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AIlSTRACT: Conventional imag~ classification routines are often inappropriate for the mapping of continuous phenom­
ena such as heathland vegetation. To allow.for the natural fuzziness of such an environment, a fuzzy sets algorithm
may be used to model the he~thland vegetatIon more appropriately than a classification. The results of this study show
that the fuzzy c-means algonth~ can be .used to discriminate accurately between the end points of a set of continua,
and that class memb.ershIp functions denve~ from t.he an~lysis are sensitive to the botanical composition of the vege­
tatIOn canopy. Mappmg the fuzzy membershIp functions wIll therefore enable a more realistic portrayal of the heathland
vegetatIOn than a conventional classification.

INTRODUCTION

T HEMATIC MAPP:NG FROM REMOTELY SENSED DATA has typi­
. .call~ been achi.e:,ed. through the process of a supervised

dIgItal Image claSSIfIcatIOn. These techniques are designed to
allo.cate case.s of unknown class membership to a class on the
bas~s. of theIr spectral properties in relation to a pre-defined
deCISIOn rule. Thus, for instance, in the maximum-likelihood
classification each pixel is allocated to the class with which it
~isplays the highest likelihood of membership. Many factors
Influence the accu~acy with which such a technique may be
employed. These Include the number, size, and location of
training sites (Swain and Davis, 1978; Schneider, 1980; Camp­
bell~ 1981; Foody, 1988), the type of classifier, and the available
ancillary data (Mather, 1987). One feature which is often over­
looked is the nature of the themes to be classified.

Image classificatio.n techniques were designed for application
on phenomena whIch can be considered to exist in discrete
classes. Each pixel is allocated simply to the class with which it
~isplay~ the gr~atest lev~l of.similarity. Because only one class
IS assoCIated wIth each pIxel In the output and no indication of
the re~ative strength of class membership is provided, full mem­
bershIp of the allocated class is implied. However, full mem­
bership of the allocated class is often not the case. For instance
mixed pixels may, dependent on the characteristics of the classe~
on the ground and the spatial resolution of the imagery, be
co~n:on.. Furthermore, many geographical phenomena do not
eXIst In. discrete classes but instead lie along continua, and the
clas~es Inter-~ade (Greig-Smith, 1980; Leung, 1987; Wang, 1990).
For Instance, In a heathland environment one does not observe
a sudd~n change in land cover from dry heath to bog but in­
stead VIews usually a gradual change along a moisture gradient
from dry through wet heath to bog. Along the continuum the
comp?sition of the canopy wi~~ contain variable proportions of
the different classes. At the end points" of the continuum
cases may be "pure" and comprise only species associated with
one class. In the zones where classes inter-grade, cases will
exhibit the characteristics of two or more classes. Conventional
classificatio~ routines will therefore be inappropriate for the
r~pr~sentatJo~ of such phenomena. This problem with classi­
fIc~tion techru~ues ha~ been acknowledged widely in the eco­
lOgIcal commuruty (Whittaker, 1973; Greig-Smith, 1980; Goldsmith
et aI., 1986) where the "hardness" of classification routines im­
plies a discrete environment which is the antithesis of the con­
tinuum concept in ecology (Greig-Smith, 1980). Furthermore,
the sharpness of the boundaries and the apparent objectivity of
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classification routines Oohnston, 1968) compound the problem
and may degrade the quality of later analyses, especially if within
a geographical information system (Burrough, 1986). To provide
a more valuable representation of continuous classes, an alter­
native approach to classification which models the gradients
between class centroids is required. One way to achieve this is
to indicate the relative strength of class membership that a case
has relative to all defined classes, similar to spectral mixture
modeling (Campbell 1984a), and thus indicate its composition
and position along the continua.

Mapping the probabilities of class membership is one ap­
proach which has been used to represent continua (Wood and
Foo~y, 1989; Foody and Trodd, 1990). In essence, the approach
conSIsts of outputting the probabilities of membership each case
has to each class. Thus, instead of outputting a conventional
classification in which one class code is associated with each
pixel, the probability of membership that the pixel has for each
class can be output. Thus, the output could be conceived as a
series of probability surfaces where each surface represents the
probability of membership to a specified class, and for each
measure of probability there is one surface per class. This tech­
niq~e has the advantage that the probabilistic measures may be
derIved as a by-product of the widely available maximum-like­
lihood classification (Trodd et aI., 1989), although care must be
taken in selecting the appropriate probabilistic measure. One
important limitation to this approach, however, is that the max­
imum-likelihood classification is not a particularly robust tech­
nique (Tom and Miller, 1984)_ The technique is only reliable
when its assumptions are satisfied, and only small deviations
from the assumed conditions may cause instability (Swain and
Davies, 1978). One critical assumption made is that the digital
numbers (ON) of each class are distributed normally. Because
the statistical distribution of ON can vary considerably between
classes, and as class membership is unknown before the clas­
sification, it is impossible to adequately test, let alone correct,
for non-normality in the data. If it can be assumed that the data
display only minor deviations from normality, an alternative is
to utilize linear discriminant analysis. This technique has been
used widely to classify remotely sensed data and, while similar
to the maximum-likelihood classification, it is a more robust
technique (Tom and Miller, 1984). Unfortunately, however, the
probabilities derived in the discriminant analysis are assessed
relative to the discriminant functions and can therefore be dif­
ficult to interpret and compare reliably and may differ markedly
from those derived from a maximum-likelihood classification
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conservation. Remotely sensed imagery is an attractive source
of data for this application but, as discussed above, conven­
tional classification routines are inappropriate here because they
do not model the continuous environment satisfactorily. The
latter is an important limitation because knowledge of the gra­
dients between classes is important environmental information,
especially with the current resurgence in the importance of ec­
tones and environmental change (di Castri et al., 1988; Johnston
and Bonde, 1989) and provides valuable information for geo­
graphical information systems. In this type of environment the
desire to indicate the inherent imprecision or fuzziness of the
classes is paramount and one where the fuzzy sets approach is
valuable.

To evaluate the applicability of the fuzzy c-means technique
to the representation of the heathland vegetation, a small study
area in the Surrey Heaths at Pirbright Common was selected as
the test site (Figure 1). This site is owned by the Ministry of
Defence and so, to some extent, is a protected environment.
This heath supports communities of wet and dry heathland
vegetation, which differ considerably in composition but also
exhibit a high level of intra-class variability. Typically, dry heaths,
however, were dominated by Calluna vulgaris and Ulex minor
whereas wet heaths comprised significant amounts of Erica te­
tralix and Molina species. Lower lying areas tended to support
bog dominated by species of Sphagnum and Carex. In areas which
have been neglected Pteridium, Betula, and Pinus species have
invaded and the potential for scrub woodland development is

_ Military firing range

Ash ranges,
Pirbright Common

(Campbell, 1984b). To overcome the potential problem of non­
normality, a fuzzy sets approach which makes no assumptions
about the statistical distribution of the data and which indicates
the strength of membership a case has to each class may be
used. One approach is based on the fuzzy c-means algorithm
(Bezdek, 1981; Bezdek et aI., 1984; McBratney and Moore, 1985).
This paper illustrates the applicability of this technique for the
representation of continuous classes, in this example heathland
vegetation, from remotely sensed data.

THE ALGORITHM

Conventional classification routines allocate each pixel to one
of several classes assumed to be discrete and mutually exclu­
sive. Because these assumptions are often untenable, the use
of the fuzzy c-means algorithm may appear appropriate. The
algorithm used was that described by Bezdek et al. (1984). Briefly,
the fuzzy c-partion space is

{

• c }
M= U: Uik E [0,1]; 2: U;k >0, i=1...c; 2: U;k =1, k=1...n

k-l ;-1

where U is a fuzzy c-partion of n observations and c classes
(strictly, fuzzy groups), and Uik is an element of U and rep­
resents the membership of an observation, xk, to the i'h class
where Xk is a vector the length of which is the number of attri­
butes, p (e.g., wavebands), used. The fuzzy membership func­
tion values, U ik' lie on a scale between 0 and 1 and sum to 1 for
each case. They may therefore to some extent be likened to
probabilities of class membership. The optimal fuzzy c-partion
is identified through the minimization of the generalized least­
squared errors functional Jm:

• c

Jm (U, V) = 2: 2: (Uik)m (dik)2
k-1 i-1

where V is a c by p matrix, the elements, Vik, of which represent
the mean of the k'h of pattributes in the i'h class, m is a weighting
component, 1 < m < <X, and dik is a measure of dissimilarity
based on the distance between an observation and a class cen­
troid which can be determined from

(dik)2 = (xk - Vi? A (xk - Vi)

in which A is weight matrix which determines the norm (e.g.,
Euclidean, Mahalanobis) to be used (Bezdek, 1981; Bezdek et
aI., 1984).

In this investigation the algorithm was used in a supervised
mode (Key et aI., 1989), requiring direct input of class centroids
into the program. In all the analyses the Mahalanobis norm was
used and values for the parameter m are indicated with the
results because the degree of fuzziness obtained is positively
related to m; a "hard" or conventional classification may be
obtained from m = 1.

TEST SITE AND DATA

Lowland heaths in northwest Europe, while recognized as
being of considerable ecological value, are undergoing relatively
rapid change (Foody and Wood, 1991). Some of the finest ex­
amples of these heaths are located in the United Kingdom where
total heathland coverage has been reduced by approximately 75
percent in the last two centuries. In some regions changes have
been much greater. The Surrey Heaths, one of the most im­
portant heathland resources in the UK, have been reduced in
extent by about 90 percent in this period and are under consid­
erable threat from a variety of agencies, including woodland
and urban encroachment (Foody and Wood, 1991). Information
on these heaths, especially in terms of their areal extent and
composition, is essential for their effective management and
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FIG. 1. Test site location.
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TABLE 1. CONFUSION MATRIX DERIVED FROM THE DATA AFTER THE

ApPLICATION OF THE Fuzzy C-MEANS ALGORITHM IN A FAIRLY HARD

MODE (M = 1.25).

SUMMARY AND CONCLUSIONS

Image classification routines are inappropriate for t~e repre­
sentation of continuous environments. Of the alternatIve tech­
niques available (e.g., Trodd et al. 1989; Wang, 1990), those
based on fuzzy sets approaches are particularly attractive be­
cause they do not make rigid assumptions about the character­
istics of the data and they allow for the natural fuzziness or
imprecision of the scene to be mapped. The re.sults of this study
have shown that (i) the fuzzy c-means algonthm can be used
to classify accurately the end points. of continua and, (~) the
fuzzy membership functions, U ik, denved from the analySIS are
related to the canopy composition; correlations between Uik as-

algorithm was used in a supervised form (Key et al., 1989), and
the data on the spectral characteristics of class centroids were
derived from a total of 48 samples acquired from the end points
of the continuum which were used in the classification; 31 dry
heath and 17 wet heath and bog.

RESULTS AND DISCUSSION

With the parameter m = 1.25 (fairly hard), the samples of the
four classes were classified. The result, 100 percent accurate
classification, shows that the end points of the continua are
separable. This is, however, no more th~n would ~e 0.bt~ined
from a conventional classification algonthm. A dIscnrrunant
analysis of the same data set also gave a 1.00 percent accurate
classification and showed the class end pomts to be separable
spectrally. The main concern here, however, was once ~aving

established the separability of the end points, to determme the
sensitivity of the fuzzy membership function, U ik, to the canopy
composition. This was investigated with reference to the wet
heath and bog and dry heath classes with respect to the.middle
infrared image only (Figure 2). The relevant class ~nd pomt data
used in the classification were used to determme the fuzzy
membership functions for the 15 sample sites along the transect.
The analyses were repeated several times with different values
for the parameter m; the degree of fuzziness is positively related
to m. The fuzzy membership functions associated with dry he~th

were then compared with the percentage of dry heath speCIes
present at each sample site. The results sho~ed t~at th~ fu~zy
membership functions do display a systematic relationship WIth
the canopy composition (Figure 3). In general, the fuzzy mem­
bership function associated with dry heath, for exa~ple.' was
positively related to the percentage dry heath vege~ation I~ the
samples and the relationship appeared to be.come mc~ea.smgly

linear as m increased. Although the data set IS rather limIted, a
linear regression of the fuzziest state, the one with the mo~t

linear trend, was significant (at the 95 percent level of confi­
dence) and had an R2 = 0.81. The analyses have therefore shown
that the end points may be discriminated to a high level of
accuracy and the fuzzy membership functions can be use.d to
model the variations in composition between class end pomts.
While further study is required, especially in terms of the de­
scription of the ground data, these results do indicate .the 'po­
tential of the technique for mapping heathland vegetation m a
manner similar to probability mapping.
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FIG. 2. Location of the transect on the dry to wet heath and bog continuum
displayed on the 2.08- to 2.35-~m waveband image.

considerable. The investigation focused on the ability of the
fuzzy c-means technique to identify the class end points accu­
rately and then on its sensitivity to the continua that exist be­
tween them; both are necessary for accurate modeling of the
heathland environment.

The analyses were all performed with airborne thematic map­
per data acquired by a Daedalus 1268 sensor for the test site on
31 March 1989. The data were acquired within two hours of
solar noon along a flight line that ensured that the relative solar
azimuth angle (angle between the Sun's principal plane and
sensor scanning direction) was approximately 90°. After
smoothing with a 3 by 3 low pass mean filter to reduce potential
mislocation errors, the data had a spatial resolution of approx­
imately 15m. Unfortunately, one of the 11 wavebands recorded
by the sensor, the 1.55 to 1.75 f.lm waveband, exhibited signif­
icant radiometric distortion due to striping and could not be
used. All the remaining wavebands were used to classify the
end points by applying the fuzzy c-means technique in a fairly
hard, near classificatory, mode (m = 1.25) and allocating each
case to the class with which it displayed the largest membership
value. To achieve this the DN in the ten remaining wavebands
for 92 pixels associated with the four main vegetation classes
(31 dry heath, 17 wet heath and bog, 20 coniferous woodland,
and 24 mixed woodland pixels) were extracted from the data.
These samples were then used to both train and test the analy­
sis. While this approach will provide a guide to the level of
separability between class end points, it must be noted that the
accuracy of the classification may be overestimated (Swain and
Davis, 1978).

The sensitivity of the technique to the composition of the
vegetation communities along a continuum was investigated
with a transect that graded from dry heath to wet heath and
bog. Because the continuum under investigation was therefore
essentially a reflection of a moisture gradient, only the 2.08 to
2.35 f.lm moisture sensitive middle infrared waveband was ana­
lyzed; the more sensitive 1.55 to 1.75 f.lm waveband could not
be used because of the afore-mentioned poor data quality. At
15 sample sites along the 1020-m transect (Figure 2), detailed
ground data on the canopy composition were acquired from
16m2 quadrats. For each of the pixels corresponding to these
sites, the DN in the 2.08 to 2.35 f.lm waveband was extracted.
These data were then used to determine the relationship be­
tween community composition and the fuzzy membership
function, U ik, derived from the fuzzy c-means algorithm. The
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the parameter m.
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sociated with dry heath vegetation and the percentage cover of
these vegetation types at a heathland test site were high, typ­
ically >0.9 and significant at the 95 percent level of confidence.
By mapping these membership functions, it should therefore
be possible to model more appropriately the distribution of veg­
etation types than can be achieved with a conventional image
classification. This output may also be of more value than that
from a conventional classification. It would, for instance, rep­
resent a more useful input to a geographical information system
because it reveals the gradual transitions between classes and
not the sharp artificial boundaries characteristic of most classi­
fied scenes and thematic maps.
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