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ABSTRACT: During several years of high precipitation (1982-84) in the Great Basin region of the westem U.S., many
plant communities showed evidence of shrub dieback, primarily of shadscale (Atriplex confertifolia). The potential rela­
tionship between dieback and climatic change suggested the need for an objective test of the usefulness of remotely
sensed data in detecting vegetation changes in a semiarid ecosystem.

Two techniques were evaluated for their effectiveness in predicting shrub dieback. In the first technique, an unsu­
pervised classification of Landsat Thematic Mapper (TM) data was used to predict the distribution of dieback. Spectral
reflectance patterns associated with dieback were identified using a goodness-of-fit test. In the second technique, pre­
and post-dieback Multispectral Scanner (MSS) data and change detection analyses were used to predict dieback distri­
bution. The accuracy of both prediction techniques was tested against field verified data using an index of association.

The unsupervised classification technique correctly predicted shrub dieback and nondieback in better than 70 percent
of the locations. The results suggest that spectral classes from an unsupervised approach can be associated with natural
environments that are most susceptible to shrub dieback. Results from the change detection technique showed that
infrared reflectance from known dieback areas averaged 9.8 brightness values lower than areas of nondieback. However,
agreement between the change detection map and field verified data indicates that the prediction map was not signif­
icantly better than a random classification. The findings of this study provide additional information related to exotic
annual weed invasion dynamics in a Great Basin semiarid shrub environment.

INTRODUCTION

R EGARDLESS OF WHETHER CHANGES IN VEGETATION
CHARACTERISTICS are a result of climatic changes, pathogen

or herbivore outbreaks, or by alterations in land-use practices,
improved mapping and monitoring methods are needed that
enable detection and assessment of environmental conditions
and trends. The methodologies for detecting subtle environ­
mental changes over broad geographic areas are largely unde­
veloped. Many monitoring strategies rely on either subjective
observations or on small sample plots (e.g., rangeland trend
plots). With recent concerns about the impact of climatic changes
on plant communities around the world, remotely sensed data
have been proposed as a means to monitor geosphere and bio­
sphere dynamics (Tueller, 1987; Woodwell et aI., 1984; Rasool,
1985; NASA, 1988). Satellite imagery has been used for a variety
of environmental studies such as determining above-ground
plant biomass (Maxwell, 1976; Tucker, 1979), estimating leaf
area (Wiegand et aI., 1979; Running et aI., 1986), and mapping
vegetation (Bauer et aI., 1979; Hoffer, 1984; McGraw and Tueller,
1983; Mueller-Dombois, 1984; Price et aI., 1985; Tucker et aI.,
1985; Wilson and Tueller, 1987). Large scale changes in the land­
scape have been monitored using multitemporal satellite im­
agery to create change detection maps (Robinove et aI., 1981;
Carneggie et aI., 1983; Pilon et aI., 1988).

In most cases, efforts to monitor vegetation change with re-
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motely sensed spectral data have been limited to vegetation
communities that show abrupt changes in physiognomy and
spectral characteristics. These have been mainly forest and de­
sert systems monitored for deforestation and desertification
(Woodwell et aI., 1984; Woodwell et aI., 1987; Mann et al., 1984;
Robinove et aI., 1981). Environmental impacts that result in the
reduction or elimination of selected plant species allow one to
test the sensitivity and utility of remotely sensed data for mon­
itoring subtle environmental changes. Before global monitoring
aITd assessment efforts are initiated, the usefulness of remotely
sensed data to detect changes in plant composition should be
explored in arid/semiarid 'environments where vegetation is often
sparse « 30 percent cover) and plant species composition is
diverse. Such environments present unique challenges for re­
mote sensing, both from a scientific and from a management
viewpoint (Tueller, 1987).

A constraint in using satellite digital imagery for environ­
mental monitoring is that changes must dominate a large enough
area to influence the reflectivity of multiple pixels. Areas with
dieback of natural vegetation often meet this criterion. Dieback
usually affects only a few species distributed over large geo­
graphic areas. While a few studies have used satellite images
for detecting and monitoring large scale vegetation dieback (Rock
et aI., 1986; Vogelmann and Rock, 1988), none of these studies
have examined dieback in semiarid shrublands.

A recent dieback of shrubs in the Great Basin is suspected to
have begun after 1982. Within Utah, over 400,000 ha of land
with high shrub mortality were reported by the Bureau of Land
Management (K. Boyer, personal communication, 1984). Nearly
half of the affected area was located within shrub-steppe eco-
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systems of the Great Basin. The affected species included big
sagebrush (Artemisia tridentata Nutt.), bud sage (Artemisia spi­
nescens Eat.), shadscale (Atriplex confertifolia (Torr. & Frem.) S.
Wats.), fourwing saltbush (Atriplex canescens (Pursh) Nutt.), and
winterfat (Ceratoides lanata (Pursh) J.T. Howell). Above average
precipitation from 1982 to 1984 is suspected to be related to
dieback (Nelson et al., 1989; Pyke and Dobrowolski, 1989), sug­
gesting that this phenomena might be stimulated by climatic
changes.

STUDY AREA

Puddle Valley, located 96 km west of Salt Lake City, Utah, is
a partially drained desert basin bounded by the Grassy Moun­
tains to the west and the Lakeside Mountains to the east. The
valley runs north to south for approximately 24 km and is about
13 km wide. The entire study area was located approximately
within the boundaries of the U.S. Geological Survey (USGS) 7.5­
minute Puddle Valley, Utah quadrangle (Figures 1a and 1b).
Precipitation at the site comes mainly during the winter as snow.
The closest weather station in Tooele, Utah (approximately 50
km away) reports the total annual precipitation to be 412 mm.

The predominant vegetation is shadscale, green molly (Kochia
americana Wats.), greasewood (Sarcobatus vermiculatus (Hook.)
Torr.), and cheatgrass (Bromus tectorum L). Dieback was appar­
ent within the valley between the playa bottom, at 1300 m in
elevation, and the edge of the valley basin, at 1600 m in ele­
vation. The density of pre-dieback shadscale (Le., before 1982)
was estimated to be between 3000 and 5000 individuals/ha by
counting both live and dead plants in 1987. In areas of severe

(a)

dieback where the live-to-dead shrub ratio is 1:5, exotic annuals
such as belvedere summer cypress (Kochia scoparia (L.) Schrad.),
halogeton (Halogeton glomeratus Meyer.), and cheatgrass were
often abundant (Ewing and Dobrowolski, 1991).

METHODS

Two digital image analysis techniques were used to test the
accuracy of remotely sensed data for predicting the distribution
of shrub dieback. In the first technique, a Thematic Mapper (TM)
image was classified using a clustering algorithm and rnini­
mum-distance-to-mean classifier. In the second technique, change
detection maps were created using multitemporal Landsat Mul­
tispectral Scanner (MSS) imagery acquired for three different years.

Similar image restoration and preprocessing methodologies
were applied to the TM and MSS imagery. The histogram min­
imum method (Chavez, 1975) was used to standardize image
pixel brightness values (BV) to account for varying physical char­
acteristics of the atmosphere at the time of image acquisition.
Image restoration for line striping was performed using a mean
and standard deviation correction technique (Rohde et al., 1978).
The output prediction maps were geographically rectified to a
Universal Transverse Mercator (UTM) projection using a nearest­
neighbor resampling operation Gensen, 1986). For overlay pur­
poses, the pixel size for all maps produced from MSS data was
resampled to a common size of 30 m by 30 m to match the cell
size of the verification map. This resampling approach is com­
monly used when lower resolution images are compared to
higher resolution images (Iverson and Risser, 1987; Jakubauskas
et aI., 1990; Walker and Zenone, 1988; Sader, 1987). All image

FIG. 1. (a) Great Salt Lake and vicinity with Puddle Valley study area outlined by a white rectangle. (b) Enlargement of the Puddle Valley study area.
The back "comma" shaped pattern surrounded by lighter tones in the middle of the figure is the Puddle Valley playa. The ground distance is 5000
metres between the black graticules superimposed on the image. (Figures were photographed from the Great Salt Lake and Vicinity poster, U.S.
Geological Survey, 1984.)
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processing and geographic information systems (GIS) analyses
were performed using the Earth Resources Data Analysis Sys­
tem (ERDAS Inc., Atlanta, Georgia).

UNSUPERVISED CLASSIFICATION ApPROACH

A mid-spring TM image, 24 May 1987, was selected to coin­
cide with peak growth and greenness in the study area (Price
et aI., 1985). On the raw TM image, 18 consecutive bad lines
were removed from the lower middle half of the image. The
image was preprocessed as described previously and the Tas­
seled Cap universal coefficients (Crist and Cicone, 1984; Kauth
and Thomas, 1976) were used to transform the TM digital values
to produce brightness, greenness, and wetness components.
This transformation was used in an attempt to enhance the
spectral reflectance of the sparse desert vegetation.

Untransformed TM data were also used to predict shrub die­
back, but to conserve computer storage space and decrease
processing time, the analyses were performed using the red
(0.63 to 0.69 fJ.-m), near infrared (0.76 to 0.90 fJ.-m) and the two
middle infrared (1.55 to 1.75 fJ.-m and 2.08 to 2.35 fJ.-m) bands
(TM bands 3, 4, 5, and 7). The blue-green (0045 to 0.52 fJ.-m) and
green (0.52 to 0.60 fJ.-m) bands were omitted because they con­
tributed little additional information due to high band intercor­
relation (blue-green versus red, r = 0.945 and green versus red,
r = 0.805). The thermal (IDA to 12.5 fJ.-m) band was also omitted
because emittance measurements throughout the study area
showed minimal variation and the spatial resolution of the ther­
mal band is poor, relative to the other bands.

Both the transformed and untransformed TM images were
classified separately into 75 spectral classes using an unsuper­
vised clustering algorithm and a minimum-distance-to-mean
classifier. The 75 spectral classes for each image were associated
with land-cover types located in the field. Because dead shrubs
can be found in nearly every shrub community, including healthy
communities, a field site was classified as dieback if greater than
95 percent of the shrubs within a 90-m by 90-m (3- by 3-pixel
area) vicinity were dead. The threshold of 95 percent was used
because, on most sites, the shrubs were either all dead, or mostly
alive. The percent dieback at each site was visually estimated.

During the summer of 1988, a survey to locate dieback areas
was conducted along roadways traversing the study area. The
use of roadways as reference features made it possible to more
accurately identify dieback locations on the USGS Puddle Valley
orthophotoquadrangle. Dieback sites encountered along the road
were selected only if they were away from disturbed areas of
the roadway and less than 135 m from the center of the road
(e.g., 9-pixel wide buffer zone, 270 m wide, with 1 pixel cov­
ering the road right-of-way and 4 pixels, 120 m wide, on each
side of the road). In addition, one transect was walked along
an east- west section fence to map dieback across the study area
and away from roadways. Along this transect, all dieback within
75 m of either side of the fence was mapped (e.g., a 5-pixel
buffer, 150 m wide). The 135-m and 75-m distances were used
because it was estimated that these were the maximum dis­
tances at which dieback could be positively identified from the
truck and on foot. Along both the road and fence transects,
dieback areas smaller than 90 by 90 m (3 by 3 pixels) were
ignored to minimize the inclusion of bordering hybrid pixels.
Polygon boundaries around dieback areas were drawn well within
the affected sites to ensure nondieback areas were not included
in the polygons. Because all dieback areas within the 270-m and
150-m buffer zone could be observed and mapped, the resulting
map constitutes a comprehensive survey of all dieback within
the buffer zone.

The polygon boundaries for the known dieback areas were
digitized and converted to a raster format for manipulation and
analysis in a GIS. The buffer zones along the transects were
created by digitizing the UTM coordinates of the roads and fence

and using a GIS search operation to locate all pixels within the
specified buffer distance. A GIS map overlay operation was used
to merge the identified dieback locations and the buffer zone
into a new map that showed areas within the buffer distance
that were classified during the road survey as either dieback or
nondieback (Figure 2).

Using GIS map overlay and cross-tabulation operations, the
observed frequency of the 75 spectral classes within known die­
back areas of the buffer zone was calculated for both the trans­
formed and untransformed images. A spectral class was defined
as a dieback class if its observed pixel frequency, within known
dieback areas, was significantly greater than a random pixel
distribution of the class. An example of observed and expected
pixel frequencies used in the analysis is given in Table 1. The
null hypothesis was that within the buffer zone the pixel fre­
quencies for each spectral class within dieback areas would not
differ significantly from pixel frequencies within areas of non­
dieback. The hypothesis was tested using a log likelihood ratio
Chi-square test of independence between dieback categories and
spectral classes (G-test, Sokal and Rohlf, 1981) (P s; 0.01). This
technique is similar to the approach used by Lowell and Astroth
(1989). Spectral classes with low expected frequencies of occur­
rence « 5) were combined so that the analysis was not biased
(Sokal and Rohlf, 1981). Spectral classes with observed fre­
quencies of zero in either dieback or nondieback areas, but not
in both, were considered important structural zeros in the
analysis; thus they were set to 10-6 because the analysis tech­
nique must take the logarithm of the observed frequency (log(O)

FIG. 2. Classification map (75 classes) of Puddle Valley study area
showing the results of the unsupervised classification of transformed
TM imagery. The light gray strips represent the 270-m and 150-m
buffer zones for known locations of nondieback. The dark gray areas
within the light gray buffer zone represents locations of known shrub
dieback. The pixel class frequencies within the buffer zone were used
to determine which of the 75 spectral classes were associated with
dieback. The wide diagonal black strip crossing the map is where 18
bad lines of the image were deleted from the original TM data.
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TABLE 1 . A SAMPLE OF THE OBSERVED AND EXPECTED PIXEL

FREQUENCIES USED IN THE GOODNESS-OF-FIT TEST TO ASSOCIATE

SPECTRAL CLASSES WITH SHRUB DIEBACK. THE "OBSERVED FREQUENCY"

REPRESENTS THE NUMBER OF CLASS PIXELS COINCIDING WITH AREAS OF
KNOWN DIEBACK. THE "EXPECTED FREQUENCY" REPRESENTS THE

NUMBER OF CLASS PIXELS EXPECTED TO COINCIDE WITH AREAS OF

DIEBACK IF THE PIXELS WERE DISTRIBUTED RANDOMLY. CLASSES WITH
POSITIVE OBSERVED DIFFERENCES (OBSERVED - EXPECTED) WERE

TESTED AGAINST A CHI-SQUARE CRITICAL VALUE AT 1 D.F. AND P =

0.001. CLASSES WITH SIGNIFICANT POSITIVE VALUES WERE CLASSIFIED

AS DIEBACK.

Spectral Observed Pixel Expected Pixel
Class Frequency Frequency

l' 145 70
2 0 34
3 17 67
4' 53 45
5 0 11
6 7 44
7 0 3
8 21 43
9 0 28

10 12 57
11 7 25
12' 155 65
13 7 23
14 12 61
15 26 44
16 0 1
17 0 15
18 22 56
19 38 67
20 0 5
'Spectral classes that were predicted to be associated with dieback

because the difference between their observed and expected frequen­
cies was positive and exceeded the Chi-square critical value.

is undefined). Spectral classes with observed frequencies of zero
in both areas were not analyzed because they did not contribute
to the predictability of dieback.

If pixel frequencies for spectral classes were found to be as­
sociated significantly with dieback areas, then each class with
a positive residual (Le., an affinity with dieback) was tested to
determine the individual classes that significantly contributed
to the overall G-statistic. This was done by comparing the cal­
culated G-statistic for the spectral class to a Chi-squared critical
value at 1 d.£. and P = 0.001. This technique for determining
the individual classes associated with dieback was not used as
a statistical test, but as a nonbiased means of identifying classes
likely to be associated with areas of dieback. Using this tech­
nique, it was determined that, for the transformed image, 6 of
75 and for the untransformed image, 6 of 75 spectral classes
were observed in dieback areas more frequently than expected
if the spectral classes had been randomly distributed.

Based on the results of the G-statistic, two shrub dieback
prediction maps (one from transformed, one from untrans­
formed data) were created by recoding each of the 75 spectral
classes to either dieback or nondieback. The accuracy of the
prediction maps was tested against field verified data that were
collected independent off and not used as, the field site data
described in the previous section. Areas qualifying as field ver­
ification sites were homogeneous in vegetation appearance and
in dieback status over at least a 90- by 90-m (3- by 3-pixel) area.
The verification sites were located along other roadway and
linear features (jeep roads, telephone lines, etc.) not traversed
during the initial roadway survey. The U1M coordinates and
vegetation condition (dead or alive) of each verification site were
digitally encoded, converted to a raster format, and saved as a
GIS map layer. A GIS search operation was used to create an

output map with a 3- by 3-pixel buffer around the location of
each verification site. The verification map was registered to the
dieback prediction maps and an overlay operation was used to
extract, from the dieback map, the pixel class values that cor­
responded to the 3- by 3-pixel verification sites. To avoid the
influence of hybrid pixels upon the accuracy estimates, field
verification sites were eliminated if their location corresponded
to nonhomogeneous 3- by 3-pixel groups extracted from the
dieback prediction maps.

The two dieback prediction maps were compared to the re­
tained field verification sites, and a likelihood ratio Chi-square
(G) was used to test independence among predicted and ob­
served occurrences of dieback and nondieback (SAS Institute
Inc., 1988). Significant (P < 0.05) values of G indicated that
prediction maps and field verification data were significantly
associated. The Goodman-Kruskal Gamma (y) was used to de­
termine the strength and the direction (positive versus negative)
of the associations (Liebetrau, 1983; SAS Institute Inc., 1988).
(y may range from +1 indicating absolute agreement, to -1/
indicating absolute disagreement, with 0 indicating no associ­
ation between predicted and observed dieback and nondieback
classes.)

CHANGE DETECTION ApPROACH

Two change detection maps were created using MSS imagery
from three different dates: 13 May 1975, 19 May 1979/ and 10
May 1988. These images were collected by Landsats 1/ 3/ and
5/ respectively. The selection of the three images was based on
the following criteria: (1) availability of high-quality satellite im­
agery with minimal cloud coverage, (2) coverage of the study
area before and after the presumed dates of shrub dieback (be­
tween 1982 and 1986)/ (3) similarity in annual precipitation pat­
terns, and (4) coincidence with the peak vegetation growth period
of the area.

A change detection map was created for the pre-dieback pe­
riod (prior to 1982) by subtracting the image brightness values
for the near-infrared channel (0.7 to 0.8 f.Lm) of the 1975 image
from that of the 1979 image (1979 minus 1975). The post-dieback
change detection map (after 1982) was created by subtracting
the brightness values for the same channel of the 1979 image
from that of 1988 (1988 minus 1979). A near-infrared, as opposed
to a visible band, was selected for the analysis because of its
increased sensitivity to vegetation conditions. The second in­
frared channel (0.8 to 1.1 f.Lm) was not used in the change de­
tection analysis because the 1975 image was missing this channel.
To avoid the calculation of negative difference values, the out­
put values were recoded to numbers ranging from 0 to 255, and
a value of 127 was assigned to areas where there was no change
in the IR reflectivity. A value greater than 127 would indicate
higher reflectance in the later image and a value less than 127
would indicate higher reflectance in the earlier image Gensen,
1986).

The same dieback and nondieback locations within the road­
way buffer zone and the field verification sites were also used
to analyze and assess accuracy of the prediction results pro­
duced by the change detection approach. The use of areas within
the buffer zone, with known ground conditions as control sites,
allowed discrimination of spectral variation due to sensor dif­
ferences among MSS scanners, atmospheric attenuations and
large-area environmentaVclimatic differences, from variation due
to vegetation change. Theoretically, spectral variation unrelated
to dieback would probably affect areas of dieback and nondie­
back equally.

A distribution map of predicted dieback was developed from
change detection results if the mean difference values for areas
of known dieback differed significantly (P < 0.05) from the mean
difference values for areas of nondieback within the buffer zone.
A binary classification of dieback and nondieback was used to
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create the prediction map. The difference values for known die­
back areas that were within ± 1 S.D. of the x difference value
were classified as dieback. A test of independence (G) and an
index of association (y) were used to compare the verification
data against the dieback prediction map.

RESULTS

UNSUPERVISED CLASSIFICATION APPROACH

The prediction maps generated using the unsupervised clas­
sification approach accurately predicted the distribution of die­
back and nondieback at approximately 70 percent of the
verification sites. The goodness-of-fit data for the TM spectral
classes created from the transformed and untransformed im­
agery indicated that the observed pixel frequencies for some
classes falling within the dieback areas were significantly higher
than their frequencies in nondieback areas within the buffer
zone (G2 > 1100 for all images, d.f. > 50). The prediction maps
for both unsupervised classifications were positively associated
(P < 0.05 for G and positive y) with the verification data (Tables
2a and 2b). The prediction accuracy of the transformed image
was only slightly better than the untransformed image (71.9
percent verses 68.8 percent).

Area estimates of both the transformed and untransformed
data for dieback were 4343 ha (ca. 30 percent of the area) and
for nondieback were 10,030 ha of the area (Figure 3). The ma­
jority of the predicted dieback areas were distributed along the
east slope of the valley and the playa bottom. Some scattered
areas of dieback were also predicted on the west slope of the
valley.

CHANGE DETECTION APPROACH

The MSS mean difference values of both dieback and nondie­
back areas for the pre-dieback period from 1975 to 1979 were
similar to the index value of 127, suggesting no change in IR
reflectance during this period (Table 3 and Figure 4). The mean
difference value for dieback areas was 128.8 and nondieback
was 129.6. Because the dieback and nondieback values are sim­
ilar to the neutral index value of 127, this suggests that no
environmental change between 1975 and 1979 occurred that sig­
nificantly influenced IR reflectivity. It also indicates that there
were minimal differences in IR reflectivity between areas of die­
back and nondieback prior to the dieback event.

In contrast, the mean difference values of dieback and non-

TABLE 2. ACCURACY ASSESSMENT OF PREDICTION MAPS CREATED

FROM THE UNSUPERVISED CLASSIFICATION OF THE TRANSFORMED AND

UNTRANSFORMED TM DATA AND CHANGE DETECTION USING MSS

IMAGERY. INCLUDED IN THE TABLE ARE THE ASSOCIATED LIKELIHOOD

RATIO CHI-SQUARE OF INDEPENDENCE (G), THE PROBABILITY OF A

SMALLER G (P), THE GOODMAN-KRUSKAL"y INDEX OF ASSOCIATION, AND

THE ESTIMATED ACCURACY OF EACH PREDICTION MAP.

Observed Predicted Categories
Category Dieback Nondieback G P "y

(a) Untransformed Thematic Mapper data - unsupervised classification
Dieback 12 18
Nondieback 12 54 5.24 0.02 0.50

Estimated accuracy 66/96 = 68.8%
(b) Transformed Thematic Mapper data - unsupervised classification

Dieback 12 17
Nondieback 8 52 8.83 0.003 0.64

Estimated accuracy 64/89 = 71.9%
(c) 1979 minus 1988 Multispectral Scanner data - change detection im­

age
Dieback 17 10
Nondieback 39 29 0.25 0.62 0.12

Estimated accuracy 46/95 = 48.4%

dieback areas for the post-dieback period from 1979 to 1988 were
substantially lower than 127 (dieback, 100.5 and nondieback,
110.3) (Table 3 and Figure 5). This indicates that the brightness
values for the 1988 image were darker within both dieback and
nondieback areas. Because a significant reflectivity reduction
was observed in both areas, the reduction could be related to
calibration differences between MSS sensors or large scale en­
vironmental differences such as surface soil moisture or vege­
tation composition. However, the difference values for the
dieback areas were significantly darker than for nondieback areas,
suggesting an additional spectral influence associated with areas
of dieback. Table 3 and Figure 5 show that the IR brightness

FIG. 3. Prediction map of the Puddle Valley study area showing die­
back areas in light gray and nondieback areas in black. The map was
produced from an unsupervised classification of TM transformed data.
White lines are roads traversing the- study area and the wide black
diagonal strip crossing the map is where 18 bad lines of the image
were deleted from the original TM data.

TABLE 3. STATISTICS FOR DIEBACK AND NONDIEBACK AREAS THAT WERE

GENERATED FROM DIFFERENCE VALUES DERIVED BY SUBTRACTING THE

BRIGHTNESS VALUES OF Two MSS BAND 6 (0.7 TO O.8J.1.M) IMAGES. A

STUDENT'S T-VALUE WAS USED TO DETERMINE WHETHER AREAS OF

DIEBACK AND NONDIEBACK WERE SIGNIFICANTLY DIFFERENT.

Mean
Observed Difference
Category Values SO d.£.

(a) 1979 minus 1975 image
Dieback areas 128.8 11.7 ... ...
Nondieback areas 129.6 8.0 2.76 25,118

(b) 1988 minus 1979 image
Dieback areas 100.5 6.6
Nondieback areas 110.3 9.4 46.60 25,118
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icantly better at representing dieback distribution than a ran­
dom classification of pixels.

DISCUSSION

One might conclude that the unsupervised approach was
successful because of its classification accuracy of greater than
70 percent. However, there is still uncertainty over what ac­
tually influenced the classification results produced by the un­
supervised and change detection approaches. The unsupervised
approach clusters similar spectral reflectance patterns that are
influenced by the interaction of electromagnetic energy with
Earth surface features, the atmosphere, and the remote sensing
system. Vegetation in a semiarid environment is sparsely dis­
tributed; even healthy stands of shrubs in salt-desert shrub
communities have less than 25 percent cover with interspaces
among shrubs rarely vegetated except for microphytic crusts
(West, 1983). An unsupervised classification integrates spectral
reflectance that is influenced by soils, shadow, plant compo­
nents, and litter. Considering these influencing factors, it is
doubtful whether the derivation of many, if any, spectral classes
was directly affected by shrub mortality. A more probable ex­
planation is that the environments most prone to shrub dieback
are spectrally unique. If this is true, plant community ecologists
might learn more about shadscale habitat characteristics and
mortality differences by studying dieback and nondieback areas
discriminated through analysis of remotely sensing data.

In contrast to the unsupervised approach, the results from
the change detection approach might be considered much less
successful. However, the results may provide additional insight
related to exotic annual weed invasion patterns in the Great
Basin. Data presented in Table 3 and Figure 5 indicate that,
after the dieback event began, pixels in areas of known dieback
averaged 9.8 brightness values lower than for similar areas of
nondieback. Yet, the agreement between the change detection
map and the field verification data was only 48.4 percent. The
most obvious explanation for these results is that the change
detection approach was sensitive to environmental change ir­
respective of dieback. It was noted in the field that the ground
surface in most dieback areas was darkened by litter produced
from exotic annual forbs from the preceding year (Figure 6).
The vegetation data collected in Puddle Valley by Dobrowolski
and Ewing (1990) also showed that increased concentrations of
exotic annual weeds were often associated with areas of die­
back. However, because both of our studies began after the

FIG. 6. A picture of a large dieback area. In the dieback area the surface
of the ground is darkened by annual weed litter remaining from the pre­
vious 1987 growing season. There are live shrubs within the light area
located at the bottom central portion of the picture.
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FIG. 5. Histogram of near infrared (0.7 to 0.8I1m)
difference values for known dieback (x = 100.5,
SO = 6.6) and nondieback (x = 110.3, SO =
9.4) areas on the change detection image created
by subtracting values of the 1979 MSS image from
the 1988 MSS image. The 1979 image is pre-die­
back and the 1988 image is post- dieback.
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FIG. 4. Histogram of near infrared (0.7 to 0.8I1m)
difference values for known dieback (x = 128.8,
SO = 11.7) and nondieback (x = 129.6, SO =
8.0) areas on the change detection image created
by subtracting values of the 1975 MSS image from
the 1979 MSS image. The two images were se­
lected to represent the pre-dieback period.
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values in the 1988 image averaged 9.8 values lower in dieback
areas than in nondieback areas.

However, when the 1979/1988 difference map was compared
to the verification sites, the areas of predicted change agreed
with the verification data only 48.4 percent of the time. Table
2c shows that the change detection approach consistently over­
estimated dieback. The G-statistic did not differ significantly
from zero; therefore, the change detection map was not signif-
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initial dieback event, it is difficult to determine whether annual
weeds invaded prior to, or after dieback. A display of multitem­
poral color composite images (Plate 1) shows the pre- and post­
dieback results. The "after dieback" image shows red patterns
indicating significantly lower IR reflectance in 1988. These pat­
terns are obviously related to changes on the ground that could
only be caused by variations in soil moisture or vegetation.

It is probable that not all areas experiencing increases in an­
nual weeds also experience shrub dieback. The low correlation
between the change detection map and verification data indi­
cates that not all darker areas experienced dieback. Assuming
litter is the factor influencing the reduction of IR in 1988, then
change detection results indicate there were areas invaded by
annuals where dieback was not prevalent.

Another possible explanation for low correlation between the
change detection approach and the field verified data is that

the binary classification scheme imposed upon the field verifi­
cation data did not account for varying degrees of shrub mor­
tality. Based upon the classification criterion that 95 percent
must be dead, some areas with significant shrub mortality (i.e.,
85 percent) may not have been classified as dieback. This ex­
planation is supported by the error matrix in Table 2c that shows
approximately three out of four misclassifications resulted be­
cause dieback was predicted, but the verification data indicated
nondieback.

Aside from demonstrating the general capabilities of satellite
data for monitoring shrub dieback in semiarid communities,
this research also demonstrated the application of two statistical
techniques, the goodness-of-fit tests and Goodman and Kruskal
gamma. The goodness-of-fit tests provided a nonbiased crite­
rion for selecting spectral classes associated with dieback. Typ­
ically, in analyses of remotely sensed data, such decisions are

PLATE 1. Difference images of the study area before and after dieback. The images were photographed from a high resolution RGB

display monitor. The images were created by assigning the red color plane of the display to MSS band 6 (NIR) of the earlier image
and the green color plane to the same band of the later image. Areas with red hues indicate the location was brighter in the earlier
image, green areas were darker in the earlier image, yellow areas were light in both images, and brown areas were dark in both
images. Notice that after dieback there is a significant increase of red distributed around the playa area and other areas throughout
the image which indicates these areas were darker in 1988 than they were in 1979.
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subjectively made by the observer and thus are potentially non­
replicable. 'Y provided a useful index of the strength of associ­
ations between predictions and field observations of dieback
and nondieback.

The results also indicated that little improvement in mapping
accuracy was achieved by using the Tasseled Cap transformed
versus untransformed data. This is probably due to the influ­
ence of soils, as explained by Tueller and Oleson (1989) who
also worked in a Great Basin shrub environment. Huete and
Jackson (1987) report that on arid rangelands, soil and litter
greatly influenced the Greenness component derived by the
Tasseled Cap transformation. The transformed results of this
study may have improved if study area reflectance data were
used to produce site-specific transformation coefficients as de­
scribed by Huete et al. (1984) and Ezra et al. (1984). For practical
purposes, additional vegetation indices were not evaluated.
However, the Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988)
is a transformation recently developed specifically for arid/sem­
iarid environments that should be evaluated in· future studies.

Remote sensing of vegetation dynamics has previously con­
centrated on abrupt changes in community structure such as
deforestation and desertification. However, this study suggests
that satellite images can detect subtler changes in semiarid veg­
etation communities. Given these results, it appears that digital
satellite data could be useful for monitoring vegetation change
in semiarid environments at a regional scale.

In preparing for this study, the advantages of satellite data
for large-area monitoring became apparent. Digital images are
available with world-wide coverage for different seasons over
many years, in contrast to the limited global availability of aerial
photography, which has been used most often to detect forest
dieback (Ciesla, 1989). Such availability allows images to be se­
lected at the optimal time for vegetation monitoring, a factor
critical for identifying plant communities of the Great Basin (Price
et a!., 1985) and likely to be important in other semiarid regions.
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