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ABSTRACT: This article describes a relationship which enables one to determine whether the image of a three-dimen­
sional object in one photograph matches the image of an object in another photograph. The image matching algorithm
requires the measurement of what appear to be nine corresponding image points in the two photographs. The rela­
tionship depends only upon the image point coordinates and does not require knowledge of the object space point
coordinates or the interior and exterior orientation of the two cameras. The relationship may be used for change
detection or classification, and it is particularly useful if there is a large disparity in the perspectives of the two
photographs. A by-product of the development is the equation of the epipolar line which is useful in automated image
search and correlation algorithms.

THIs STUDY ADDRESSES THE PROBLEM of matching the image
of a three-dimensional object in two photographs taken from

different perspectives. The formulated technique is evaluated
by matching the simulated reconnaissance camera image coor­
dinates of two ships, neither of whose object space coordinates
is known.

Perhaps the best method for determining whether two pho­
tographs match is to measure what appear to be five or more
corresponding image points in the two photographs and then
to perform a conventional relative orientation using the stan­
dard photogrammetric coplanarity equations. If the images match,
the measurement residuals will be consistent with the known
measurement error variance. A practical difficulty in applying
this technique is in determining an initial estimate of the relative
orientation parameters of the two cameras. This is required to
rigorously solve the coplanarity equations which are non-linear
in the relative camera position coordinates and in the orienta­
tion angles defining the rotation of one camera relative to the
other. Initial values are particularly difficult to estimate when
there is a large, unknown disparity in the perspectives of the
two photographs. Another practical difficulty is encountered
when the relative orientation adjustment is weakly determinant
because of narrow image ray bundles which expose a small
image compared to the photograph format. The photographs
simulated for the image matching presented here contain both
large perspective differences and narrow image ray bundles.

An alternative approach to the conventional method is to
compute rather than to guess at the initial estimates of the rel­
ative orientation. This can be accomplished by using eight
corresponding image points (Longuet-Higgins, 1981). This tech­
nique is unique in that it provides a closed form solution by
solving eight equations for coefficients containing linear com­
binations of the camera position parameters and the rotation
matrix elements. The camera position parameters and orienta­
tion angles are then extracted from the coefficients. This ap­
proach also fails for the simulations presented here, apparently
because of its sensitivity to small, random measurement errors
and narrow image ray bundles. Another solution for the ap­
proximate orientation is offered by Hinsken (1988). It is based
upon an iterative solution for the quaternions defining the ori­
entation matrix. The sensitivity of this algorithm was not in­
vestigated.

This study develops a new image matching algorithm using
nine corresponding image points to overcome the problems stated
above. The derived relationship among the image coordinate
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mesurements in the two photographs is invariant, never chang­
ing regardless of the relative orientation of the two cameras.
This means that the relationship is always satisfied if the image
measurements in the two photographs are of the same object.
If the image measurements are of different objects, the rela­
tionship is not satisfied.

Recent studies by Barrett et al. (1990, 1991) pointed out gen­
eral methods for determining invariant relationships in im­
agery. The second study also addresses the practical problem
of matching images of aircraft where the object points are con­
tained in a plane of symmetry defined by the wing tips, elevator
tips, etc. This study also investigates images of three-dimen­
sional objects for the special case in which the image planes of
the stereo pair are coincident. A similar study by Haag et al.
(1991) develops an invariant relationship in side-looking syn­
thetic aperture radar imagery applicable to radar images of three­
dimensional objects.

In the study presented here the general problem of matching
a three-dimensional object appearing in two frame camera pho­
tographs is addressed by first deriving an invariant mathemat­
ical relationship using Barrett's method of homogeneous
equations and then formulating the condition equation of the
epipolar line. This is followed by a description of the image
matching algorithm. An example of applying the algorithm is
then presented followed by a discussion of the attributes of the
relationship and certain degenerate cases.

FORMULATION OF THE INVARIANT RELATIONSHIP

Let (xij' Yij) represent the frame camera image coordinates of
point j in photograph i which have been reduced to the prin­
cipal point, and let Ii represent the camera focal length. The
relationship can be shown to be independent of the principal
point location by including its offset in the image coordinates,
but its introduction unduly complicates the development which
follows.

Define the column vector

(1)

Next, define an arbitrary reference coordinate system so that
(Xi' Y;, Zi) are the camera coordinates in this sytem and T i is
the 3 by 3 orthogonal rotation matrix which rotates the camera
axes to the reference system axes. The direction cosines of an
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image ray from camera i to object point j in this system are
given by

and

o
o

(14)

w:; UW =

W = (-!2al3' - !zI123' - !la31, - !la321
a1ValVa21,a22,fJzI133)T.

It is important to note that the row vectors Uj which we will be
concerned with contain only the image coordinates of the point
j in the two photographs.

Now, consider nine points and write

(2)

(4)

(3)
1

rij = (V&V;)i .

A unit vector along the image ray is denoted by

in which

and the vector between the two cameras is similarly denoted
by

The familiar coplanarity condition in photogrammetry re­
quires that the unit vectors along the image rays and the vector
between the two cameras lie in the same plane so that the scalar
triple product

where U is defined as the matrix on the left-hand side of the
equation. This sytem of nine linear homogeneous equations
clearly has a solution in the camera related parameters W (de­
generate cases are considered later). The coefficient matrix V is
singular and the determinant

P . (R1j X R2j) = 0

or, what is the same, the determinant

(5)

(6)

U9
9x9 9x 1

D :; det V = o.

o
9xl

(15)

(16)

(17)

(19)

(18)

(20)
(21)
(22)

D = det V = V k C k = 0
1)(9 9)(]

AO = Ck3 + Xlk~k5 + YlkCk7'

BO
= Ck4 + XlkCk6 + YlkCkS, and

Co = Ck9 + XlkCkl + YlkCk2.

in which

D = AOx2k + BOY2k + CO = 0

where the coefficients are

Because the rows Vj of U in this equation contain only image
point coordinates in two photographs, we have a relationship
which is invariant (equal to zero) with respect to the interior
and exterior orientation of the two cameras.

Equation 16, in principle, is satisfied if the image measure­
ments in the two photographs are of points on the same object.
If the image measurements in one photograph are of a slightly
different object, the relationship is not satisfied and the value
of the determinant is not zero. Equation 16 therefore forms the
basis for the image matching algorithm.

FORMULATION OF THE EPIPOLAR LINE CONDITION
EQUATION

It is useful at this point to introduce an alternate method for
evaluating the determinant in Equation 16. Let CkJ represent the
cofactor of the kth row and Ith column of the matrix V, then
the determinant may be evaluated by cofactors of row k, re­
sulting in

Expanding Equation 17 and collecting terms results in the
equation of a line (E.B. Barrett, private communication, 1991)
which is demonstrated by simulation to be the epipolar line.
The resulting equation of the epipolar line is given by

This means that if one is given the measurements of eight
corresponding image points j (lsjs9) in the two photographs
and the measured coordinates of a ninth point k not equal to j
(1 skS9) in photograph 1 (xu" Ylk) then the corresponding co­
ordinates of the point in photograph 2 (xa- Y2k) must lie on the
epipolar line given by Equation 19. It is helpful to think of the
process described above as follows. Take a set of eight corre-

(7)

(9)

(8)

(10)

(12)

(11)

= o.

W = 0
9xl

VYj A "V;j = 0
lx3 3x3 3)(1

A = ST2

Expanding the determinant results in

(lw mwnlj)S(12j' m2j, n2j)T = 0

where S is the 3 by 3 skew symmetric matrix given by

in which

Equation 6 is traditionally used for determining the relative
orientation. It is non-linear in the orientation angles and camera
coordinates and must be solved iteratively. Equation 10, how­
ever, contains nine unique, non-zero elements of A (apq) which
themselves define the relative orientation of the two cameras.
Longuet-Higgins (1981) derives Equation 10, eliminates one of
the variables, and solves eight equations using eight points. He
then extracts the orientation angles and camera coordinates from
his solution, thus providing a non-iterative approach to the
problem. We will depart from his development here.

We first substitute Equation 1 into Equation 10 and collect
terms, resulting in

where

If one take the origin of the coordinate system at camera 1
(i = 1), the coordinates (Xl' Yl, 2 1) become zero and the matrix
T1 becomes the identity matrix. Using this assumption, substi­
tuting Equation 2 into Equation 8, and multiplying through by
r1jr2j results in
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Define r as the unknown distance to move the point to satisfy
the relationship. Then

where DO is the value of the determinant computed from the
measured coordinates. Subtracting the two equations results in

sponding image points and perform a "relative orientation"
(compute the cofactors Ck1 ). Next, take another image point in
photograph 1 and use the "relative orientation" to find the
equation of the epipolar line in photograph 2.

IMAGE MATCHING ALGORITHM

Equation 16 (or, equivalently, Equation 19) is the condition
equation used to determine whether the two images match.
Even if the images do match, the value of the determinant D is
never zero because all of the image measurements contain ran­
dom measurement error. The determinant actually takes on quite
large values because of the large order of the matrix (nine).
Introducing normally distributed error into the measurements
results in values of the determinant which are not normally
distributed. This precludes comparing the difference between
the value of the determinant and its expected value (zero) to its
standard deviation to determine the probability of a match.

An alternative test is to determine whether one can "move"
anyone of the nine image points around within some specified
radius (r) on the photograph being tested in order to satisfy the
condition equation. This is achieved in the following manner.
Let (XO, yOhk represent the measured coordinates of point k in
photograph 2 and (x', y'b represent the unknown coordinates
which satisfy Equation 19. Ignoring the subscripts for a mo­
ment, one can write

is easily shown using Equations 24 and 29 that the standard
deviation of r k is given by CTr = CT. One would then expect the
value of rk to be less than three times CTY' or

This will serve as our test. It should be pointed out here that,
because rk is a physical quantity and has an intuitive meaning
as well, one can devise other tests.

An algorithm for determining whether the two images match
can now be stated:

(30)

(a) given the image measurements (x;y y;) of nine points in
the two photographs form the row vectors Uj given by
Equation 13 and the matrix U given by Equation 15;

(b) compute the determinant DO = det U and the nine cofac­
tors Ck1 of U;

(c) for each point k, k=l, 2, ... , 9
(1) compute AO and BO using Equations 20 and 21,
(2) compute rk using Equation 29,
(3) if riCTr < 3 the images match;

(d) if riCTr > 3 for all k, the images do not match.

SIMULATION RESULTS

Consider the two sister ships U.K. Ark Royal and U.K. Eagle
depicted in Figure 1 Gane's, 1970). The ships are identical except
for the placement of the masts, minor superstructure differ­
ences, and the angle of the flight decks. Nine points are con­
sidered and numbered in the figures. Table 1 gives the object
space coordinates of each point as scaled from the drawings.
The image coordinates used in the simulations are computed
from these points.

We will consider two cases:

• two photographs taken of the same ship (left photograph, Ark
Royal, and right photograph, Ark Royal), and

(24)

(25)

(23)Nx' + SOy' + CO = 0

and

where the angle 0 which minimizes r is to be determined. Sub­
stituting Equations 26 and 27 into Equation 25 and solving for
r yields

The angle 6 which minimizes r is found by equating the de­
rivative of r with respect to 6 to zero and solving for 6. Substi­
tuting the result into Equation 28 produces

III

\5=/
- ... d8=

'0= ~=.e=c@=', ;:;:::;

(26)
(27)

(28)

x' -xc = r cosO
y'_yO = r sinO

(29)

which is the distance of the point k from the epipolar line.
Therefore, if we move the point (XO, yOb the distance rk, the
relationship is satisfied.

Unfortunately, rk is not normally distributed either. One now
has the choice of abandoning the image matching altogether or
adopting a less rigorous criterion. Fortunately, the value of rk

has a physical meaning and allows one to construct a heuristic
approach. The accuracy of this approach is detailed in the sim­
ulation results presented later.

Let CTx and CTy represent the standard deviations of the image
measurement and point transfer error in XO and yO, respectively.
The error is normally distributed with mean zero. One usually
assumes that the standard deviation on each axis is the same,
so CTx = CTy = CT. Using this assumption, and the assumption
that the equation of the epipolar line is error free (one of the
nine "relative orientations" achieves its expected true value), it

•

=\~==:--;;.'~OD~:~=t

FIG. 1. UK Ark Royal (top) and U.K. Eagle (bottom).
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TABLE 1. OBJECT SPACE COORDINATES OF SHIPS TABLE 2. PHOTOGRAPH IMAGE COORDINATES OF MATCHING IMAGES

U.K. Ark Royal Left Photograph Image Coordinates (Arc Royal)
Point Number (}) Xj Yj Zj Point Number (j) X

'
j Y'j

(metres) (metres) (metres) (mm) (mm)

1 0.0 48.0 13.0 1 -3.843 1.166
2 0.0 24.0 13.0 2 -1.925 0.884
3 32.0 16.0 13.0 3 -0.819 2.865
4 220.0 14.0 13.0 4 1.862 14.254
5 220.0 39.0 13.0 5 -0.018 14.506
6 220.0 50.0 13.0 6 -0.839 14.615
7 72.0 50.0 24.0 7 -2.936 6.305
8 84.0 55.0 29.0 8 -3.156 7.355
9 93.0 55.0 43.0 9 -3.044 8.601

U.K. Eagle Right Photograph Image Coordinates (Ark Royal)
Point Number (j) Xj Yj Zj Point Number (]) x2j Y2j

(metres) (metres) (metres) (mm) (mm)

1 0.0 48.0 13.0 1 7.850 2.399
2 0.0 24.0 13.0 2 3.919 2.073
3 48.0 11.0 13.0 3 3.567 -1.108
4 220.0 14.0 13.0 4 9.459 -20.427
5 220.0 45.0 13.0 5 13.918 -19.929
6 220.0 50.0 13.0 6 15.937 -19.868
7 72.0 50.0 24.0 7 10.552 -2.604
8 92.0 55.0 39.0 8 11.898 -2.937
9 116.0 55.0 47.0 9 12.371 -2.078

TABLE 3. PHOTOGRAPH IMAGE COOROINATES OF NON-MATCHING
IMAGES

horizon from 85 to 35 degrees and changing the direction of the
cameras from abeam the ship by plus or minus 80 degrees. This
resulted in a range of convergence angles between the lines of
sight of from 13 to 88 degrees. These simulations resulted in 96
percent of the classifications being correct when both photo­
graphs were of the Ark Royal (4 percent false negative classi­
fications) and 87 percent of the classifications being correct when
one photograph was of the Ark Royal and the other of the Eagle
(13 percent false positive classifications). The overall rate of suc­
cess was 91 percent.

• two photographs taken of different ships (left photograph, hrk
Royal, and right photograph, Eagle).

In each case we will try to determine if the two photograph
images match.

The left photograph in all cases has a scale of 1:12,000 and is
assumed to be taken with a reconnaissance camera having a 6­
inch focal length. The right photograph has a scale of 1:6,000
and is assumed to be taken with a camera having a 12-inch focal
length. Each camera is located one nautical mile from the ship.

The simulated image coordinates in the left photograph con­
tain normally distributed random mensuration error of 3 micro­
metres. The image coordinates in the right photograph contain
the same error in addition to a normally distributed point trans­
fer error of 82 micrometres (which amounts to 1.5 metres or 5
feet three sigma in object space). The point transfer error results
from the inability to precisely locate a feature in the right pho­
tograph which is measured in the left photograph.

A number of simulation runs were made for each case by
changing the perspectives of the photographs. The case having
the largest perspective difference is presented here. A summary
of all of the simulations is presented later.

For the two cases presented here, the left photograph of the
ship has the camera depressed 55 degrees from the horizon (the
aircraft flying high) while the right camera is depressed 35 de­
grees from the horizon (the aircraft flying low). The conver­
gence angle (perspective disparity) between the two lines of
sight is 88.4 degrees.

Table 2 presents the photograph image coordinates of match­
ing images where both photographs are of the Ark Royal. Using
the image matching algorithm, a minimum value of r. of 0.035
mm was found for point k=8. This results in a ratio r.!O', of 0.4
which, being less than three, correctly classifies the images as
a match.

Table 3 presents the photograph image coordinates of non­
matching images where the left photograph is of the Ark Royal
and the right photograph is of the Eagle. In this case a minimum
value of r. of 0.293 mm. was found for point k=8. This results
in a ratio riO', of 3.6 which indicates the images do not match.

A total of 84 simulation runs were made for each of the two
cases by varying the depression angles of the cameras to the

Left Photograph Image Coordinates (Eagle)
Point Number (]) x'j

(mm)

1 -3.844
2 -1.920
3 -0.816
4 1.863
5 -0.023
6 -0.840
7 -2.929
8 -3.154
9 -3.047

Right Photograph Image Coordinates (Eagle)
Point Number (j) x2j

(mm)

1 7.824
2 4.027
3 3.317
4 9.443
5 14.956
6 15.980
7 10.509
8 12.178
9 12.936

Y'j
(mm)

1.166
0.886
2.864

14.253
14.511
14.615
6.305
7.358
8.602

Y2j

(mm)

2.388
2.179

-2.741
-20.564
-19.897
-19.817
-2.657
-2.475
-3.722
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DEGENERATE CASES

The image matching algorithm presented here is based on
the premise that the system of equations represented by Equa­
tion 15 is homogeneous. If any relative orientation of the two
cameras causes an element apq of the matrix A to become zero,
then the algorithm fails. The cases for which this is true are
easily seen by examining Equation 11 in which A is the product
of the skew symmetric matrix S and the orthogonal rotation
matrix T z. From this it is easily shown that, if any two of the
three angles defining the relative orientation of the two cameras
are zero, then one of the elements apq is also zero. This precludes
the algorithm being applied to conventional vertical photogra­
phy.

Another consideration is the distribution of object space points.
If all of the object points are collinear, then the image points
must also be colIinear. In the case the Yij terms in Equation 13
disappear. An additional constraint which is not at all obvious
is that no more than seven of the nine object points may lie in
a plane.

CONCLUSIONS

Although the conventional method of relative orientation is
the best technique for matching images, it has serious difficul­
ties with large perspective differences in the two photographs
because it requires a priori estimates of the orientation angles
defining the relative orientation of the cameras. It also requires
knowledge of the cameras interior orientation. The relative ori­
entation solution is also unstable when the image ray bundles
are narrow.

The algorithm presented here for matching images in two

photographs is potentially useful when there is a large, un­
known disparity in the perspectives of the two photographs
and the points are well distributed in three dimensions in object
space. It is also useful in that it is independent of the principal
point coordinates and focal lengths of the cameras and may be
used for non-metric photography.
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Notice to Certified Photogrammetrists

The ASPRS Board of Directors approved an expansion of the Certified Photogrammetrist program that
went into effect January 1, 1992. After that date, all Certified Photogrammetrists must submit either an
application for recertification as a Photogrammetrist, or for certification as a Certified Mapping
Scientist-Remote Sensing or Certified Mapping Scientist-GIS/LIS. Those who do not recertifY will be
transferred to either an "Inactive" or "Retired" status.

If you were certified between January 1, 1975, and December 31, 1987 (anyone with a
certificate number lower than 726), you must comply with this notice by December 31,
1992, or be reclassified as Inactive or Retired.

In May 1992 each affected Certified Photogrammetrist was sent a letter, with the new forms and
procedures, by certified mail. Anyone reading this notice who did not receive a letter should call me
immediately at 301-493-0290. Recertification is now required every five years. The fee for recertification
application and evaluation is $125 for Society members and $225 for nonmembers.

William D. French, CAE,
Executive Director, ASPRS


