the fact that the DH values in some 
parts of the test area are greater than those in other parts and 
are not from the sample space or population. If the stated pre- 
requisite should be applied, then the large values of DH should 
also be randomly distributed. Therefore, the use of a gridded 
pattern of check points is not always sound. The advantages of 
using it are (1) its convenience and efficiency in terms of im- 
plementing a sampling and measuring strategy in a stereo-plot- 
ting machine, and (2) its convenience in terms of the resulting 
data structure which can be implemented in the computer used 
for the processing of the data. 

In this case, the concept of random sampling is very clear. It 
means that there is no intention to select a point in specific 
position so that any point, including the recorded points, has 
an equal chance of being measured at every time of sampling. 

Finally, it should be noted that the remarks made in this 
section are based solely on a purely theoretical analysis and may 
not be so suitable in practice because the terrain surface is cer- 
tainly not the result of a purely stochastic process. Therefore, 
some experimental tests will be conducted to see how far the 
statistical theory varies from DTM practice. 

The two ISPRS test areas, Uppland and Sohnstetten, have again 
been used for this purpose. The aim of the test is to find how 
DTM accuracy estimates vary with different distributions of check 
voints. 

lie within 1 to 2,314. After this, those check points with the 
same numbering as the generated random numbers are taken 
from the data set and form the sample. 

The test results are listed in Table 3. Some standard statistical 
parameters compiled from these results are given in Tables 4 
and 5. In the computation of the percentage values, the arith- 
metic means are assumed to be the best estimates of these val- 
ues. The expected tolerable values are computed according to 
the theoretical formulae set out in the previous sections. 

From these results, it can be seen that the standard deviation 
of the standard deviation estimate for the Uppland data set 
behaves very well, but that for the Sohnstetten data set is much 
larger than expected. Using another measure - the mean, all 
the values derived from both the Uppland data set and the 
Sohnstetten data set fa11 within the range expected. 

Of course, the variation in the accuracy results may also be 
related to the roughness and/or the steepness of the terrain 
surface. The fact that the results for Uppland behave better 
could be due to the smaller slope angles which prevail in the 
area. The results could also have been affected by the errors in 
the check points themselves. However, such an effect in this 
particular case is not significant here because the accuracy of 

TABLE 3. ACCURACY RESULTS FOR THE ~ U D O M L Y  SELECTED CHECK 
POINTS FOR THE UPPLAND AND SOHNS~EITEN AREAS (NO. = 500) 

Results for Uppland Area Resultsfor Sohnst Area 
File RMSE SD Mean RMSE SD Mean 
No. (+m) (em) (m) (em) (2m) (m) 
1 0.628 0.589 0.219 0.426 0.397 -0.155 
2 0.589 0.543 0.228 0.421 0.390 -0.158 
3 0.603 0.565 0.204 0.417 0.387 -0.157 
4 0.648 0.585 0.278 0.412 0.382 -0.155 
5 0.633 0.595 0.216 0.403 0.369 -0.160 
6 0.621 0.586 0.207 0.407 0.384 -0.136 
7 0.637 0.597 0.224 0.437 0.415 -0.138 
8 0.601 0.565 0.205 0.448 0.425 -0.143 
9 0.629 0.570 0.227 0.453 0.427 -0.152 
10 0.630 0.594 0.212 0.398 0.372 -0.142 
11 0.637 0.593 0.232 0.451 0.426 -0.149 
12 0.623 0.570 0.252 0.431 0.389 -0.186 
13 0.622 0.586 0.208 0.417 0.385 -0.162 

TABLE 4. STATIST~CAL ESTIMATES FOR THE SD 

Uppland Area Sohnst Area 
Average Value (AV) 0.5778 0.395 
-- 

SD of Distribution 0.015 0.019 
SD/AV Comuuted 2.64% 4.72% 

The first step in this test is to select randomly some sets of 
check points with a certain size (number) from the original data 
sets (1,892 points for Sohnstetten area and 2,314 for Uppland). TABLE 5. STATISTICAL ESTIMATES FOR THE MEAN 
In this test, for each area, 15 sets of check points have been Uppland Area Sohnst Area 
used, each with a sample size of 500 points. The randomness 
of the selection was achieved by using a set of random numbers (Average Value) 0.226 - 0.152 
from a uniform distribution which was generated by computer SD Computed 0.020 0.012 
using an NAG (Numerical Algorithm Group) routine. (More dis- Expected 0.026 0.018 
cussion about the limitations of this test will be given in the Max. (computed) 0.052 0.034 
next section). In generating the random numbers, the range is 99% Confidence 0.067 0.046 
determined by the total number of points in the original data 98% Confidence 0.060 0.041 
set. For example, for the Uppland area, the random numbers 95% Confidence 0.051 0.035 
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the check points is much higher than that of the DTMs (Li, in 
press). This test shows that, to a certain extent, random sam- 
pling over the entire area (without taking into account geo- 
graphical location) is a method which is acceptable for the creation 
and acquisition of check points. 

Before ending this discussion, some remarks on the random- 
ness of the check points used in this test need to be made. In 
this experimental test, nominally, the check points were ran- 
domly sampled with a size of 500 points from the entire set of 
check points. However, in practice, truly random numbers can 
only be obtained by rolling dice or dealing cards or be generated 
by special mechanical machines. The randomness which was 
achieved by the NAG routine is always doubtful because the 
random numbers generated by computer software follow cer- 
tain rules specified by algorithms (Frodesen et al. ,  1979). Also, 
for this particular test, the locations of the check points have 
not been changed so the data set is still not a random sample 
of the whole area covered, but only of the original grid. Such 
a limitation may affect the conclusion made in this study. 

DISCUSSION AND CONCLUSION 

The reliability of the estimated DTM accuracy figures is also af- 
fected by the accuracy of check points. Again, the accuracy of 
check points required for a given degree of reliability can also be 
determined by Equation 19. 
The reliability of the estimated standard deviation figure was ex- 
pressed in terms of percentage of the estimated value. It can be 
obtained through the use of Equations 10 and 21. When the var- 
iance of the check points is larger than the critical value, then 
Equation 21 should be used to compute the reliability factor. 
The check points could be sampled randomly from the entire test- 
ing area (and preferably as a result of a very even distribution). 
In this context, the use of the word "randomly" is meant to con- 
vey the concept that every point, including the recorded points, 
has the same chance of being selected every time sampling is 
carried out. 
Only if the sample size is increased and the accuracy of the check 
points is improved at the same time, can the reliability of the final 
estimates be improved. It may be very difficult to implement the 
second of these criteria. 

The discussion carried out in this study might be also appli- 
cable to other experimental tests using check points. 
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Reunion in the Planning Stage 
U.S. Naval Aerial Photographic Interpretation Center 

1992 marks the HFTIETH YEAR since the founding of the U.S. Naval Aerial Photographic Interpretation Center. A reunion 
of all graduates of the Navy Aerial Photographic Interpretation Center is being planned for 15-21 May 1992 in San Francisco, 
California. 

For further information, please contact: 
Richard De Lancie, 1370 Taylor Street, *lo, San Francisco, California 941 08-1 031 
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