
A Three-Stage Classifier for Remote Sensing of
Mountain Environments
Steven E. Franklin and Bradley A. Wilson'
Department of Geography, The University of Calgary, Calgary, Alberta T2N 1N4, Canada

ABSTRACT: The use of spatial satellite image information and digital elevation models in remote sensing classification
is described for a mountainous region in southwest Yukon. A three-stage classification method was devised that
incorporates a quadtree-based segmentation operator, a Gaussian minimum-distance-to-means test, and a final test
involving ancillary geomorphometric data and a spectral curve measure. The overall increase in accuracy is significant
compared to maximum-likelihood techniques, and the resulting map products are consistent with few unclassified
areas. The three-stage classifier can produce an output map in significantly less time than that required for the per­
pixel maximum-likelihood classifier, and used a minimum of field or training data which are often difficult and expensive
to acquire in complex terrain. The programs to handle geomorphometric, spatial and spectral attributes are coded
efficiently in the C programming language. They can be adapted to find homogeneous regions in high resolution aerial
imaging spectrometer data sets (sub-metre pixel resolution) or other raster databases.

INTRODUCTION

SATELLITE REMOTE SENSING IMAGE CLASSIFICATION ACCURACIES

in complex terrain can be increased by using information
from ancillary sources (Strahler, 1981; Hutchinson, 1982; Frank,
1988; Jones et ai., 1988) and image spatial characteristics (Snyder
and Cowart, 1983; Tannous and Arif, 1989; Tailor et ai., 1986;
Peddle and Franklin, 1991). The classification may be accom­
plished using an augmented set of variables that includes (for
example) geomorphometry and estimates of neighborhood var­
iability such as entropy derived from spatial co-occurrence. Im­
age spatial characteristics also have been used in segmentation
schemes and compared to results obtained using only per-pixel
information. Cross et ai. (1988) discussed pre-processing and
post-processing spatial techniques, and summarized some ear­
lier attempts to drive image segmentation with spatial infor­
mation such as the ECHO system (Kettig and Landgrebe, 1976;
Landgrebe, 1980). The pre-processing techniques are designed
to reduce the number of computations required and to make
decisions on class membership as early as possible in the clas­
sification. At the heart of these classifiers is the search for edges
and homogeneous regions (e.g., Haralick, 1980; Pavlidis, 1982;
Tilton and Cox, 1983; Qui and Goldberg, 1985; Bousquet and
Flouzat, 1986) and the orderly division or aggregation of pixels
using data structures (e.g., Spann and Wilson, 1985; Paine, 1987).
An underlying theme in these developments has been the rec­
ognition that different approaches to classification may be needed
for different parts of the image.

The pixels within a satellite image contain a high degree of
spatial correlation, but per-pixel classifiers ignore this intuitive
relationship and decide class membership based on single pixel
spectral response patterns alone (Khazenie and Crawford, 1990).
Spatial classifiers attempt to quantify the degree of spatial cor­
relation and use this information together with the spectral re­
sponse pattern to decide class membership. Because all natural
scenes, and all raster data sets, contain a certain degree of this
spatial coherence, classifiers that take note of some measure of
spatial homogeneity can yield higher classification accuracy. In
this paper, a three-stage classifier is introduced with an example
multispectral satellite classification of landcover in the moun­
tainous southwest Yukon (Figure 1). The classification proceeds
with (1) a quadtree-based segmentation and test for homoge-
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neous regions, (2) a normal per-pixel classification test, and (3)
a test involving ancillary digital elevation data and a spectral
curve measure. One important feature of this three-stage ap­
proach is that unnecessary calculations are reduced; as soon as
a pixel or region passes one of the tests at an early stage, no
further work at that location is required. The procedure is an
efficient way of incorporating ancillary data into one or more
of the stages. For example, one useful ancillary source of infor­
mation in a mountain environment is a digital elevation model
which provides highly diagnostic variables such as slope and
aspect angle. This information is not always required to make
correct decisions on landcover, however, and therefore the in­
clusion of these variables in all decisions made for every pixel
ensures a large degree of inefficiency. The three-stage classifier
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attempts to classify pixels with the minimum information; only
when no decision can be made will the ancillary data be con­
sulted. The procedure has been designed to avoid some of the
notable problems with classifiers that rely solely on parametric
statistics, such as the increasing sensitivity to increasing num­
bers of mapping variables (Tom and Miller, 1984; Kenk et aI.,
1988; Lee and Landgrebe, 1990; Franklin and Wilson, 1991a). In
the coming hyperspectral era of remote sensing, single pass per­
pixel classifiers will not be adequate for many classificatory tasks.

A THREE-STAGE CLASSIFICATION ALGORITHM

The classifier described here is based on three stages of op­
eration: (1) a quadtree segmentation and test for homogeneity,
(2) a minimum distance to means test, and (3) a spectral curve
and geomorphometric data test. The programs (described in
detail in Franklin and Wilson, 1991b) accept any square raster
data input with dimensions of 512 pixels by 512 lines that can
be divided into four equal square quadrants recursively until
the one pixel level is reached.

STAGE ONE CLASSIFIER-QUADTREE SEGMENTATION AND
HOMOGENEITY

One method of segmentation that does not require knowl­
edge of the characteristics of the data is the quadtree approach
(Pavlidis, 1982; Spann and Wilson, 1985). This approach as­
sumes that spatial coherence exists, but makes no assumption
about the area over which spatial characteristics are to be mea­
sured. Any image can be subdivided into four equal partners,
or quads, successively until the one pixel level is reached. Each
quad is tested for homogeneity after successive partitioning. If
the quad passes the test, an attempt to claSSify the entire quad
can be made. If classification is successful, no further work is
required. If classification fails, the quad is divided further into
four equal areas and the test for homogeneity is repeated on
each partner. Quadtrees can begin with the entire scene as the
first block to be tested and partitioned (top-down), or with sin­
gle pixels that are merged into quad regions successively. This
latter technique has been termed the split-and-merge process
(Spann and Wilson, 1985; Cross et aI., 1988).

The quadtree method is data independent because it does not
evaluate the data in any manner during segmentation. This
independence has several advantages beginning with the re­
cursive nature of the algorithm. Programming is simplified (see
Franklin and Wilson, 1991b) and efficient. No arbitrary deci­
sions are made concerning the location of boundaries between
different homogeneous regions. The quadtree examines whether
or not a quad is homogeneous, not whether it falls inside a
homogenous region or has an edge or class boundary pass
through. The final decision to be made can conform to standard
classification or clustering decision rules. Therefore, the first­
stage segmentation of the image data is unsupervised and
knowledge about the classes or distribution of features in the
image is not required at this point (Cross et aI., 1988). The seg­
mentation is performed by a procedure that calls itself four times,
passing two new parameters that include the starting point (top
left corner of the quad) and the dimension of the quadtree. The
first level of segmentation is taken to size 32 by 32 to reduce
the many calculations at large quad sizes that would most likely
fail the test for homogeneity. The final level of segmentation is
size 4 by 4; areas smaller than this yield unstable statistics for
test purposes.

The homogeneity test employed uses the coefficient of vari­
ance (Tannous and Arif, 1989) and range statistics (Cross et aI.,
1988) for each input spectral band. These statistics were selected
because of their simplicity and the need to optimize the exe­
cution speed of the algorithm for the small microcomputers
(Compaq 386/25 DESKPRO; AST Research 386/20 Premium)

available for this research; obviously, more complex tests could
be used in their place. A threshold value of 14 percent was
selected for the coefficient of variance after extensive testing of
several satellite images. For example, if the threshold was low­
ered, an unacceptably large number of quads failed the test.
The algorithm calculates a coefficient of variance for each seg­
mented quad of pixels. If a quadrant has a lower coefficient of
variance than the threshold value, it is homogenous. A special
case occurs when the quadrant mean value is very low (ap­
proximately less than five) and the coefficient of variance is not
stable. In that case, the range of pixel values is calculated and
compared to a homogeneous range of three. The program can
be terminated at this point. Alternatively, an attempt can be
made to label the homogeneous regions and to deal with areas
that have failed the homogeneity test.

When a homogeneous quadrant is' discovered, the mean and
variance are compared to the mean and variance of known classes
in the region sampled with training data. The known class sta­
tistics are stored in the form of a "seed file" and may have been
acquired through field sampling, a previous classification, a
spectral library, or initial clustering procedures. The first test is
a variance test based on the F-statistic. The second test is a
Student's t-test which compares means of the sample (the ho­
mogeneous quadrant) and the population (the training data for
each class). If no significant differences are found, each pixel in
the quadrant is assigned to that particular class and eliminated
from further processing. If several classes pass the test, the
quadrant is assigned to the class with the lowest cumulative t­
test value in all the available bands.

STAGE Two CLASSIFIER-MINIMUM DISTANCE TO MEANS

Stage two of the classifier is a straightforward minimum-dis­
tance-to-means calculation with stringent acceptance criteria.
Pixels that have not been identified during the quadtree seg­
mentation may be handled best in a per-pixel decision rule
without reference to spatial characteristics. For simplicity and
ease of use, we have selected the minimum-distance-to-means
classifier based on standard deviation distances. Jensen (1986)
has suggested that this formulation can give comparable results
to more sophisticated decision rules such as maximum-likeli­
hood, particularly if the classes are"distinct." Problems with
data set dimensionality (Swain and Davis, 1978; Tom and Miller,
1984) and modjfyjng thresholds (Kenk et aI., 1988) can be avoided.

The distances between each pixel value and each known class
mean are computed by subtracting these two values and divid­
ing by the class standard deviation. Because each pixel is com­
pared to each class once, a method of eliminating highly unlikely
assignments as soon as possible was implemented by thresh­
olding incoming values at two standard deviations.

STAGE THREE CLASSIFER-ANCILLARY DATA AND SPECTRAL
CURVES

Some pixels in a given image will not be correctly identified
in either stage one (quadtree segmentation) or stage two (min­
imum-distance-to-means). In our remote sensing research in
mountain areas, these problem pixels require a third stage that
employs an entirely different set of tests and involves the use
of ancillary information independent of the satellite image data.
For example, many of these problem pixels fall in areas of
mountain shadows; they are spectrally variable because they
contain diffuse radiation and backscattered light, and they do
not resemble classes sampled in the conventional way (means
and variances). We can resolve these classification problems
with recourse to an ancillary elevation model data set, and by
examining spectral curves. In other images, pixels that remain
unclassified after the first two passes may be transitional be­
tween regions or boundaries between classes, or they may con-
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tain significant noise, artifacts (such as clouds), or an unknown
feature. Other formulations for the third stage in the classifier
may be appropriate for these pixels.

The elevation model information can be examined for hom­
ogeneity and similarity to the existing geomorphometric con­
ditions in the known classes. This is a repetition of the first two
stages using geomorphometric variables rather than spectral
variables. The spectral data are retained and compared to the
known classes in the form of a spectral curve (Carlotto, 1986).
This curve is a graphical representation of the mean values for
the known classes; the idea is to compare the incoming pixels'
curve to the known classes to determine whether the relation­
ship between the bands is consistent with a known class. For
example, if a class has mean spectral response values in four
bands equal to 10, 20, 15, 50, the curve would be described as
up (10 > 20), down (20 > 15), up (15 < 50). Carlotto (1986)
demonstrated that some pixels affected by shadows or atmos­
pheric attenuation exhibited much lower pixel values but had
a similar spectral curve to those fully illuminated pixels sampled
in a class. A shadowed pixel of surface material from that class
would have the same curve for those four bands: up, down,
up. Again, in our software, the ancillary geomorphometric var­
iables are checked for similar relationships; this substantially
reduces the number of classes with similarly shaped curves.

THE EXPERIMENT

STUDY AREA AND DATA COLLECTION

A study area in Kluane National Park, southwest Yukon, was
selected for a test of the three-stage classifier and a comparison
to the maximum-likelihood decision rule. This area is moun­
tainous with extreme local environmental gradients character­
istic of a high arctic, paraglacial terrain. A SPOT MLA satellite
image was acquired on 29 July 1989 with a viewing angle of
+ 17.22 degrees west, and solar illumination conditions of 47.76
degrees elevation, 174.63 degrees azimuth. The image was
cloudfree and without visible radiometric degradation; how­
ever, no adjustments were made for atmospheric influences or
the effect of the wide-angle viewing geometry. An elevation
model was generated by manually digitizing a 1:50,000-scale
contour map and interpolating a dense grid with the Surface II
Graphics System (Davis, 1987). The OEM and satellite imagery
were co-registered using 20 ground control points. A 0.5-pixel
error was tolerated during the OEM resampling; geomorpho­
metric measures of elevation, slope angle, and incidence value
were computed. The preparation of the data is described in
some detail in Franklin and Wilson (1991a).

Field data on percent vegetation cover and species and top­
ographic conditions were collected at 793 randomly selected
sites corresponding to 11 landcover classes. These data were
used in two ways: (1) as core sites for training the maximum­
likelihood algorithm and as input to the three-stage classifier,
and (2) as test sites to determine classification accuracy after
mapping. Because the pixels selected for field visits were used
in both defining decision rules and in verifying their accuracy,
the absolute mapping accuracies are known to be overesti­
mated.

Two methods of classification were used to map the area in
the satellite image. The first was a straightforward application
of the supervised maximum-likelihood classifier available in the
PCI Inc. (1988) EASVPACE image analysis system. Thresholds
were not modified to account for class overlap (Kenk et aI.,
1988); this action serves only to increase commission errors with
other classes rather than the null class. The second method was
a thorough test of the three-stage classifier. Both classifiers were
run on a 20MHz IBM-AT clone under MS-DOS with six data chan­
nels (three multispectral, three topographic) and 11 classes.

RESULTS OF CLASSIFICATION

An execution time of approximately 45 minutes was recorded
for the new, three-stage algorithm. The same classification based
on maximum-likelihood decision rules required approximately
60 minutes. The main differences recorded in these two tasks
were the number of pixels classified (92 percent versus 61 per­
cent), and the overall accuracies achieved (87 percent versus 56
percent). Table 1 provides a summary of the individual class
accuracies and overall performance for the two methods. It is
important to note that, in order to avoid ill-conditioned covar­
iance matrices for individual classes, the maximum-likelihood
classifier required data input of over 42,000 pixels obtained by
interactively training on each class. The three-stage classifier
required a seed file of means and standard deviations con­
structed from the 793-pixel field sites.

The maximum-likelihood classifier yielded 71.86 percent ac­
curacy overall using the three SPOT bands. This decreased to
67.34 percent with the addition of elevation to the decision rule,
60.36 percent with elevation and incidence value, and 55.98
percent with elevation, incidence, and slope. The table also shows
the percent accuracy of only those pixels classed in each at­
tempt. The decrease in accuracy can be seen to be a direct func­
tion of the increasing numbers of unclassified pixels, and may
be indirectly related to their statistical properties. For example,
elevation model data often do not conform to the multivariate
normal distribution; nor are the individual variables indepen-

TABLE 1. SUMMARY OF MAXIMUM-LIKELIHOOD AND THREE-STAGE TOPOGRAPHIC CLASSIFICATIONS (793 TEST PIXELS)

(MLC) (Topographic)
(MLC) (MLC) SPOT-MLA + SPOT-MLA +

(MLC) (SPOT-MLA + SPOT-MLA + Elevation + Elevation +
SPOT-MLA alone Elevation Elevation + Incidence Incidence + Slope Incidence + Slope

Class Overall% Classed% Overall % Classed% Overall% Classed% Overall% Classed% Overall% C1assed%

Coniferous 67.00 68.57 62.04 89.33 52.78 86.36 48.15 88.14 98.1S 98.15
Deciduous 42.70 44.71 7.08 82.50 23.60 77.78 23.60 77.78 70.79 70.79
Mixed 88.89 88.89 86.11 96.88 75.00 87.10 66.67 96.00 44.44 44.44
Organic 88.89 88.89 88.89 90.00 81.48 89.19 77.78 91.30 98.77 100.00
Alpine Tundra 71.25 71.25 71.25 78.08 70.00 98.25 56.25 100.00 91.25 91.25
Alpine Meadow 57.95 61.45 37.50 55.93 27.27 57.14 20.45 64.29 93.18 93.18
Barrens 74.44 81.71 78.89 98.61 75.56 100.00 74.44 100.00 100.00 100.00
Alluvial Dep. 95.65 95.65 95.65 100.00 89.86 100.00 81.16 100.00 100.00 100.00
Water 75.00 75.00 75.00 79.41 75.00 79.41 75.00 79.41 94.44 94.44
Delta 68.57 75.00 42.86 78.95 42.86 78.95 42.86 78.95 100.00 100.00
Montane Grass. 60.49 63.64 65.43 91.38 50.62 89.13 49.38 90.91 69.14 78.87

Averages 71.86 74.07 67.34 85.55 60.36 85.76 55.98 87.89 87.29 88.28



452 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1992
r-------------------------,

Legend

• I. Coniferous Forest • 5. Alpine Tundra • 9. Watero2. Deciduous Shrub 0 6. Alpine Meadow 0 10. Delta

• 3. Mixed Forest 0 7. Barrens • II. Montane Grassland

• 4. Organic Terrain 8. Alluvial Deposits • 12. Unclassified

PLATE 1. Map output of the three-stage classification algorithm for classes listed in Table 1. (a) First-stage quadtree segmentation and homogeneity
test; approximately 14 percent of the image has been classified. (b) Second-stage minimum-distance-to-means test; approximately 76 percent of the
image has been classified. (c) Third-stage topographic test and spectral curve measures; approximately 92 percent of the image has been classified.
(d) Postclassification smoothing of noise and unclassified areas; final map accuracy is determined to be 87.64 percent correct compared to field
identification of 793 pixels.
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dent. These results are consistent with accuracies obtained by
other researchers in similar experiments (Kenk et aI., 1988; Jones
et aI., 1988). The final columns in Table 1 show the results after
the three-stage classification. Overall accuracy is 87.29 percent
with less than 9 percent remaining unclassified. The compari­
son to maximum-likelihood highlights the important fact that
almost 30 percent more of the image has been classified with
very high accuracy.

The maps in Plate 1 illustrate the progress of the three-stage
algorithm: (a) first-stage classification of 14 percent of the image
at 89.01 percent accuracy; (b) second-stage classification of 62
percent of the image at 91.32 percent accuracy; and (c) third­
stage classification of 15 percent of the image at 87.02 percent
accuracy. Approximately 8 percent of the image remained un­
classified. These are pixels in the deepest shadows or are "mixed­
pixels" (mixels) for which no decision can be made without high
probability of error. The final image in Plate 1 was obtained
after postclassification smoothing or reclassification of pixels based
on majority membership in a 3 by 3 window (Thomas, 1980;
Booth et aI., 1989). Accuracy of this product based on the 793
field sites is 87.64 percent with a confidence interval of 85.90 to
92.65 percent.

CONCLUSION

A new, three-stage classifier has been developed to handle
high spatial and spectral resolution remote sensing data and to
permit efficient incorporation of ancillary data variables in the
analysis. The basic ideas are to classify certain parts of an input
image with the spatial or spectral characteristics most suitable
for decision making and to avoid formulations that display sen­
sitivity to increasing numbers of mapping variables and their
statistical properties. Pixels are classified at the earliest stage
possible to reduce unnecessary work, and training the classifier
has been reduced to a minimum. The first stage is a quadtree
segmentation and homogeneity test that uses the coefficient of
variance and range statistics. Approximately 14 percent of the
Yukon SPOT MLA image was classified after this process. The
second stage is a Guassian minimum-distance-to-means classi­
fier with F-statistics and Student's t-test. A total of 76 percent
of the satellite image was classified after these two passes were
complete. The third stage of the classification algorithm em­
ploys geomorphometric ancillary data and spectral curves to
decide pixel identity. This procedure classified approximately
15 percent of the entire scene, leaving less than 9 percent un­
classified.

The overall accuracy of the final map (which was later
smoothed) reached 87.64 percent. This compares favorably with
the 71.86 percent achieved with SPOT MLA data alone and the
55.98 percent achieved with the SPOT MLA data plus elevation,
slope, and incidence value from the digital elevation model in
the maximum-likelihood formulations. When the unclassified
pixels are not used in the calculation of maximum-likelihood
accuracy, the final numbers are more comparable; however, the
new classifier made correct decisions on 30 percent more pixels
than the maximum-likelihood classifier. The three-stage classi­
fier can produce an output map in significantly less time than
that required for the per-pixel classifier, and used a minimum
of field or training data which are often difficult and expensive
to acquire in complex terrain. The programs to handle spatial
and spectral attributes are coded efficiently in the C program­
ming language (see Franklin and Wilson, 1991b). They can be
adapted to segment and classify homogeneous regions in high
resolution aerial imaging spectrometer data sets (down to sub­
metre pixel resolution) or other raster databases. The spatial
classification techniques discussed here will be increasingly im­
portant in the coming hyperspectral era of remote sensing.
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The Case for the High Altitude Version of Landsat-7

THERE SEEMS TO BE GENERAL AGREEMENT (civilian and mili­
tary) that Landsat should continue and that Landsat-7 should

be designed as the first of a truly operational Earth sensing
satellite of moderate resolution. There also seems to be agree­
ment that Landsat-7 should preserve the best attributes of the
existing civil systems but, in addition, provide a stereoscopic
capability which will permit the development of a detailed top­
ographic model of the Earth's land areas in a cost-effective man­
ner.

The current major issues revolve around the basic parameters
which will define Landsat-7; that is,

Orbital altitude - 919 km versus 581 km
Smallest pixel (GSD) - 10 m versus 5 m (resolution)
Transmission data rate - 100 Mb/s versus 200 plus Mb/s

There are numerous other issues but, until these basic param­
eters (which are highly interrelated) are resolved, there is no
way of defining the scope and cost of Landsat-7.

Basically, two conceptual designs are involved:

• High Altitude - to be flown at 919 km altitude with 10-m pix~ls

and a data rate :s 100 MB/s as described in ITEK (1981) and by
Colvocoresses (1991).

• Low Altitude - to be flown at 581 km altitude with 5-m pixels and
a data rate ~ 200 Mb/s as described by Light (1990).

The advantages of the 919-km orbit over the 581-km orbit for
Earth sensing at a moderate resolution are

• Transmission coverage range is over 1.5 times greater, which means
that the area covered by a single reception station is 2.5 times as
great.

• Coverage swath width for systematic sequential coverage of a given
sensor is determined by the orbital altitude (circular, sun-syn­
chronous). For the 919-km orbit, this would be 180 km as com­
pared to 64 km for the 581-km orbit. This means that a single
scene (square) for the 919-km orbit would cover nearly 9 times the
area as would a scene from the 581-km orbit. At highest (lO-m)
resolution and stereo coverage, swath width is reduced to 90 km
in order to maintain the 100-Mb/s transmission rate.

• Frequency of coverage is an 18-day interval with the 919-km orbit
and 45 days with the 581-km orbit. Thus, the 919-km orbit pro-

vides 2.5 times as many views of the same scene in any sizable
time interval. The repeat frequency is halved from 18 days to 36
days at the highest stereo resolution.

• Orthogonality may be defined as the angle between the sensor
path to the object and the local vertical. In the 919-km orbit case
and using a vertically oriented sensor, this maximum angle off
the vertical is 6.59x. The 581-km orbit case has similar orthogonal
characteristics as long as the swath width is retained at 64 km but,
if the swath is widened to increase coverage, the angle off the
vertical rises accordingly. This creates many disadvantages from
both the geometric and radiometric viewpoints.

• Continuity is maintained with respect to Landsats 1, 2, and 3 by
using the 919-km orbit. Over ten years of Landsat MSS data were
collected and archived from this orbit. Thus, those wishing to
compare data of ten or more years separation can do so in a highly
cost-effective manner even though the resolution and wave bands
utilized for Landsat-7 may not be identical to those of the earlier
Landsats.

• Orbital stability has been proven in the 919-km case. Although
581 km is well above atmospheric effects, the other conditions
which create orbit anomalies (such as the Earth's ellipticity) are
more pronounced at the lower orbit. Certainly, a longer life can
be expected from a satellite at the higher orbit.

• Coverage patterns by which adjacent paths are covered on each
successive day (east to west) are the same for both altitudes. How­
ever, very few other orbits of suitable height exist which provide
such systematic coverage.
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