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ABSTRACT: Analyst variability in the labeling of unsupervised classifications is tested for Landsat 5 Thematic Mapper
image products covering two test sites in southern California. The accuracy of results are tested using samples from a
photo interpreted base map of the area. The significance of differences between analysts is indicated by comparing
Kappa statistics derived from error matrices. Analyst variability is found to be statistically significant in most cases.
Certain analysts provided consistently better results for a given study area, with the degree of success not being
predictably related to greater knowledge of the study area or degree of training. This work demonstrates the potential
influence of analyst bias on what would otherwise seem to be a fairly objective method and suggests that controls for
this subjectivity should be factored into experimental designs.

T HIS REPORT EXAMINES THE IMPACT of analyst variability in
the labeling of clustered data products on classification ac­

curacy for two test sites in southern California. Analyst varia­
bility is shown to have consistent, significant effects on selected
unsupervised classification strategies. Analyst variability may
threaten the accuracy, objectivity, and extensibility of unsuper­
vised classifications.

In this study Thematic Mapper image data are classified by
three analysts using unsupervised techniques. Accuracy statis­
tics are developed for each classification by comparison with
random samples from photo interpreted base maps. Analyst
variability in the labeling of spectral clusters is assessed using
both percent correctly classified and Kappa statistics (Congalton
and Mead, 1983).

This effort was completed as part of an ongoing research
effort to examine the potential of new classification methods,
focusing on the integration of remote sensing and GIS technol­
ogies. These results provide part of a baseline to describe the
capabilities and characteristics of traditional methods.

STUDY SITES

The test sites for this study correspond to the U.s. Geological
Survey (USGS) 7.5-minute Goleta and Lompoc quadrangles for
Santa Barbara County, California. The locations of these two
sites are presented in Figure 1. Topographic relief in the test
sites is dominated by faulting associated with the California
Transverse Range, which has a predominately east/west trend
in this area. Vegetation is characteristic of the Mediterranean
climate. Areas of higher moisture stress support chaparral com­
munities (ceanothus/manzanita/scrub oak/chemise) with zero­
morphic adaptations such as small leaves and waxy epidermal
deposits. Grassland areas are dominated by annual herbs and
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FIG. 1. Location of the Goleta and Lompoc quadrangles.
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forbs. Coast live oak (Quercus agrifolia) and valley oak (Quer­
cus lobata) may range from sparse density in savanna like areas
to relatively dense stands. Riparian zones may support closed
canopies of willow (Salix sp.), sycamore (Platinus racemosa),
and alder (Alnus rhombifoIia).

The Goleta quadrangle contains commercial, industrial, and
residential areas intermixed with small agricultural plots and
areas of natural vegetation. Orchards are found on the foothills.
Upland areas are dominated by chaparral, broken by large out­
crops of sandstone. In the Lompoc quadrangle, lowland areas
are mostly under commercial, residential, light industrial, and
agricultural development. Hill slopes contain both orchards and
natural vegetation. Herbaceous and chaparral cover are com­
mon. Forested stands of Bishop pine (Pinus muricata) and
Douglas Fir (Pseudotsuga menziesii) can be found in canyons
of the northern portion of the quadrangle.

IMAGE DATA

Multispectral data were acquired for both study areas by the
Landsat 5 Thematic Mapper (TM) sensor on 29 February 1989
and 9 September 1988. The TM thermal channel (10.4 to 12.5
IJ.m) was not used in this study. Image data were registered to
the projection and extent of the USGS quadrangles at a 3D-metre
resolution using a first-order polynomial and nearest neighbor
resampling. All images were corrected for atmospheric path
radiance in a manner similar to that described by Crippen (1989).
In order to reduce data volumes, the southern boundary of the
Goleta quadrangle was moved northwards to eliminate an area
which is entirely ocean. Sufficient ocean area was preserved
within the study site to ensure that classification accuracy for
water bodies could be adequately estimated.

In order to test the data dependency of observed patterns,
three image data products were used for each test site. These
three images were

• TM bands 1, 2, 3, 4, 5, and 7 for the February acquisition;
• TM bands 1, 2, 3, 4, 5, and 7 for the September acquisition; and
• a composite image of original bands and spectral transformations

of bands from both dates.

Band selection for the composite image was accomplished using
discriminant analysis on all original channels, as well as tasseled
cap, ratio, texture, and low pass filter transformations. The band
selection method is described in detail in McGwire and Estes
(1991). This composite image is included to identify whether
additional information from temporal dynamics or spectral
transformations may help standardize classification results. Those
spectral variables which were used in the composite image for
each test site are provided in Table 1.
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TABLE 1. SPECTRAL VARIABLES IN COMPOSITE IMAGES TABLE 2. CLASSIFICATION SCHEME FOR TEST SITES

BASE MAP

In order to test classification results, land-cover maps were
generated for the two quadrangles by photographic interpre­
tation of 1:24,000-scale natural color aerial photography. Pho­
tography was acquired in September of 1989. Two trained photo
interpreters developed the land-cover maps using magnifica­
tion, stereo viewing, and extensive knowledge of the area being
surveyed. The land-cover classification scheme used in this ef­
fort is outlined in Table 2. Vegetation classes in this classifica­
tion scheme are derived from the U.S. Forest Service's vegetation
classification system for Southern California. Interpreters were
provided with transparent test patterns of density levels corre­
sponding with the percent cover values used to delineate forest,
woodland/shrub, and grassland categories. Prior to implemen­
tation of the actual mapping effort, the two interpreters each
produced an acetate overlay for a specified test photo. The two
independently derived products were examined in a meeting
between interpreters to facilitate the standardization of map­
ping criteria. Subsequently, overlays were cross-checked be­
tween interpreters with line work and class membership requiring
full agreement.

Linework was transferred to original USGS topographic quad­
rangle maps using Bausch and Lomb zoom transfer scopes.
Some difficulty was encountered in enforcing geometric control
in areas of significant relief. This situation was especially ap­
parent in the northern portion of the Goleta quadrangle where
steep slopes were combined with a lack of adequate reference
points. Line work in these areas was transferred to the base
map using the best possible procedures. Detail was digitized
and cleaned using Arc/Info GIS software. Complete map cov­
erages were then rasterized into a grid coinciding with the im­
age data.

In order to reduce errors of misregistration between photo
interpreted and digital data products, pixels on either side of
class boundaries in the photo interpreted product were masked
out. In addition, the resulting masked map was overlain on a
color composite of original TM imagery and remaining misre­
gistered areas were manually removed. The process of masking
borders removed the majority of the "forest" and "bare" classes
in the Goleta study area. In order to compensate for this, orig­
inal polygons for these classes were restored and misregistered
areas were removed manually. The deletion of border areas in
this study reduces ambiguity in actual class membership but
will also create a bias in the reported accuracy for map products.
This bias will almost certainly make results appear somewhat
better than they actually are.

Accuracy of the masked base map was tested by generating
150 randomly located points within the unmasked areas. Class
membership for the sample locations was assigned based on
majority membership within the single, chosen pixel. This ap­
proach allowed the generalizing effects of the 2-mm minimum
mapping unit (Ivllv1U: approx. 1.5 pixels) used in map compila-

METHOD

tion to be directly assessed. A combination of detailed re-in­
spection of aerial photography and field inspection was used
to determine actual land cover. Map accuracy derived in this
manner for the two study sites is presented below. Confidence
intervals are taken from Hord and Brooner (1976).

The method used in this study tests the variability of unsu­
pervised classifications generated by three analysts. All analysts
were trained in photo interpretation and digital image process­
ing, though analyst #3 had several years more experience with
these techniques than analysts #1 and #2. Analysts #1 and #2
were most familiar with the specific distribution of land covers
in both test sites through their experience in creating the air
photo base maps. All analysts had lived in the Goleta test area
for a number of years. Analyst #1 had lived in the region of
the Lompoc test site for some time and performed the field
inspection in that area for base map accuracy assessment. An­
alysts #2 and #3 had very limited field experience in the Lom­
poc area. Analyst #3's knowledge of the Lompoc site was
primarily based on brief inspection of aerial photography.

Two unsupervised classification approaches were tested on
each of the aforementioned image products. The unsupervised
classification algorithm used in this study was the ISOOATA al­
gorithm of the EROAS image processing software package. The

Lompoc

97%
93% - 99%

Goleta

90%
84% - 94%

tree cover > 60%
20% < tree cover < 60%
tree cover < 20%

Estimated Accuracy
95% Confidence

The lower map accuracy for the Goleta area was due to two
general types of confusion. Some pixels which were actually
urban were mapped as forest, woodland/shrub, or grass. This
confusion may easily be due to inclusions within land-cover
polygons which were smaller than the MMU of compilation.
Urban areas in the Lompoc study site were generally more com­
pact and uniform so this effect would not be as strong. In ad­
dition, some pixels which were actually the woodland/shrub
class were labeled as forest. The MMU problem may contribute
to this confusion to some degree. However, it is likely that the
confusion is primarily due to the difficulty of delineating a
boundary between the woodland/shrub and forest classes on
the continuous gradient of tree cover. This confusion was more
likely to occur in the Goleta site where the woodland/shrub class
is dominated by so-called "hard chaparral" species such as
manzanita (Arctostaphylos sp.), scrub oak (Quercus dumosa),
and Ceanothus sp. These woody species are larger and less
distinct from the forest class than the soft chaparral species such
as sage (Salvia spp.), buckwheat (Eriogonum Fasdculatum), and
Artemisia californica which dominate the woodland/shrub class
of the Lompoc site. Error in the Goleta photo interpreted land­
cover map will affect the validity of interpretations drawn from
error matrices. It will be assumed that the accuracy of the masked
photo interpreted product is sufficiently higher than that of the
digital classifications that the derived error statistics will be rep­
resentative.

1) forest
2) woodland/shrub
3) herbaceous
4) wetland
5) water
6) barren
7) agriculture
8) urbanlbuilt up

TM3
TM4
NOVI
TM7
NOVI
TM5
TM1
TM1
Brightness'
Texture TM7

LOMPOC
September
February
September
February
February
February
September
February
September
September

NOVI
Greenness'
TM3
TM4
TM5
Wetness'
TM1
TM1
Brightness'
TM7

• Tasseled Cap

September
September
February
February
February
February
February
September
September
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GOLETA
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ISODATA algorithm generates a user specified number of clus­
ters in one pass through the image data and then iteratively
goes through the image, modifying cluster characteristics until
results converge on stable cluster characteristics.

The two TM images and the composite image for each site were
classified by the ISODATA algorithm with a user specified value of
50 clusters. These 50 clusters were then individually assigned into
one of the land-cover classes in Table 2 and noted as to whether
the cluster was relatively pure or mixed. Cluster labeling was
accomplished by graphically superimposing the spatial distribu­
tions of pixels classified into a particular cluster over image data
for the area. Analysts labeled each spectral class based on the
majority of pixels falling into a particular land cover. In this first
unsupervised classification approach, each of the analysts inde­
pendently labeled identical clustered products.

A second clustering was performed by each analyst on each
image to better subdivide clusters which had mixed member­
ship. Those original spectral clusters indicated by an analyst to
be relatively pure were masked from the image and remaining
areas were reclassified using ISODATA. The logic of this ap­
proach is that a second iteration of the clustering algorithm may
partition finer patterns in the variance of remaining data. The
number of clusters specified for the second pass was set at 20.
Clusters were labeled as described above, and classified data
files for the two study areas were created containing acceptable
classes from the first pass and relabeled areas from the second
pass. Differences in analysts' choice of which clusters to reclas­
sify resulted in different data products for labeling. It was un­
known if this would increase analyst variability or whether
convergence towards a maximum potential accuracy might de­
crease variability.

Accuracies of the various classifications were assessed relative
to the photo interpreted base map developed for each study
site. Land-cover classifications were ~nalyzed using conven­
tional matrices for predicted versus actual class membership at
test locations. Two summary statistics - percent correctly class­
ified (PCC) and the Kappa statistic (Congalton and Mead, 1983;
Rosenfield and Fitzpatrick-Linz, 1986)-were generated from
each matrix for comparing the performance of various methods
and analysts. pee provides an intuitive measure of classification
accuracy. The Kappa statistic is a measure of overall agreement
based on discrete multivariate analysis as described by Bishop
et a!. (1975). The Kappa statistic theoretically deflates accuracy
statistics based on chance occurrence of correct classification.
By using the approximate large sample variance, confidence
intervals can be generated for the Kappa statistic. Given the
asymptotic normality of the Kappa statistic, the significance of
differences between classifications can be tested by using the
normal curve deviate (Congalton and Mead, 1983; Congalton et
a!., 1983), hereafter referred to as the Z value. The Kappa and
associated Z statistics were generated by a program written by
Congalton (1979).

Photo interpreted base maps for the two study areas were
randomly sampled within unmasked areas for comparison with
classification results. An exhaustive overlay of the data sets was
not used because spatial autocorrelation and MMU affect prox­
imate pixels, violating the requirement for sample indepen­
dence (Congalton, 1988; McGwire et a!., 1992). In selecting a
sampling frame, Congalton (1988) showed that random sam­
pling may provide more efficient characterization of error than
systematic sampling when there is spatial autocorrelation in
classification errors. Over 7,000 samples were generated ran­
domly for each of the two study areas. This large number al­
lowed reasonable area weighted representation despite the great
differences in area covered by each class. It is assumed in this
study that the area of coverage for land-cover classes is ap­
proximately the same for the masked product as the original

map. The area covered by water and wetland classes in the
Lompoc study area was too small to allow for significant testing.

Modification of digital classifications was necessary in order
to maintain agreement in scale with the MMU of the photo in­
terpreted map. Prior to error analysis, digital classifications were
transformed using majority filtering. This transformation reas­
signed pixel values based on the most prevalent class member­
ship within a 3 by 3 moving window. In addition to reconciling
the scale of digital processing to the MMU used in manual map­
ping, majority filtering has been found to increase classification
accuracy by reducing "random" noise in classification results
(Scarpace et aI., 1981).

RESULTS

Summary statistics for error matrices derived from the various
unsupervised approaches are presented in Table 3. Table 3 pro­
vides the percent correctly classified (PCC) and Kappa statistics
for each image data product, unsupervised classification tech­
nique, and analyst. The significance of differences between var­
ious methods and analysts is provided using the aforementioned
Z statistic (Congalton and Mead, 1983). Assuming the asymp­
totic relationship between Z and the standard normal deviate
is valid, Z values greater than ± 1.96 should indicate significant
differences at a 95 percent confidence level.

Differences in overall accuracy between the single- and two­
stage unsupervised approaches were generally small for a given
interpreter and image. Less than half of these differences were
indicated as Significant by the Z test statistic. Among the sig­
nificant differences, results of the two-stage clustering are ac­
tually poorer than for the single-stage classification except for
the September image of Lompoc. It is expected that this oc­
curred as a result of specifying too few clusters for the second
iteration. The abnormally low accuracy (59 percent) of the sec­
ond clustering of February imagery for Lompoc by interpreter
#1 is suspected to be the result of a data entry error rather than
being entirely due to differences in analyst interpretation. Be­
cause of the generally poorer results of the two-stage method,
the remaining analyses use only the first iteration clustering for
comparison.

Significant and consistent differences were found between
results of cluster labeling by the three analysts. Analyst #1 reg­
ularly produced maps with as much as 12 percent lower pec
than the other two analysts. Cluster labeling by analyst #3 con­
sistently produced the highest accuracies for the Goleta study
area while analyst #2 produced the most accurate maps for the
Lompoc site. The only case where differences between analysts
#2 and #3 were not significant was with the composite image
for Goleta. The relative success of analysts was not predictably
related to the relative degree of knowledge of the study areas,
participation in photo base map generation, or years of expe­
rience in image processing and interpretive techniques.

Among the three images for each study area, the relative
performance between classified products agreed for the two
more successful interpreters. In Goleta, the September image
provided the highest classification accuracy, followed by the
composite and February images. The best result for the Lompoc
site was obtained using the composite image, with the February
and September images following in descending order. Relative
accuracies among images for analyst #1 run counter to the two
more successful analysts, with the order in Lompoc being di­
rectly reversed. In this case perception, or preconception, is as
influential to classification accuracy as phenological changes or
spectral transformations.

CONCLUSION

The labeling of unsupervised classifications by image overlay
is not unambiguous. A number of factors may contribute to
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TABLE 3. PCC, KApPA, AND Z STATISTICS FOR UNSUPERVISED METHODS

Analyst! Z statistic
Iteration PCC Kappa B C 0 E F

A 71% 0.623 -1.90 -9.86 -6.29 -12.28 -10.79
B 72% 0.639 -7.87 -4.36 -10.24 -8.78
C 78% 0.705 3.42 -2.29 -0.86
0 76% 0.676 -5.72 -4.29
E 79% 0.724 1.43
F 78% 0.712

A 75% 0.684 3.78 -10.55 -10.76 -14.09 -13.36
B 73% 0.652 -14.35 -14.56 -17.91 -17.18
C 82% 0.768 -0.20 -3.46 -2.73
0 83% 0.769 -3.26 -2.53
E 84% 0.793 0.74
F 84% 0.788

A 77% 0.705 5.50 -4.69 -4.69 -5.18 -3.75
B 75% 0.659 -10.14 -10.14 -10.63 -9.20
C 80% 0.743 0.00 -0.49 0.92
0 80% 0.743 -0.49 0.92
E 81% 0.747 1.41
F 80% 0.736

A 77% 0.625 22.37 -13.36 -13.72 -10.57 -12.41
B 59% 0.398 -37.07 - 37.47 -34.15 -36.13
C 86% 0.757 -0.37 2.88 1.00
0 86% 0.761 3.25 1.38
E 83% 0.730 -1.88
F 84% 0.748

A 78% 0.656 -3.56 -8.97 -7.43 -1.99 -3.96
B 82% 0.691 -5.32 -3.82 1.62 -0.34
C 85% 0.743 1.47 7.06 5.06
0 84% 0.729 5.51 3.54
E 79% 0.675 -2.00
F 80% 0.695

A 74% 0.607 3.46 -16.42 -16.42 -13.56 -5.33
B 70% 0.572 -20.38 -20.38 -17.42 -8.96
C 86% 0.767 0.00 2.84 11.18
0 86% 0.767 2.84 11.18
E 84% 0.741 8.31
F 78% 0.661

A) Analyst #l-lst cluster
B) Analyst #1_2"d cluster

C) Analyst #2_1st cluster
0) Analyst #2,-2"d cluster

E) Analyst #3-1" cluster
F) Analyst #3-2"d cluster

variability in the perception of area covered by clusters in image
overlays. Examples include

• analyst expectation of the appearance of land covers in images,
• relative contrast between graphic overlays and background im­

ages,
• location of clusters in'the image area, and
• spatial texture or granularity in clusters.

The variability among analysts in this study was found to be
systematic in some respects. However, the reader is cautioned
that these results are derived from the limited sample of three
images of two study sites. Results of this study suggest that

• simple reclassification of mixed clusters does not necessarily in­
crease classification accuracy or provide more consistent results,

• performance of analysts may be consistently better or worse at a
given location regardless of image data product selection,

• success among analysts with some level of training and site
knowledge might not be predictably related to the degree of that
experience, and

• those image products which provide the best results for one in-
terpreter might not be the best for another.

Analyst variability, as demonstrated in this study, suggests that
experimental designs using classified remotely sensed data should
provide some control for this effect. Methods relying solely on

human interpretation may be subject to unpredictable accuracy
and bias. This may be of increased concern when the costs of
misclassification varies among classes, compounding percep­
tion of area covered with variable prioritization. Aronoff (1984)
describes a method to optimally label clusters, given user de­
fined fields of known cover types and cost estimates for each
class. However, care must also be exercised with Aronoff's
method as it may be equally sensitive to analyst variability and
bias if the placement of ground truth samples is not random­
ized.

Given that significant variability was found among analysts
in labeling identical clustered data products, it may be safe to
assume that the increased analyst dependence of supervised
methods would result in at least a similar, if not greater, degree
of variability.

In addition to assessing the influence of analyst variability on
experimental design, it may be useful to incorporate an exercise
which is similar to this study into educational programs. This
would provide feedback to students which may increase aware­
ness of an individual's perceptual biases in classification.
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