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ABSTRACT: This paper focuses on the nature of error in spatial databases and the implications of this error for spatial
data transformations in GIS applications. It describes an error propagation research paradigm as an information flow
linking successively more formal components of error propagation in a GIS context. These components include devel­
opment of conceptual models of error, creation of formal indices to measure error in spatial databases, implementation
of mathematical functions to transform error indices and model the propagation of error as it is processed, and eval­
uation of the indices to gain insight into the utility of conceptual models used in error measurement and propagation.
The paradigm enables researchers to formulate, manipulate, and experiment with components of error propagation to
determine their implications for decision making. The applicability of the paradigm is illustrated with a simple GIS
appli~ation in which error is propagated from sources to final product through a sequence of data transformation
functions.

INTRODUCTION

G EOGRAPHIC INFORMATION SYSTEMS PROVIDE USERS WITH
convenient and consistent mechanisms for applying auto­

mated transformation functions to manipulate and analyze spa­
tial data. These capabilities expand the role and increase the
value of spatial databases used in a variety of decision-making
contexts. Such systems, however, often lack capabilities for es­
tablishing the accuracy and validity of products derived to sup­
port decisions. That is, a GIS provides a means of deriving new
information without simultaneously providing a mechanism for
~stablishing its reliability. The literature detailing GIS applica­
tions shows that there is a lack of concern for error in spatial
databases and its propagation through sequences of data trans­
formation functions. In such applications input data quality is
often not ascertained, functions are applied to these data with­
out regard for the accuracy of derived products, and these prod­
ucts are presented without an associated estimate of their
reliability or an indication of the types of error. they may con­
tain.

Such omissions do not imply that errors are of such low mag­
nitude that they can simply be ignored. Rather, they reflect the
lack of a standard framework for modeling how error is prop­
agated through sequences of data transformation functions.
Paradoxically, an enormous volume of research has been carried
out on the question of spatial database accuracy and the errors
introduced by various types of data transformation (Goodchild
and Gopal, 1989; Veregin, 1989a). Numerous indices have been
developed to measure spatial and aspatial dimensions of error
in databases, and methods have been proposed for modeling
the ways in which data transformation functions modify and
introduce error. Much of this research, however, has been car­
ried out in isolation from the broader context of error propa­
gation modeling in a GIS environment. There is a lack of a
methodology for specifying the interactions among these var­
ious error indices and models of error propagation. That is,
there is no accepted paradigm for modeling error propagation
that explicitly recognizes the interdependence between basic
concepts of spatial database accuracy and formal methods of
error propagation in an actual system.

Figure 1 illustrates an informational flow linking successively
more formal components of error propagation modeling and is
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FIG. 1. An error propagation research paradigm.

presented as a possible error propagation research paradigm.
The conceptual model of error reflects notions of what error
signifies in a particular context. This ontological issue is of fun­
damental importance because error in spatial databases is in­
herently multi-dimensional. The utility of different dimensions
of error is a function of context defined by the requirements of
the uses and the classes of geographical data under consider­
ation. Once determined, significant dimensions of error must
be represented numerically as an index or set of indices for error
measurement. This permits error propagation to be imple­
mented by an error propagation function. Such functions model
how a particular type of error is modified as spatial data are
processed by a given data transformation function. Automated
error propagation functions can be used to track errors present
in source data through specific sequences of data transforma­
tion functions to determine the quality of a GIS derived data
product.

The sections that follow discuss conceptual models of error
for geographic data, indices to measure those errors, and func­
tions to propagate the indices in a GIS application. Error prop­
agation research is facilitated by a computer program for testing
error indices and error propagation functions. The program uti­
lizes a meta-data model of a GIS application allowing users to
characterize data sources with error indices and implement
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functions to propagate these indices through the course of GIS
applications processing. This enables researchers to experiment
with error measurement indices and functions to propagate them.
Such experimentation provides feedback that aids in identifying
limitations of existing indices and propagation methods. This
serves to elucidate problems associated with error propagation
for a particular conceptual model of error.

CONCEPTUAL MODELS OF ERROR

Numerous conceptual models of error exist for spatial data.
Error is perhaps most commonly conceived of as a deviation
from some accurate, real-world standard, such that any mea­
surement is assumed to represent an approximation of some
true but unknown value. This conception of error has much in
common with the statistical treatment of error in terms of bias
and precision. It also implies that error is largely a function of
the reliability of data acquisition methods, such that the distri­
bution of error can be characterized by obtaining repeated mea­
surements of the same phenomenon, and more accurate
measurements can be obtained by using more sensitive instru­
ments.

Alternatively, error may be viewed as inherent uncertainty
in some abstracted characteristic of the real world. The map or
other spatial data product is not intended as an accurate de­
scription of the real world, but as an abstract representation of
some characteristic of the world. Uncertainty results from in­
determinacy in the spatial distribution of this characteristic, be­
cause no accurate real-world standard exists against which the
mapped characteristic can be compared. Nor is such uncertainty
necessarily inadvertent. It may, for example, result from gen­
eralization methods used to enhance the graphic representation
of the characteristic of interest. According to this view, a map
or other spatial data product is a model of the real world, nec­
essarily incomplete and generalized. Uncertainty is therefore
propagated and transformed each time a conceptual or physical
model is constructed in the course of GIS applications processing
(Bedard, 1987).

Geographical entities are defined in terms of spatial, the­
matic, and temporal dimensions (Figure 2), and each dimension
can be described with corresponding dimensions of error. Er­
rors in spatial data are multi-dimensional in character. That is,
spatial databases cannot be characterized adequately with a sin­
gle index of error. For example, spatial accuracy includes both
vertical and horizontal components that are not always sepa­
rable. Thematic accuracy depends on data type (e.g., numerical
versus categorical) and is not always independent of spatial
accuracy. Temporal accuracy is an important but often over­
looked dimension of accuracy in spatial databases. Data reli­
ability is often (but not always) an inverse function of age, because
spatial and thematic attributes may change over time. In addi­
tion, older data acquisition methods may be of limited or un­
known accuracy.

In surveying and related fields, spatial accuracy is more dom­
inant than thematic accuracy, and a variety of methods exist for
measuring accuracy with reference to a precise theoretical stan­
dard. In fields that focus instead on the derivation and analysis
of thematic information (such as land cover and soil and veg­
etation type) thematic accuracy plays a much larger role. In­
deed, for the class of spatial data known as /I categorical
coverages" (Chrisman, 1989), the spatial attributes of the data
are secondary to, and are determined by, the thematic content
itself. Therefore, it may not be meaningful to examine spatial
and thematic accuracy independently.

The multi-dimensional character of error in spatial databases
is also reflected in the data quality proposed by The Digital
Cartographic Data Standards Task Force (DCDSTF, 1988). Ac­
cording to the proposed standard, documentation of data qual­
ity includes five key components: positional accuracy, attribute

observation defined by unique spatial,
thematic and temporal coordinates

FIG. 2. Geographical data defined in terms of space, theme, and time.

accuracy, lineage, logical consistency, and completeness. Posi­
tional and attribute accuracy refer to spatial and thematic com­
ponents of accuracy, respectively. Lineage refers to the data
sources, methods of deriving and encoding the data, and the
set of all transformations applied to the data. Logical consis­
tency refers to the fidelity of the relationships encoded in the
data. This includes consistency of topology, spatial attributes
such as perimeter and area values across hierarchical groupings
of polygons, and thematic attributes such as Census population
estimates for different aggregations of enumeration units. Com­
pleteness describes the relationship between objects in the da­
tabase and the abstral;t universe of all objects.

The proposed standard is designed to facilitate "truth in la­
beling." That is, while it is the responsibility of the data pro­
ducer to document data quality, it is the user who must interpret
this documentation and evaluate the fitness of the data for a
particular application. The error propagation paradigm pre­
sented here adopts the truth in labeling concept. The paradigm
provides a means to propagate error through GIS functions, but
does not define what level of error is acceptable in a given
situation. Such policy decisions are application-specific and
should be based on a consideration of the relevance and sig­
nificance of different types of error, issues that are largely a
function of context.

INDICES FOR ERROR MEASUREMENT

The choice of an index or set of indices to measure and doc­
ument error in spatial data is dependent on the conceptual model
of error that has been determined to be appropriate in a partic­
ular context. For example, in surveying and related fields in
which spatial accuracy is of paramount importance, error is typ­
ically evaluated in terms of the deviations between the actual
and estimated locations of a sample of points. These deviations
may be measured in the X,Y (Le., horizontal), and Z (Le., ver­
tical) dimensions for the points. Often, measurements of error
in the X and Y dimensions are collapsed into a single index of
horizontal accuracy, as in the case of the National Map Accuracy
Standards (NMAS) currently applied to U.S. Geological Survey
topographic maps. Using Koppe's formula, which accounts for
the effects of terrain slope on mean vertical error, it is also
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possible to collapse the horizontal and vertical accuracy com­
ponents into a single index (Gustafson and Loon, 1981).

Moreover, as the NMAS illustrates, error indices may take the
form of a compliance test with an accuracy standard. However,
as this form of error index is only a logical test of accuracy, it
provides no information about the amount of error at particular
sample points. Alternatives to the accuracy standards approach
often involve the statistical concepts of bias and precision. Com­
mon error indices based on these concepts include mean ab­
solute error, standard error, and root-mean-squared error (RMSE).
Again, these may be measured in the X, Y, and Z dimensions,
or these dimensions may be collapsed. Error indices may in­
clude measurements of both bias and precision (e.g., American
Society of Civil Engineers, 1983) or of precision under the as­
sumption that bias is random (Merchant, 1987).

Spatial accuracy may also be measured in terms of statistical
functions. For example, the epsilon band concept provides a
means of representing the positional error in lines due to dig­
itizing or generalization error (see Burrough, 1986). Typically,
a boxcar distribution with a width of twice the value of epsilon
and centered on the estimated line is assume to encompass the
true line location (e.g., Blakemore, 1983). Others have sug­
gested that the distribution may approximate some other sta­
tistical function, such as a Gaussian or bimodal one (e.g.,
Honeycutt, 1986). These error indices, while appropriate for a
conceptual model of error in the statistical sense of inexactness,
are not necessarily appropriate for a model of error as inherent
uncertainty. In this case, it would be more appropriate to mea­
sure error based on notions of spatial variability. Researchers
have proposed various error indices that incorporate ideas from
fuzzy set, evidential, and probability theory, among others [see
Stoms (1987) for a review). Thus, spatial accuracy may be char­
acterized by one or more components, depending on the pur­
pose for which accuracy evaluation is being carried out.

Measurement of thematic accuracy depends on the type of
data under consideration. For categorical data (e.g., land cover,
or soil or vegetation type) it is common to compute an index of
classification accuracy from a classification error matrix. This
matrix is a cross-tabulation of the estimated and actual thematic
values for a sample of points. In the classification error matrix,
element Cif represents the number of points assigned to class i
that actually belong to class j. Perhaps the most common index
of classification accuracy derived from the classification error
matrix is the proportion of points correctly classified (PCC). The
PCC is defined as the trace of the classification error matrix (Le.,
the sum of all cij where i = J) divided by the number of sample
points. If the sample has been drawn randomly then the PCC
may be viewed as the probability that a point selected at random
from the layer is correctly classified. Among the alternatives to
pec are the kappa (or khat) statistic, which accounts for correct
classifications that occur by chance alone, and user's and pro­
ducer's accuracies, which focus on the accuracy of individual
thematic classes (Ginevan, 1979; Aronoff, 1982; Story and Con­
galton, 1986; Hudson and Ramm, 1987). There are also numer­
ous alternatives to the classification error matrix approach. For
example, one might compare the area of a sample of polygons
on a map to their actual area as determined by ground survey
(Fitzpatrick-Lins, 1978), or compute the positional error in pol­
ygon boundaries arising from classification error (Hord and
Brooner, 1976). For numerical thematic data, indices derived
from the classification error matrix are inappropriate and some
other index, such as the standard or root-mean-squared error,
might be constructed.

Temporal error may also be measured according to different
criteria. For example, one might differentiate between time er­
ror (Le., the difference between the recorded time of an obser­
vation and the actual time) and synopticity error (i.e., the

difference between the recorded time of an observation and the
real-world time it is assumed to represent) (Steams, 1968). The
former is a form of measurement error resulting from inexact
temporal coordinates, while the latter is more akin to sampling
bias due to the inability to measure some phenomenon instan­
taneously or at the exact reference time. While other types of
temporal error could also be defined, this dimension of error
has not received much attention in the geographic literature.

The brief synopsis presented above indicates that measuring
error in spatial databases entails, not a single index, but a set
of indices describing various dimensions of spatial, thematic,
and temporal error. Within each of these dimensions, a variety
of possible error indices may be constructed, depending on what
type of error is deemed to be significant given the nature of the
data and the physical system under consideration, the type of
data processing required, and the purpose for which the error
assessment is being carried out. These indices may reflect sim­
ple compliance tests (e.g., NMAS), summary statistical measures
(e.g., the PCC index of classification accuracy), a vector of in­
dices (e.g., standard error in the X, Y, and Z dimensions), a
matrix of values (e.g., the classification error matrix), or a sta­
tistical distribution (e.g., the epsilon band). A hypothetical vec­
tor of error indices for spatial, thematic, and temporal error for
a layer is shown in Figure 3.

The vector shown in Figure 3 contains a single-valued index
for each of several different dimensions of error. However, in­
dices need not be single-valued, and might refer instead to other
vectors, matrices, statistical functions, or other data layers. Such
indices do not necessarily assume that error is distributed uni­
formly over space, theme, or time. Rather, they may be said to
be spatially, thematically, or temporally differentiated models
of error to the degree to which they permit error to vary along
these three dimensions. For example, a classification error ma­
trix is a thematically differentiated model of error, because it
tabulates error separately for each thematic attribute class. In
contrast, the PCC index of classification accuracy is a single­
valued index derived from the classification error matrix, and
as such does not permit thematic differentiation of error. That
is, the PCC value does not describe how error levels may vary
from class to class.

Spatially differentiated models consider how indices of spa­
tial, thematic, or temporal error are distributed over space. The
result is a non-uniform patterning that has significant conse­
quences for error propagation (see Fisher, 1989; Flowerdew,
1989; Goodchild, 1989). In these models, indices of spatial, the­
matic, or temporal error vary over space. A common example
is the "Reliability Diagram" that accompanies some topographic
maps. This diagram differentiates the quality of different parts
of the map based on the date and method of data collection
(Chrisman, 1983). As a result, it is possible to construct tem­
porally differentiated models of error because the contents of a
cartographic database may have been collected at different times
using different sources and methods.

In a layer-based GIS, geographic features are organized ac­
cording to a thematic or temporal scheme (Chrisman and Nie­
mann, 1985; Kjerne and Dueker, 1986; Aronson, 1987; Bracken
and Webster, 1989). Individual layers are in some sense indi-

Spatial error: RMSE:

Themat ic error: pcc:

Temporal error: Synopticity:~

FIG. 3. A hypothetical vector of error in­
dices for a layer.
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visible, like algebraic variables. They are 'atoms' from which
higher-order constructs (whether algebraic expressions or GIS
applications) are build (Tomlin and Berry, 1979). Nevertheless,
the ability to define spatially, thematically, or temporally dif­
ferentiated models of error means that it is not necessary to
assume that error is distributed uniformly over space, theme,
or time. Error can be divided into different levels along any of
these dimensions. As these divisions become fine enough, they
become, in effect, attributes of points, lines, areas, or cells.

ERROR PROPAGATION FUNCTIONS

Spatial data transformation functions in a GIS derive new in­
formation by making explicit the spatial relationships implicit
in source data. The accuracy of this new information depends
on the type and level of error present in the sources and the
transformations applied to derive the new information. By
propagating source errors through data transformation func­
tions, the utility of derived products for decision making can
theoretically be established.

An error propagation function may be defined as a mathe­
matical (or otherwise unambiguous) representation of the
mechanisms whereby errors present in data sources are modi­
fied by a particular data transformation function. In addition,
the error propagation function may incorporate the processes
whereby the data transformation function itself introduces error
where none existed previously. Error propagation functions are
therefore process-oriented, as they model changes in error
through the course of GIS applications processing. As Figure 4
illustrates, the choice of error propagation function is deter­
mined by the GIS data transformation function applied and the
index used to measure error in the data input to the transfor­
mation function. This assumes some apriori knowledge of input
data quality and a mathematical model of error propagation
mechanisms. For a given GIS data transformation function, there
is a vector of error propagation functions (corresponding to a
row in Figure 4) that depends on the error measurement index
to be propagated. For a given error measurement index there
is also a vector of error propagation functions (corresponding
to a column in Figure 4) depending on the GIS data transfor­
mation through which the error index is to be propagated. Au­
tomated error propagation, therefore, involves matching the GIS
data transformation function with the error measurement in­
dex. The GIS transformation function and error index serve as

keys for identifying a cell in Figure 4 and selecting the appro­
priate error propagation function.

The selection of an error propagation function is also depen­
dent on assumptions about error propagation. These assump­
tions include the nature of the errors present in the source data,
the spatial distribution of the source errors, and the degree to
which errors co-occur spatially on different layers. This is rep­
resented in Figure 4 in terms of a set of "planes", each con­
taining a matrix of error propagation functions for different
combinations of GIS functions and error indices. In short, there
is more than one error propagation function possible per com­
bination, each representing a different set of assumptions about
error propagation. A fundamental characteristic of the para­
digm presented here is that alternate error propagation func­
tions can be selected based on the context within which one is
working. In this way, the paradigm serves as a framework for
exploring different assumptions about error propagation and
permits new functions to be incorporated as they become avail­
able.

LAYER-BASED ERROR PROPAGATION

One benefit of layer-based GIS is that provides users with an
intuitive conceptual model that facilitates the visualization of
geographic features as organized thematic map separates. This
allows the application of GIS operators, such as spatial neigh­
borhood, overlay, and attribute manipulation functions, to de­
rive new geographic themes. For example, a GIS application to
extract areas where oak regeneration is at risk from cattle graz­
ing is illustrated in Figure 5. Oak woodlands at risk in this
example are implicit in the registered source layers: LANDUSE,
PERMITS, and VEGETATION. Data transformations applied in this
application link each input map to an output map layer. The
result is a network linking the application's source maps (LAN­
DUSE, PERMITS, and VEGETATION) to its product (AL.RISK).

The network of input and output relations between spatial
data layers is an example of a data flow diagram (Martin and
McClure, 1985). Geographers have referred to this data flow
diagram as an application's "cartographic model" (Tomlin and
Berry, 1979; Berry, 1987). The cartographic model illustrates the
propagation of spatial data from source materials to application
product. Functions for propagating an index of data error have
been incorporated in GEOLINEUS, a lineage information program
for GIS (Lanter, 1991). The system is implemented in the LISP
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FIG. 4. Each cell in the matrix references a specific error propagation function designed
to propagate a specific error index (column) through a particular GIS function (row)
based on a set of assumptions about error propagation (plane).
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FIG. 5. A GIS application for identifying
oak woodlands at risk from grazing activ­
ity.

FIG. 6. Input links and error indices for layers in the GIS application.

(List Processing) programming language and integrated with
ESRI's ARC/INFO running under the AI)( operating system on an
IBM RS/6000 and under UNIX on a SUN SPARCstation. The LISP
language is a programming language modeled after McCarthy's
(1960,1963) calculus of symbolic expressions. GEOLINEUS main­
tains a lineage knowledge representation reflecting the order of
data propagation found in a GIS application's cartographic model
in its meta-database (Lanter, 1990). To automate error propa­
gation, thematic data layers are represented in the knowledge
representation as nodes connected by "input" links pointing
from derived layers back toward their input layers. Each layer
is associated with an error index. The resulting structure rep­
resents both data and accuracy dependencies between derived
layers and their sources (Figure 6).

Error propagation functions manipulate this knowledge rep­
resentation to access error indices associated with input layers,
calculate, and store error values for derived layers. As GIS trans­
formations are applied, error propagation functions traverse links
emanating from meta-database representations of derived lay­
ers to access the input data's error indices. As an illustration of
automated error propagation, consider the propagation of the­
matic classification error through the GIS application shown in
Figure 5. The error propagation functions are based on ARC!
INFO terminology but are intended in a broader, more concep­
tual sense, as described below. The application may be ex­
plained as follows:

• Source layer LANDUSE (land use classes) is transformed using
the RESELECT function to create a binary layer called RANCHES
(private ranches).

• Source layer VEGETATION (vegetation classes) is trans­
formed usmg the RESELECT function to create a binary layer
called OAKWOODS (oak woodlands).

• Derived layer RANCHES and source layer PERMITS (grazing
permits on private lands) are overlayed using the UNION

function to create a binary layer called GRAZING (private
and public grazing lands) .

• Derived layers GRAZING and OAKWOODS are overlayed using
the INTERSECT function to create a binary layer called AT­
RISK, which identifies lands in which oak regeneration is
at risk from grazing activities.

The UNION and INTERSECT transformations represent Boolean
OR and AND operations, respectively. The RESELECT transfor­
mation is conceptually equivalent to a reclassification in which
certain cover classes on the input data are assigned new classes
on the output data. Each of the three GIS data transformation
functions used in this application (Le., UNION, INTERSECT, and
RESELECT) induces changes in thematic classification accuracy.
All three source layers (Le., LANDUSE, PERMITS, and VEGETA­
TION) are assumed to be characterized by the proportion cor­
rectly classified (PCC) index of classification accuracy. Propagation
of error indices parallels the propagation of data. As each GIS
function is applied to the input data to derive the output data,
the error propagation function is passed the PCC value associ­
ated with the input layer in order to calculate the PCC value for
the output layer. For source layers LANDUSE and VEGETATION,
the PCC index reflects the accuracy with which cover classes are
depicted on the layer. In the case of PERMITS, a binary source
layer, the PCC index is assumed to reflect uncertainty associated
with incompleteness in grazing permit records and changes in
the status of permits following publication of the data. The
transformation of the PCC index through the application is based
on the assumptions that errors are uncorrelated across data lay­
ers and are distributed uniformly across classes of the thematic
attributes. Figure 7 is an illustration of the propagation of ac­
curacies through the example application based on this as­
sumption.

The error propagation functions discussed below illustrate
how error might be propagated through a GIS application, but
they do not represent the only way in which error propagation
mechanisms might be modeled. A fundamental characteristic
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FIG. 7. Meta-database representation of an error index propagated
through the GIS application.
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In these equations, PCC-out is the PCC of the output layer,
PCC-in is the PCC of the input layer, and k is the number of
classes in the input layer.

This simple model assumes that, of the k classes in the input
layer, k-l classes are "collapsed" into an "other" category.
That is, it assumes that the user is interested in extracting only
one class from the input layer. The model is easily generalized
to account for situations in which more than one class is ex­
tracted. In this case, the variable K in the above equation is
redefined as

nGO nm nGO
u~ u~ u~

r (r - 1) + (k - r) (k - r - 1)
K = k (k - 1)

struct the classification error matrix based only on the PCC of
the input layer and k, the number of classes of the thematic
attribute for the input layer. Propagation of the PCC index can
then be modeled in terms of the number of classes in the input
layer that are collapsed to create each of the new classes on the
output layer. The error propagation function in this case may
be expressed as

where k is the number of classes in the input layer and r is the
number of classes collapsed to form the extracted class.

It is also possible to weight the contribution of each class
based on the estimated area of each class. This could provide a
more representative output PCC value if the classes in the input

of the paradigm presented here is that different error propa­
gation functions can be employed for any particular combina­
tion of GIS function and error index. Each different error
propagation function represents a different set of assumptions
about the nature of the errors present in source data or the
mechanisms whereby these errors are propagated (Le., each
function is from a different "plane" as illustrated in Figure 4).
In this way, the paradigm serves as a framework for exploring
the effects of using different error propagation functions. New
functions can also be incorporated into this framework as
knowledge concerning error measurement and propagation
mechanisms improves. The discussion that follows also de­
scribes how error might be propagated for different assump­
tions about error propagation mechanisms (e.g., random versus
non-random errors and different spatial distributions of error).
This is intended to illustrate the flexibility of the paradigm, in
that alternate error propagation functions are accommodated,
allowing the paradigm to serve as a framework for error prop­
agation modeling.

AN EXAMPLE OF ERROR PROPAGATION

The RESELECT function involves the selective retrieval of a
subset of features on an input layer based on their thematic
attribute values. In the case of categorical data, the number of
thematic attribute classes on the output layer is less than the
number on the input layer. That is, we assume that the RESE·
LECT function is applied to a layer to selectively retrieve areas
with a particular thematic class. This means that the remaining
classes in the layer are effectively collapsed into a single class
on the output layer. Therefore, the only misclassifications that
occur on the output layer are those cases in the input layer
where the selected class is confused with one of the unselected
classes. Misclassifications in the input layer occurring across the
constituent collapsed classes do not introduce error into the
output layer. This collapsing of classes implies that the function
will generally tend to increase thematic classification accuracy,
because misclassifications that occur across constituent classes
of each collapsed class no longer have any impact on the degree
of error. In effect, one is trading information (in this case, both
spatial and thematic) in exchange for accuracy.

As an illustration, assume that a layer being input to the
RESELECT function has five classes labeled A through E, and the
RESELECT function is applied to select areas with a class equal
to A. Thus, classes B through E will be collapsed into a single
"not A" class on the output layer. Error is propagated through
the RESELECT function for those locations on the layer where
the selected class (i.e., class A) is confused with one of the
unselected classes (Le., classes B through E). However, mis­
classifications between the constituent classes of the unselected
classes (Le., classes B through E) do not contribute to the error
in the output layer, as we are only concerned that these classes
are "not A." In order to propagate the PCC index through the
RESELECT function in this way, the classification error matrix
must be available (Le., a thematically differentiated model of
error is assumed). In this case, it is a straightforward process
to compute the matrix for the output layer by collapsing the
matrix for the input layer. Note that it may be necessary to
weight the contribution of each class to the overall PCC by the
estimated area of each class if the matrix was not constructed
from a random sample.

If only the PCC, and not the entire classification error matrix,
is available for the input layer, then error propagation can be
performed assuming that errors are distributed uniformly across
classes of the thematic attribute. That is, the probability of mis­
classification is identical for any two classes. All non-diagonal
elements of the classification error matrix are assumed to be
identical and each class is assumed to contribute equally to the
overall PCC. Based on this assumption, it is possible to recon-
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layer have significantly different areas. In this case the error
propagation function may be written as,

. KR Wi (1 - PCcJn)
PCC-out = PCCJn + ~ k _ 1

+ L Ku wi (1 - PCCjn)
j<U k - 1

where

R is the set of reselected classes,
U is the set of unselected classes,
KR = r - 1,
Ku = k - r - 1, and
Wi is the weight (relative area) of class i.

Many other error propagation functions could also be proposed
here. Our point, however, is simply to illustrate the role as­
sumptions play in matching an error propagation function to a
particular combination of GIS function and error index.

The INTERSECT function creates an output layer containing
the intersection of the features on two input layers. It is as­
sumed here that the function is applied to binary input layers.
That is, layers are assumed to contain only two thematic attrib­
ute classes. This implies that the INTERSECT function is equiv­
alent to the Boolean AND operation. Thematic classification
accuracy for the output layer is defined as the intersection of
the correctly classified portions of the input layers. That is, a
point has to be correctly classified on both input layers in order
to be considered accurate on the output layer. In terms of the
PCC index, this implies that the PCC of the output layer can
never be higher than the PCC of the least accurate input layer.

Bayes's Theorem has been used to construct an error prop­
agation model for this function (Newcomer and Szajgin, 1984).
However, this model depends on the degree to which the cor­
rectly classified portions of the two input layers tend to overlap.
More precisely, the model requires the conditional probability
of observing a correctly classified point on one input layer given
that the point is correctly classified on the other input layer.
This means that the locations of the correctly and incorrectly
classified portions of the input layers must be known (i.e., a
spatially differentiated model of error is assumed). When only
the PCC index is available, error propagation can be performed
assuming errors are uncorrelated across layers (MacDougall,
1975). In other words, the probability of observing a correct
classification at a point on one of the input layers is the same
regardless of whether or not that point is correctly classified on
the other layer. In this case, the PCC of the output layer (PCC­
out) is simply the product of the PCC of the two input layers
(pCUn1 and PCUn2); that is,

PCC-out = PCe-Jn1 x PCUo2.

The more general form of the error propagation function is

PCC-out = PCUnI X PCC[in2 I inI],

where PCC[io2 I in1] is the conditional probability of observing
a correctly classified point on layer 2 given that the point is
correctly classified on layer 1. The maximum value of this con­
ditional probability is 1 (in which case PCC-out = pCUn1) and
the minimum value is 0 (in which case PCC-out = 0). When
PCC[in2 I in1] = PCUn2, the error propagation function is
equivalent to the uncorrelated case presented above. When 1
:S:: pCC[io2l in1] < PCUo2, then correctly classified points tend
to co-occur spatially (i.e., they tend to occur at the same loca­
tions on layer 1 and 2). In this case, the accuracy of the output
layer will be higher than for the uncorrelated case. When
pcc-in2 < PCC[io2/ in1] :S:: 0, then the correctly classified points

tend not to co-occur spatially. In this case the accuracy of the
output layer will be lower than for the uncorrelated .case.

Using the more general form of the error propagation model,
the user can enter an appropriate value for the conditional prob­
ability to reflect the degree to which errors are thought to ~o~

occur spatially. This value might be derived through a prIOri
knowledge or empirical data. As in the case of the RESELECT
function, this discussion shows how the reliability of a propa­
gated error index can be enhanced through the use of ancillary
data and how alternate error propagation models can be em­
ployed given different assumptions about error propagation
mechanisms.

These functions can also be applied in the more general case
in which input layers contain more than two classes (see Ver­
egin, 1989b). The restriction to binary input layers in this dis­
cussion reflects a desire to avoid specific implementation issues
and, in particular, the raster-vector dichotomy. In the example
"oak woodlands at risk from grazing" application previously
described, the distinction between raster and vector is not im­
portant for error propagation modeling. That is, the same se­
quence of GIS functions would be used in either case. In many
vector-based systems, thematic data are isolated from the sp~­

tial data to which they refer. As a result, Boolean overlay IS
typically not implementable as a single GIS command. Rather,
one must first perform the appropriate topological overlay (e.g.,
INTERSECT or UNION) on the spatial data, and then manipulate
the thematic data by selecting those features with a particular
combination of thematic attribute values. It is conceptually much
simpler to perform the selection process first to. derive a se~ of
binary data layers, and then apply the appropnate topolOgical
overlay function. This avoids the implications alternative data
structures have on error propagation.

The UNION function creates an output layer containing the
union of the features on two input layers. As in the case of the
INTERSECT function, it is assumed here that the function is ap­
plied to binary input layers, su~h that the YNION .f~nc.tion is
equivalent to Boolean OR operation. Thematic classification ac­
curacy for the output layer is defined as the union ?f the c?r­
rectly classified portions of the input layers. That IS, a pomt
needs to be correctly classified on only one input layer in order
to be considered accurate on the output layer. In terms of the
PCC index, this implies that the PCC of the output layer can
never be lower than the PCC of the most accurate input layer.
Thus, in contrast to the INTERSECT function, the UNION function
tends to increase thematic accuracy (Veregin, 1989b).

As in the case of the INTERSECT function, the error model for
the UNION function depends on the degree to which errors on
the two input layers tend to overlap. When only the PCC index
is available, error propagation can be performed under the as­
sumption of uncorrelated errors. In this case, the PC~ of t~e

output layer is defined in terms of the pr?duct of the ant~~etic

inverse of the PCC of each input layer (I.e., the probability of
misclassification); that is,

PCc_out = 1 - (1 - PCUnI) (1 - PCC-in2).

In this case, one assumes that the probability of observing a
misclassification at a point on one of the input layers is the same
regardless of whether or not that point is misclassified on the
other layer.

The more general form of the error propagation function is

PCC-out = 1 - (1 - PCUn1) «1 - pee) [in2 I in1])

where «1 - PCC) [io2 I inI]) is the conditional probability of
observing a misclassified point on layer 2 given ~hat t~e point
is misclassified on layer 1. When «1 - PCC) [102 I mI]) =
PCC-in2, the error propagation function is equivalent to the
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uncorrelated case, as defined above. When 1 :5 «1 - PCC) [in2
I in1]) < 1 - PCUn2, then misclassified points tend to co­
occur spatially and the accuracy of the output layer will be lower
than for the uncorrelated case. When 1 - PCun2 < «1 ­
pCe) [in2 I in1]) :5 0, then the misclassified points tend not to
co-occur spatially and the accuracy of the output layer will be
higher than for the uncorrelated case.

If the assumption behind an error propagation function is
unrealistic, it might produce an error index that misleads de­
cision makers into placing too much credence in - or discount­
ing the implications of - explicit spatial relations encoded in a
GIS derived map. Moreover, the types of harm that might be
caused will depend on whether one is a data producer (seeking
to minimize the probability of erroneously rejecting data that
actually meet a required accuracy standard) or a data consumer
(seeking to minimize the probability of erroneously accepting
data that actually do not meet the standard). Of course, armed
only with the PCC value for an input layer, simplifying as­
sumptions must be made in order to propagate error. The re­
liability of the propagated error index will likely improve with
the availability of relevant ancillary data (e.g., the area of each
class, the classification accuracy of each class, etc.). A strong
case is thus made for preserving as much information acquired
during data quality assessment as possible (Le., preserving the
locations and accuracies of all control points rather than just
computing a single-valued error index such as the PCC or a root­
mean-squared error).

In absence of such ancillary data, several other strategies can
be employed. One option is to define the minimum and max­
imum possible error, so as to bound the range of error possible
in a given application (Veregin, 1989b). One problem with this
approach, however, is that the maximum and minimum errors
tend to saturate quickly at 1 and 0, respectively, and thus lose
all utility. A second problem is that in the context of the example
application, the conditions causing error to be inflated for the
INTERSECT function are exactly those that cause error to be de­
flated for the UNION function. In other words, the propagation
of error under worst-case conditions for one of these functions
is inconsistent with the propagation of error under worst-case
conditions for the other function. For this reason, rather than
assuming worst- or best-case scenarios, it seems more appro­
priate to adopt a set of assumptions about error propagation for
a data set and employ error propagation functions that reflect
these assumptions (as illustrated by the "planes" in Figure 4).
Unfortunately, given current understanding of error propaga­
tion in a GIS, this ability may not be realizable, and more basic
research on the mechanisms of error propagation is clearly
needed.

CONCLUSION

Applied error propagation research involves identifying error
indices, developing error propagation functions, and testing their
utility in assessing spatial, thematic, and temporal accuracies of
derived geographic data. Each error propagation function is de­
termined by the specific error index to be propagated, the GIS
transformation function to be employed, and a set of assump­
tions about the nature of errors in spatial data and their prop­
agation mechanisms. This paper demonstrates the use of the
GEOLINEUS lineage meta-database system to automatically prop­
agate error indices through GIS spatial data transformation func­
tions. The propagated indices can be evaluated in terms of their
utility for judging the quality of GIS derived data products and
their appropriateness in decision-making contexts. When nec­
essary, new error indices and error propagation functions can
be developed and tested.

The paradigm suggested here provides a framework for re­
search on error propagation. It does not, however, address pol­
icy decisions concerning the meaning and use of propagated

error indices. Error indices focus attention on the quality of
derived data products, but do not define what level of error is
acceptable. Such policies should be based on the significance or
relevance of different types of error in particular decision-mak­
ing contexts and as a function of institutional data accuracy
requirements.
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