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~~STRACT: ~ecision makers need to know the reliability of output products from GIS analysis. For many GIS applications,
I! IS not possible t~ co~pare tJ:tes~.products .to an independent measure of "truth." Sensitivity analysis offers an alterna­
tive .IJ.le.ans of ~s~ating. reliability. In this pa'pe~, ~e 'present a GIS-based statistical. procedure for estimating the
senSlti';ty of W1ld~e hablta~ models ~o .uncerta~ties m mput data and model assumptions. The approach is demon­
str~ted m an analySIS of habitat associations denved from a GIS database for the endangered California condor. Alter­
native ~ata sets ~~r~ generat~d .to ~ompare results over a reasonable range of assumptions about several sources of
~ncertamty. SenSitiVIty analySIS mdlcated that condor habitat associations are relatively robust, and the results have
mcreased our confidence in our initial findings. Uncertainties and methods described in the paper have general rele-
vance for many GIS applications. .

INTRODUCTION

G
EOG~PHIC:: INFORMATI0r-: SYSTEMS (GIS) are playing an in­

. creasmgly Important role m conservation biology and wild­
hfe management because they provide an efficient means for
modeling potential distributions of species and habitats (Davis
et aI., 1990). The usefulness of GIS technology is now limited
mo~e by data availability and quality and by the reliability of
habItat preference models than by technological obstacles. Be­
cause expensi~e ~~d politically sensitive decisions are being based
on GIS anal>-:sIs, It IS Important to have a means of characterizing
the uncertamty of GIS output products. Analytical models of
spatial error propagation are often not applicable in such cases.
Sensitivity analysis has been recommended as an alternative means
of. estimating reliability (Lyon et aI., 1987; Openshaw, 1989; Lod­
~ck et ~I., 1990). Whereas error analysis compares output datil
With an mdep~~~entmeasure of "truth," GIS sensitivity analysis
compares the mItial output product to alternative results derived
from data tI:at have been perturbed in some controlled, systematic
way (LodWick et aI., 1990). The goal is to determine whether the
output seems valid over a set of reasonable assumptions about
the nature of uncertainty (Openshaw, 1989).

The.objectiv: of this I;JaI;Jer is to d~scribe a sensitivity analysis
of denved habItat aSSOCIations to typIcal uncertainties in GIS ob­
servation and habitat data. We begin with a brief review of GIS
habitat modeling and how sensitivity to typical uncertainties has
been ev~luated. Next we describe a habitat analysis of historical
?bse~ations of the endangered California condor (Gymnogyps cal­
ijorn.lanus). The two key G~S layers in the database and their po­
tential errors are summanzed. Then we describe the methods
used to derive baseline habitat associations and the data manip­
ulatio~ that generated alternative data sets for the sensitivity
~nalysis. Although the co~text is habitat modeling, the uncertain­
ties ~?~ountered are typIcal of many GIS applications, and the
senSItiVity analysis methods can be employed both for manage­
ment decision making and for scientific research.

HABITAT MODELING AND SENSITIVITY ANALYSIS

GIS modeling of species' habitat associations is one form of
lar:~ suitability ~nalysis. ~wo. approaches have generally been
utili~ed, dependmg on objectives and data availability. The de­
ductive approach extrapolates known habitat requirements to
the spatial distributions of habitat factors. If more than one
sratial d~ta layer .is inv?lved, they are usually combined by
eIther lOgical or anthmetic map overlay operations (e.g., Davis
and Goetz, 1990). A habitat suitability index can also be calcu-
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lated from the spatial configuration of a single data layer (Mead
et aI., 1981). The GIS output product of the deductive approach
is a map depicting levels of habitat suitability. This map can
guide decisions regarding land acquisition or habitat preserva­
tion priorities, land management practices, or sites for reintro­
duction of endangered species. It should be noted that the model
only identifies "potential" habitat, but does not imply that the
species is actually present at a given location.

In many situations, the habitat requirements are not well-known,
and a GIS is used to induce them from a sample of observations
of the species georeferenced to one or more resource factor maps.
Output in the inductive case is a tabular or textual summary de­
scribing the factors most significantly associated with the observed
distribution of the species. Associations can be derived either from
univariate or multivariate statistical analysis such as classification
trees (Walker and Moore, 1988; Davis and Dozier, 1990). This
inductive approach is more common in scientific research de­
signed to increase our understanding of species distributions
(Walker and Moore, 1988; Ferrier and Smith, 1990), but the results
can be extrapolated to predict the spatial distribution of suitable
habitat using the deductive method for habitat management pur­
poses (Agee et aI., 1989).

In both approaches, there will always be uncertainty in the
GIS output product due to errors and uncertainties in data in­
puts. Quality of the outputs is affected by the accuracy of the
maps of habitat factors, which is influenced by the interaction
of minimum mapping unit (MMU) size, resolution of source data,
map generalization, analyst skill, and many other factors (Lod­
wick et aI., 1990). Tracking the propagation of errors as several
map layers are combined into a habitat suitability map is often
beyond our capabilities. The description of habitat preferences
in the deductive approach can be inaccurate, usually to an un­
known degree, and even the best model can only take into
account a simplified set of factors that determine species' dis­
tributions. Stochastic processes, such as disturbance, weather
fluctuations, or population dynamics, can prevent otherwise
suitable habitat from being occupied. Similarly, field sampling
to assess the accuracy of a habitat suitability map is hindered
by the relatively small sample units of short duration in relation
to the scale and assumptions of the map. Observation data used
in the inductive approach are also subject to many sources of
uncertainty, such as the accuracy of their locational coordinates.
These data often cannot be tested because they record an event
that occurred in the past. For the same reasons described above,
it is difficult to assess the accuracy of the output description of
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habitat preferences because of problems with field sampling
(Raphael and Marcot, 1986).

There are two approaches to comprehensive error analysis of
habitat modeling. In one approach, knowing the accuracy of
input layers and having a model of how error propagates through
GIS processing, errors in the output can be deduced. Con­
versely, the error propagation model and accuracy of the output
can be used to deduce the magnitude of errors in the inputs.
In habitat modeling, neither the input or output layer accuracies
nor the theoretical error propagation model can be known, forc­
ing analysts to either express caveats about their results or to
turn to alternative methods of evaluating uncertainty.

Perhaps the most promising alternative is sensitivity analysis.
Lodwick et ai. (1990, p. 413) define geographical sensitivity
analysis as "the study of the effects of imposed perturbations
(variations) on the inputs of a geographical analysis on the out­
puts of that analysis." Input data are perturbed in systematic
ways, such as degrading spatial resolution by a sequence of
scale factors. Perturbations represent the range of reasonable
assumptions about the nature of uncertainty in each data layer.
A GIS output is considered sensitive to variation in a given input
if the resulting sensitivity measure exceeds a predetermined
significance level. Greater care should be taken in compiling
inputs whose perturbations produce the greatest effect on the
outputs. Because the exact nature of uncertainties can seldom
be expressed by mathematical functions, geographical sensitiv­
ity analyses are usually conducted empirically.

Objectives for sensitivity analysis in habitat modeling differ
somewhat for the deductive versus the inductive methods. For
deductive habitat modeling, the output is a map of potential
distribution of habitat suitability. As this approach is common
in a management decision or policy making context, the critical
concern is whether the map is so sensitive to variation in inputs
that a different decision would be reached with a different re­
alization of the inputs. In the inductive approach, the issue is
how confident we are in the derived habitat preferences.

While relatively common practice in fields such as planning
(e.g., Alexander, 1989), sensitivity analysis is seldom employed

in GIS applications. Recent examples of GIS sensitivity analysis
include testing the effects of classification errors (Ramapriyan
et ai., 1981; Lyon et ai., 19~7), grid cell size (Laymon and Reid,
1986; Lyon et ai., 1987; Turner et ai., 1989), map extent (Turner
et ai., 1989), the number of thematic classes (Lyon et ai., 1987),
and subjective weighting factors (Heinen and Lyon, 1989). For
an excellent description of the types of sensitivities in spatial
analysis, measures of sensitivity, and a mathematical treatment
of geographical sensitivity analysis, the reader is referred to
Lodwick et ai. (1990).

CONDOR GIS DATABASE

The endangered California condor most recently inhabited
the mountainous regions of southern and central California
(Figure 1), feeding primarily in open woodland and grasslands.
Since 1987, the species survives only in captivity. A breeding
program is underway to restore the population to a viable level,
with the eventual goal of reintroducing condors into the wild.
We collaborated with the California Department of Fish and
Game, the U.s. Fish and Wildlife Service, and the National
Audubon Society to study historical patterns of habitat use by
the species and to aid in identifying suitable sites for future
release of captively reared birds (Scepan et ai., 1987). The GIS is
being used to store and analyze the set of observations of wild
condors over the past century and a map of land-use/land-cover
(LUILe) types, described briefly below. When completed, the
database will cover the entire historic range. For this analysis,
we only used the 1:250,000-scale Los Angeles quadrangle por­
tion (see Figure 1), where 75 percent of the sightings occurred.

CONDOR SIGHTING DATA

Beginning in 1966, researchers with the National Audubon
Society, the U. S. Forest Service, and the U. S. Fish and Wildlife
Service compiled visual sighting records from a network of field
biologists, fire lookout personnel, ranchers, and other inter­
ested members of the public (Wilbur et ai., 1972). These 7,341
sighting records were incorporated as a point coverage into the
ARC/INFO GIS database, and include attributes such as the date

FIG. 1. Map of the historical range of the California condor. The index of 1:250,000­
scale USGS quadrangle maps is also shown. The shaded region in the larger scale
inset map shows the study area in the Los Angeles quadrangle.
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of the observation and the bird's activity. The few scattered
observations outside the historic range boundaries were not
considered in the habitat association modeling. For this sensi­
tivity analysis, the 508 feeding observations in the Los Angeles
quadrangle were used.

Potential sources of uncertainty in the sighting data include
errors in the recorded location and sampling bias. Locations
were originally coded with 500-metre precision. Further, when
the data were converted to GIS format, the transformation to
UTM coordinates potentially introduced additional positional er­
ror. Observers may also have had difficulty in accurately map­
ping their location and that of the bird, especially given that
condors can be identified at a distance of several kilometres
Oohnson et ai., 1983). If the recorded location is displaced from
the true location, it is conceivable that GIS analysis will associate
the observation with a habitat type different from that which
the condor actually used. The effect of positional error would
be to lower the strength of the habitat model, indicating that
habitat utilization was more random than was actually the case
(White and Garrott, 1986).

Sightings of rare species tend to be located in places where
they are expected to be seen (e.g., Snyder and Johnson, 1985)
and that are most accessible to observers, such as near roads,
trails, or other observation points. The condor sightings are
certainly suspect in this regard, as much of the historic range
is in remote, rugged terrain. The implication of biased sampling
is that it may say more about the preferences of the observers
than of the wildlife.

ities and individual vegetation types was measured using the
Bonferroni normal statistic approach described by Neu et ai.
(1974).

To simplify presentation of results, we have classified the
measures of association into "positive," "negative," or "non­
significant" levels based on the 90th percentile confidence in­
tervals for an alpha significance level of 0.10. Positive associa­
tion means condors appear to preferentially feed in that cover
type. Negative association shows the birds selectively avoiding
the cover type. A nonsignificant level of association occurs when
the proportion of sightings in a cover type is similar to the
proportion of area of that type. We emphasize that these levels
are used only to facilitate the interpretation of a complex set of
numerical comparisons, but should not be construed as formal
significance testing based on independent random samples. The
output product of this inductive procedure is a table listing the
level of association of condor feeding with each LUILC type.

ALTERNATIVE DATA SETS FOR SENSITIVITY ANALYSIS

To test the sensitivity of condor habitat associations to un­
certainty about sighting locations, sampling bias, map gener­
alization, and map extent, we generated six alternative data sets
of sighting data, which are summarized in Table 1.

Errors in location of the sightings could place them into a
different map polygon, with a higher probability of being in the
wrong class for classes characterized by small polygons. A GIS

LOCATIONAL UNCERTAINTY

A Original Data. 508 feeding observations at their
coded locations.

TABLE 1. CHARACTERISTICS OF ORIGINAL AND ALTERNATIVE DATA SETS

USED IN THE SENSITIVITY ANALYSIS OF CONDOR HABITAT ASSOCIATIONS.
EACH DATA SET CONTAINS THE MAPPED m·UsE/LAND-COVER TYPE AT

THE LOCATION OF EACH .,DOR SIGHTING.

B Location Precision. As in A, but northing and
easting coordinates are displaced by distances
from a uniform random distribution with a max­
imum of 250 m. Based on the limits of precision
of the coded coordinates.

C Location Error. As in B, but displacement based
on a normal random distribution with 95 percent
of sightings within 1 km of their coded position.
Assumes greater uncertainty in locations than B.

D Location Error. As in C, but 95 percent of sight­
ings within 2 km. 505 sightings used.

Characteristics
BASELINE

SAMPLING BIAS

Data Set

CONDOR HABITAT MAP

Land use and condor habitat were mapped over the 2.5 mil­
lion ha range by photointerpretation of 1986 Landsat Thematic
Mapper (TM) imagery (see Davis et ai. (1988) for details). The
classification system for mapping LUILC was specifically de­
signed to discriminate land surfaces that differ in quality as
condor habitat. Based on field reconnaissance, we employed an
MMU of 10 ha in an attempt to capture small grassland feeding
habitats (potreros) that condor biologists considered important
to the species. Thematic accuracy of the land-use/land-cover
map was estimated at 76 percent for the Los Angeles quadran­
gle (Davis et ai., 1989). The relatively low accuracy reflects the
complexity of topography and vegetation in the study area and
the difficulty in capturing that complexity at a relatively small
map scale.

At least four aspects of the habitat map can be a source of
uncertainty: (1) loss of detail from spatial generalization, (2)
similar loss of detail due to the level of precision of the classi­
fication system, (3) errors in class label or boundary location,
and (4) choosing a study area that is unrepresentative of the
entire range. Here we concentrate on the first and fourth as­
pects.

METHODS

BASIC HABITAT ASSOCIATIONS PROCEDURE

Using the inductive approach of habitat modeling, we over­
laid point observation data and LUILC maps for the Los Angeles
quadrangle. A database program was written to generate con­
tingency tables of land-cover types and condor activities. We
then used a statistical package to compute the Chi-square sta­
tistic as a measure of the strength of association between cover
types and observed condor activities. The null hypothesis pro­
poses that condors utilize habitats in their range randomly. The
expected frequency for each cover type was calculated by mul­
tiplying the total number of feeding observations by the pro­
portion of the total area occupied by that cover type in the study
area. The relative strength of association between condor activ-

E

F

G

Unique Locations. Subset of A with 137 observa­
tions such that, for each activity, locations
where condors were sighted were only counted
once.

MAP GENERALIZATION

Minimum Mapping Unit. Same as A, except the
primary land-uselIand-cover map polygons less
than 20 ha on the original map were dissolved
into larger neighboring polygons.

MAP EXTENT

Larger Sampling Domain. Same as A, except the
primary land uselIand cover and 77 feeding
sightings for the Bakersfield 1:250,000-scale
quadrangle were added to the analysis.
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Displacement (km)

FIG. 2. Diagram of the random probability distributions used
to displace locations of condor feeding sightings. For each
sighting, a value was sampled from the probability distri­
bution for both its easting and northing coordinate. These
displacements were added to the coordinates to generate
a new coverage.

query reported the mean distance from sightings to the nearest
polygon boundary in the study area to be about 500 m, ranging
from 5 to 3100 m. In evergreen shrubland polygons, the average
distance is over 800 m, so we would expect sightings in this
class to be least affected by locational uncertainty. Grassland
sightings were, on average, 400 m from boundaries, and all
other classes averaged less than 250 m distance. Consequently,
the deciduous shrubland and the forest sightings are most un­
certain as to their true type.

Data Sets B, C, and D test the sensitivity of measured habitat
association to locational uncertainty by displacing the coordi­
nates. Displacements were randomly selected from two prob­
ability distributions (Figure 2) in the statistical software, and
added to the original coordinates, from which new point cov­
erages were generated. In Data Set B, sighting coordinates were
randomly displaced by assuming errors are uniformly distrib­
uted up to 250 m in both UTM eastings and northings, reflecting
the level of precision of the coded locations. In Data Sets C and
D, coordinates have been displaced by assuming that locational
errors are normally distributed around the recorded locations
(White and Garrott, 1986). Set C assumes that 95 percent of the
true locations occurred within 1 kIn of the encoded coordinates,
whereas Set D assumes that 95 percent of the true locations
were within 2 kIn. Only one realization of random error was
tested for each model. In a more rigorous analysis, multiple
realizations could be generated in a Monte Carlo simulation to
determine the significance level at which effects were not dif­
ferent. For our purposes of exploratory analysis, we believe that
the number of observations in each case (more than 500) was
sufficiently large to provide a reasonable indication of the sen­
sitivity of the habitat associations.

For Data Set E, we retained only one sighting at each location
to reduce the effects of possible bias from frequent observations
at fixed locations such as fire lookouts (see Figure 3). This re­
selection of points, retaining only one feeding observation within
a buffer of 250 m radius centered on the coded locations, re­
duced the data set to 137 points. Observations made at sites
where biologists placed animal carcasses for supplemental feed­
ing of condors were excluded from all data sets.

Data Set F was created by increasing the MMU size of the LUI
LC map in order to assess the effects of the level of generali­
zation. LUILC polygons less than 20 ha, such as small potreros,
were dissolved into larger neighboring classes, reducing the
number of map polygons from 1,763 to 1,186. As with distance
to boundaries, polygon size is also a function of LUILC type.
Average polygon size in the Los Angeles quadrangle is 520 ha.
Average size of evergreen shrubland polygons is over twice the
average of all types combined. Forest types tend to occur in
smaller patches so sightings in the latter classes are more likely
to change types as MMU increases.

The condor GIS database is being completed in stages, so a
comprehensive habitat association analysis cannot yet be con­
ducted. We recognized that the Los Angeles study area may
not accurately represent the proportions of habitat availability
for the condor range as a whole. Data Set G was produced by
extending the analysis to include sighting and LUILC data for
both the Los Angeles and Bakersfield 1:250,000-scale quadran­
gles. The Bakersfield quadrangle contains a transition from the
coastal Transverse Ranges of the Los Angeles quadrangle into
the southern Sierra Nevada and San Joaquin Valley. Including
this portion of the range greatly increases the proportion of
grassland, agriculture, and woodland types while the promi­
nence of shrub types diminishes. Only 77 sightings were added
from the Bakersfield quadrangle, however, despite a 75 percent
increase in total area.

Output data from the baseline habitat associations and the
alternative data sets included tabulations of numbers of sight-

-2

-2

-2

Data Set B

o

Displacement (km)

Data Set C

o

Displacement (km)

Data Set D

o

2

2

2



TABLE 2. FEEDING OBSERVATIONS OF CALIFORNIA CONDOR IN THE Los
ANGELES QUADRANGLE AND ASSOCIATIONS WITH PRIMARY LAND USE.

CRITICAL VALUE OF CHI-SQUARE STATISTIC = 27.7, FOR a = 0.01, AND
13 DEGREES OF FREEDOM. EXPECTED OBSERVATIONS COMPUTED BY

MULTIPLYING THE PROPORTION OF TOTAL AREA IN LAND-COVER TYPE BY
TOTAL NUMBER OF OBSERVATIONS. LEVEL: '+' MEANS LAND-COVER
TYPE IS SIGNIFICANTLY SELECTED BY THE CONDOR MORE THAN THE
HABITAT'S AVAILABILllY IN THE LANDSCAPE; '-' MEANS lAND-COVER

TYPE IS SIGNIFICANTLY AVOIDED; AND '0' MEANS USE Is NOT
SIGNIFICANTLY DIFFERENT FROM RANDOM. SIGNIFICANCE LEVEL a = 0.1,
90 PERCENT FAMILY OF CONFIDENCE INTERVALS FOR k = 14 CLASSES

(NEU et a/., 1974).
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Level
Feeding Data

Observed Expected
Proportion of

Total Area
Primary

Land Cover

". "

" .
"~ ..........

••II~

Ventura

..

.•...

Ocean

", ..II

Santa Barbara

Pacific

0.050 3 25.4
0.015 21 7.6 0
0.008 7 4.1 0
0.001 0 0.5
0.009 30 4.6 +
0.008 24 4.1 +
0.002 0 1.0
0.011 0 5.6

1.000 508 508.0

482.1

(a)

~~_, Los Angeles Agriculture
Water
Bare Land
Grassland
Evergreen Shrubland
Deciduous Shrub-

land
Conifer Woodland
Mixed Woodland
Broadleaf Woodland
Conifer Forest
Mixed Forest
Broadleaf Forest
Savanna
Urban
Total
Calculated Chi-square

0.041
0.005
0.013
0.228
0.412
0.199

o 20.8
o 2.5
o 6.6

215 115.6
193 208.9
15 100.9

+
o

(b)
FIG 3. Map of condor feeding observations in the Los Angeles quad­
rangle: (a) distribution of sightings, and (b) number of sightings at each
location represented by the height of peaks. The highest peak corre­
sponds t6 101 observations at a single site. This perspective is viewed
from the southeast.

ings by LU/LC types, and the positive, non-significant, and neg­
ative levels of association. Each data set was summarized with
the calculated Chi-square statistic (based on the expected num­
ber of observations by class), the number of LU/LC classes that
changed in level of association between each alternative data
set and Data Set A, the percent area of each level of association,
and an area sensitivity measure (Lodwick et aI., 1990). This last
measure is a sum of the proportion of map area that changed
from one level to another.

RESULTS

BASELINE ASSOCIATION OF CONDOR SIGHTINGS WITH MAPPED

HABITATS

The distribution of sightings among cover types differ greatly
from that expected in a random distribution (Table 2). Extrap­
olation of these levels of association of habitats are portrayed
graphically in Figure 4. Some of the associations are what one
would predict based on known life history attributes. For ex­
ample, feeding observations occur with strong positive associ­
ation in grassland and with strong negative association in
agricultural areas. On the other hand, some feeding habitat
preferences are unexpected, such as positive association with
mixed forest and broadleaf forest. Even though 193 observa­
tions are associated with evergreen shrubland, this is actually
slightly fewer than expected at random. Far fewer observations
occur in deciduous shrubland than expected at random.

SENSITIVITY OF HABITAT ASSOCIATIONS

Results of the Chi-square analysis of the baseline and six al­
ternative data sets are compared in Table 3. For condor feeding,
the significance of use of each primary land-cover type is dis­
played. The "frequency" columns tabulate the number of data
sets in which the levels of association for each cover type are
positive, negative, or not significant.

Locational errors seem to be relatively unimportant. All three
data sets with locational displacements produce results signif­
icantly different from random, and all are similar to the utili­
zation pattern in Data Set A (Table 3). All changes are between
adjoining levels, such as from significant to neutral, or vice­
versa. The most noteworthy changes occur in association of
condor feeding with grassland. Association is strongly positive
in Data Sets A and B, but less in C. Recall that sightings in
grassland habitat were closer to polygon boundaries than the
average distance. In Data Set D, the association is negligible,
such that the total area positively associated with condor feed­
ing drops to less than three percent of the study site. These
results suggest that the habitat associations are robust, if the
assumption is true that the locational accuracy is better than
one kilometre.

The 508 feeding observations in Data Set A occur at only 137
unique locations. Patterns of association between feeding activ­
ity and habitat based on unique locations are not much different
than those based on all feeding observations (Table 3). The pri­
mary difference between E and A is that the extensive evergreen
shrubland class becomes negatively associated in E. The area
sensitivity measure is highest for this data set, indicating that
while only two classes changed level, one (evergreen shrub­
land) was the largest class in the Los Angeles quadrangle.

The effect of larger MMU size, represented by Data Set F, was
very minor. A net of 39 observations changed LU/LC class from
grassland to evergreen shrubland as small potrero polygons
were dissolved into the background chaparral mosaic. This shift
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Santa Barbara

Level of Assodatioll
Venlura

• Positi\·e

!\on-Signifi('unt
Pacific

Ocean

Los Angdes

FIG. 4. Map of level of association of primary land cover types for feeding by condors in the Los Angeles quadrangle, based
on Data Set A.

TABLE 3. COMPARISON OF SIGNIFICANCE OF UTILIZATION OF LAND-USE/LAND-COVER TYPES FOR FEEDING IN BASELINE AND ALTERNATIVE DATA SETS.
CRITICAL VALUE OF CHI-SQUARE STATISTIC = 27.7, FOR a = 0.01, AND 13 DEGREES OF FREEDOM.l,EVEL: SAME DEFINITIONS AS FOR TABLE 2.

Data Data Data Data Data Data Data
Primary Set A Set B Set C Set D Set E Set F Set G Frequency

Land Cover Base 250m lkm 2km Unique MMU Extent + 0

Agriculture 0 0 7
Water 0 0 7
Bare Land 0 0 1 6
Grassland + + + 0 + + + 6 1 0
Evergreen Shrubland 0 0 0 0 0 0 0 6 1
Deciduous Shrubland 0 0 7
Conifer Woodland 0 0 1 6
Mixed Woodland 0 + + 0 0 0 + 3 4 0
Broadleaf Woodland 0 0 0 + 0 0 0 1 6 0
Conifer Forest 0 0 7
Mixed Forest + + + + + + + 7 0 0
Broadleaf Forest + + + + + + + 7 0 0
Savanna 0 0 7
Urban 0 0 7

Changes from Set A 1 1 3 2 0 1
Calculated Chi-square 482.1 454.2 527.6 481.4 359.0 426.3 397.5
% Area + association 24.5 26.0 26.0 2.5 24.5 24.4 39.0
% Area 0 association 43.5 42.0 42.0 66.8 7.3 43.6 30.3
% Area - association 32.2 32.2 32.2 30.9 68.4 31.9 30.7
Area sensitivity 0.000 0.015 0.015 0.249 0.462 0.000 0.015

was not enough, however, to change the level of association
for any land-cover class.

Including additional historic range in the analysis of Data Set
G likewise made little difference in the level of association. Only
the mixed woodland type became positively associated because
of a large number of sightings in' this map class in the Bakers­
field quadrangle. The two largest types did, however, shift to
the brink of changing levels. Grassland, with its large gain in
area, nearly became nonsignificant, while evergreen shrubland

almost became positively associated as its proportional area de­
clined.

DISCUSSION

Some end users of GIS analysis accept output products un­
critically. Others assume a more pessimistic view that uncer­
tainties are so overwhelming that GIS outputs simply can not
be trusted. Acknowledging the uncertainties in the condor da­
tabase, we sought a middle ground by conducting a sensitivity
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analysis of habitat associations. The results have increased our
confidence that GIS-based analysis provides a reasonable model
of condor feeding habitat. Generally speaking, the habitat as­
sociations are relatively robust across the set of sensitivity anal­
yses shown in Table 3. For the three most extensive or most
heavily used cover types-Le., grassland and evergreen and
deciduous shrubland - the associations are particularly consis­
tent. Of all the data sets, Set D, with the greatest locational
displacements, has the highest number of changes in associa­
tion level. Set E, using only unique locations, is most sensitive
in terms of area affected, as indicated by the largest area sen­
sitivity measure (Table 3).

Of course, there is no guarantee that sensitivity analysis will
support the initial GIS results, as seen in several published stud­
ies. White and Garrott (1986) simulated the effects of locational
errors in radio-tracking data and found that such errors could
seriously decrease the predicted importance of preferred habi­
tat. When computer simulation indicates significant sensitivity
to locational accuracy, the wildlife biologist can reduce the ef­
fects either by improving the accuracy of the telemetry system
or by increasing sample size of observations (White and Garrott,
1986). Where sample size is sufficiently large, observations close
to boundaries between habitat polygons can be dropped from
the habitat modeling to minimize uncertainty (White and Gar­
rott, 1990). Condor habitat associations were probably not very
sensitive to locational uncertainty, in part, because of the large
number of feeding observations in our GIS database.

Other authors have found significant effects on habitat suit­
ability indices as spatial resolution is degraded and small or rare
habitats drop out (Laymon and Reid, 1986; Lyon et aI., 1987;
Turner et aI., 1989). We tested the effects of coarser spatial res­
olution by eliminating polygons that are less than 20 ha, ap­
proximately one-third of the total number. Although nearly 8
percent of the feeding observations change from grassland to
evergreen shrubland through this procedure, we observed no
significant effects on the levels of association from changing
MMU size over the small range of sizes we tested. This finding
might suggest that the land-cover map is more detailed than
necessary for modeling condor habitat. We believe, however,
that the finer resolution of the original land-cover map will still
be valuable for other GIS analysis, such as identifying potential
release sites. Further generalization could determine at what
MMU the habitat associations break down, but this has not been
done.

Lyon et al. (1987) found that even a 5 percent change in clas­
sification accuracy of a land-cover map made a significant dif­
ference in levels of a habitat suitability index. Their results have
strong implications for GIS habitat modeling with land cover
maps, which always contain some degree of misclassification.
We have not yet tested the sensitivity of condor habitat asso­
ciations to assumptions about classification error. Such a test
would be useful in determining the critical threshold of classi­
fication accuracy above which habitat associations would be re­
liable.

Any choice of study area boundaries is relatively arbitrary,
yet it can affect analytical results (Wiens, 1986). Turner et al.
(1989) observed that, as map extent expanded, more cover types
were incorporated and their landscape indices increased in value.
In our study, the baseline map extent was restricted to the his­
toric condor range of the Los Angeles quadrangle map. Our
results were only slightly different when we analyzed habitat
associations over a larger portion of the range. When the da­
tabase is completed, it will be possible to test the sensitivity of
the derived associations for the entire range. It should be noted
that the estimated associations may have been significantly
stronger if habitat outside the historic range such as the Mojave
Desert were also included in the analysis. This would have the

effect of increasing the number of cover types, decreasing the
expected number of observations in cover types preferred by
condors, and thereby inflating the calculated Chi-square statis­
tic. While producing greater statistical significance, little if any­
thing would be added to our knowledge of condor behavior,
and we could even conclude erroneously that some cover types
are more critical to condor survival than may actually be the
case. The risk of such a mistake when considering the reintro­
duction of an endangered species could be catastrophic.

All previous examples of GIS sensitivity analysis we have seen
were done with raster format data. Using grid cells has many
advantages for sensitivity analysis, such as the relative ease of
changing resolution or systematically adding error to a thematic
map (Goodchild, 1990). Our study used vector format, includ­
ing point data for the observations. This allowed us to test the
effects of locational precision and accuracy that would not have
been possible in a raster format unless grid cell size had been
prohibitively small.

Sensitivity analysis should be considered in any GIS analysis
where absolute truth cannot be determined and where the man­
agement decision could be controversial. If conducted at the
pilot study stage, sensitivity analysis can be used to determine
critical levels of resolution and accuracy needed to achieve the
objectives of the database. It need not be technically difficult;
the application demonstrated here used only standard GIS and
statistical routines. Someday, a sensitivity analysis capability
may even be a generic GIS function (Openshaw, 1989). Sensi­
tivity analysis has the advantage that sources of error and their
propagation do not need to be known exactly. The analyst need
only make reasonable assumptions about data uncertainties.
The risk in sensitivity analysis is in potentially adopting a "black
box" view of the model, ignoring important questions about
error propagation in GIS analyses. The benefit of sensitivity
analysis would be in providing a measure of reliability of GIS
output products to decision makers.
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