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ABSTRACT: A- general solution of closed form space resection is proposed and described. When three object control
points exist, a maximum of four solutions for the six exterior orientation parameters can be found without iteration
and initial information. If a fourth point not lying on the critical surface exists, a unique solution can be achieved.

INTRODUCTION

A s DEFINED BY Moffitt and Mikhail (1980), space resection is the process by which the spatial position and orientation of a
photograph is determined based on the photogrammetric measurements of the images of ground control points appearing

in the photographs. Conventionally, the spatial position and orientation of a photograph are represented by the three coordinates
of the exposure station and three rotation parameters. They are called exterior orientation parameters. A closed solution means
that there is no need for any initial values and iterations. A lot of effort has been made by photogrammetrists and mathematicians
to obtain a closed solution. This topic is of interest to the photogrammetric community, especially for close-range industrial
photogrammetry. In the latter case, appropriate approximate values of exterior orientation, which are hard to measure, are
absolutely needed to make the bundle adjustment converge. The approach described in this paper can be used to obtain such
approximate values. In addition, it is of great interest in robot vision application. A direct linear transformation (DLT) solution
was proposed for this purpose by Abdel-Aziz and Karara (1971), but six object points are needed. The topic was discussed in
Faugeras and Toscani, (1986), Ganapathy (1984), and Tsai (1987) for a closed-form solution or a two-step method. But, as was
noted by Shih and Faig (1988), the general solution of a closed-form space resection with three (coordinates of the exposure
station) or six (three rotation parameters as well) parameters is still lacking. Although there are some closed-form solutions, some
require more object information, such as the DLT method while others assume that there exist some additional constraints, such
as the assumption that the object plane is nearly parallel to the image plane (Rampel, 1979).
This paper describes a general solution of closed form space resection. A similar approach was suggested by Fischler and Bolles
(1981). It dealt with the so-called location determination problem (LDP) for image analysis and included a general solution for
obtaining the exposure station position and discussed the multiple-valued nature of the problem. Our own approach includes
three main parts: First, a general solution to the three coordinates of the exposure station; second, a general solution to obtain
the three rotation parameters (this approach is original and is based on the Pope-Hinsken algorithm [Hinsken, 1988]); and third,
a discussion of the critical curve in space resection. It is well known that there is a critical circle in planar resection and a critical
(cylindrical) surface in relative orientation, but the existence of a critical curve in space resection has apparently not been previously
discussed. The third part of our paper will also comment in detail on some conclusions in Fischler and Bolles (1981).

A METHOD OF FINDING THE EXPOSURE STATION

In Figure 1, the image pyramid is shown. S is the exposure station; 1, 2, 3 denote object control points; 1', 2', 3' denote the
corresponding image points (not collinear). L; and R; denote corresponding spatial distances between pyramid points.

It should be noted that the sequence of points 1', 2', 3' is counterclockwise. The image coordinate system with origin at S is
used in the following computation:

Let Xi' Yi, - f be the image coordinates, where f is the principal distance and is directed opposite to the z-coordinate direction;
and Xi' Yi, Zi be the coordinates of object points in the image system.

Then

X2

- f X XIZ I , YI = - f x Y';ZI

- f x XjZz, Y2 = - f x Y j Z2

- f X XjZ3' Y3 = - f x Y j Z3

(1)

(XI - Xz)2 + (Y1 - Yz)2 + (ZI - Zz)2 = L~

(X2 - X3)2 + (Y2 - Y3)2 + (Z2 - Z3)2 = q
(X3 - XI)2 + (Y3 - Y1)2 + (Z3 - ZI)2 = q

where Lv Lz, L3 are calculated by using the given coordinates of control points in the ground coordinate system.

(2)

(3)

(4)

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING,
Vol. 58, No.3, March 1992, pp 327-338.

0099-1112/92/5803-327$03.00/0
©1992 American Society for Photogrammetry

and Remote Sensing



---------------- -----

328 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1992

After introducing Equation 1 into Equations 2 to 4, it follows that

A x 2i - D x 2 1 X 2 2 + B x 2~ = L~

B x 2~ - E X 2 2 X 2 3 + C x Z~ = Li

C x Z~ - F X Z3 X ZI + A x Zi = L~

where

A = (xi + yi + f)/f

B = (x~ + y~ + f)/f

C = (~ + y~ + f)/f

D = (2 X XI x x 2 + 2 X YI X Y2 + 2 x f2)/f"

E = (2 X x2 x x3 + 2 X Y2 X Y3 + 2 x FJ/f

F = (2 X x3 x XI + 2 X Y3 X YI + 2 x f2)/f"

According to Equation 8, it is clear from the geometry in Figure 2 that we can get following relations:

A = 1/cos20 w B = 1/cos20f2' C = l/cos20p

D = 2 X cos012/(cos0/l X cos0p)

E = 2 x cos0zJ(cos0f2 x cos0~

F = 2 x cos03/(cos0p x cos0J0

Assume that

DI = D/VAXlI = 2 x cos012

EI = E/-v'BXC = 2 x cos023

From Figure 1, we have

2 3 = -R3 xcos0px -R3 /vC

Substituting Equations 10 and 11 into Equations 5 to 7, we obtain the following equations:

Ri - DI x RI X R2 + R~ = 15

R~ - EI X R2 X R3 + R~ = Lr

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

s
X

FIG. 1. The image pyramid (8 is the exposure station; 1,2,3
are object control points).
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FIG. 2. The geometry of a image plane
and exposure station.
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This system yields eight solutions at most. Because only real positive solutions are needed here and each term of the unknowns
is of second degree, there are at most four useful solutions to the system.

After dividing Equations 12 and 13 by Equation 14, and assuming that

KI2 = (L/L2)2 and K32 = (LJL2)2,

it follows that

R~-D1XR1XR2- K32 XR~+K32 X F1xR1x R3+Rix (1- K3~=0 (15)

R~-EI XR2XR3-Kl2xRi+Kl2xFlxRlxR3+R~x (I-Kd =0 (16)

Equations 15 and 16 are homogeneous, so there exists an arbitrary scale factor for the unknowns. Assume that p=R1 • Then

R/p = 1, Rip = m, RJp = n. (17)

Substituting these relations into Equation 15, we have

From Equation 16, we have

m = (E1 x n ± VEt x n 2 - 4 x (- K12 + K12 X FIx n + n2 x (1 Kd))/2

Setting Equation 18 equal to Equation 19, one obtains

(18)

(19)

:;: V q - 4 x (- l<:J2 x Ii- + l<:J2 X F1 x n + 1 - K32 ) (20)

By taking square of Equation 20 two times, the square root operation is eliminated. After appropriate manipulation, it follows
that

where

N1 = (1 - K12)2 + ~2 - 2 x (1 - K12) x K32 - K32 x Ei + 4 x K32 x (1 - K1:z)

N2 = K32 X F1 X (-2 - 2 x K32 + 4 X K12 + Ef) + K12 X (E 1 X D1

+ 2 X F1 - 2 X K12 x F1) + E1 x D1 X (K 32 - 1)

N3 = K32 X (K32 x Fi - F1 x D1 X E1 - 4 X K12 + 2 X K 32 - Er - 2 x K12 X F~

+ K12 X (K12 x Fi + 2 x K12 - F1 X E1 X D1 - Df) + Di - 2 + Ei

N. = K32 x (2 X F1 - 2 X K32 X F1 + E1 X D1 + 4 X K12 X F J

+ K12 X (E1 X D1 -' 2 X K12 X F1 + F1 x Dr - 2 x FJ - D1 X E1

Ns = K32 X (K32 - 2 - 2 X K1z) + K12 X (K12 - Di + 2) + 1

Assuming that

M 2 = N/N1, M 3 = NJNl' M. = NJNl' M s = N/N1;

Equation 21 is changed into following:

(21)

(22)

(23)

(24)

(25)

(26)

n' + M 2 x n3 + M 3 x n2 + M. x n + M s = 0 (27)

Equation 27 is a typical algebraic equation of fourth degree and has a general solution. Although the method of solution is well­
known, some practical expedients must be taken in order to obtain the solution (see Appendix). We can obtain four roots n1, nZ,
n3, and n. of Equation 27. Among them, one to four roots will have real positive values which can be used to find the exposure
station coordinates.

From Equation 17, we have

Introducing these values into Equation 14, we obtain

R1 = P = L2 / Vn2
- F1 x n + 1

R3 = n x p
Introducing R1 into Equation 12, we obtain two solutions for RZ; that is,

R2 = (D1 X R1 ± vm x Rr - 4 x (Rr - LID)/2

Introducing R3 into Equation 13, we obtain another two solutions of R2 :

(28)

(29)

(30)

(31)
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(32)

If the values of R2 from Equations 30 and 31 are equal (except for calculation error), then we select that value as the correct R2 •

There must be one such R2 •

The exposure station corresponding to Rl' Rv R3 is given by the intersection point of three spheres with radius Rl, Rv R3 and
centers at the three control points. The equations for three spheres may be written as follows:

(XLl - Xs)2 + (YLl - Ys)2 + (ZLl - Zs)2 = R?

(XL2 - X s)2 + (YL2 - Ys)2 + (ZL2 - zy = R~

(XL3 - Xs)2 + (YL3 - Ys)2 + (ZL3 - Zs)2 = R~

where X w Yw ZLi are the coordinates of the control points in the ground system, and X., Y., Zs are the coordinates of the exposure
station.

After expanding, we have

x; + Y; + Z; - 2 X XLl X X s - 2 YLl X Ys - 2 ZLl X Zs

= Ri - (xtl + YEl + Zfl)

X; + Y; + Z; - 2 X XL2 X Xs - 2 YL2 X Ys - 2 Zu x Zs

= R~ - (xt2 + YE2 + Zf~

X; + Y; + Z; - 2 X X L3 X X s - 2 YL3 X Y s - 2 ZLJ X Zs

= R~ - (X2LJ + Y2w + Zh)

Subtracting Equation 34 from 33, and Equation 35 from 34, we obtain

(XL2 - XLI) X s + (YL2 - YLl) Ys + (Zu - ZLJ ZS

= (R? - R~ + (XI.2 + Y2u + Zt) - (Xtl + YEl + Ztl»/2

(XL3 - Xd X s + (YL3 - Yd Ys + (ZLJ - Zd Zs

=oo-m+~+~+~-~+~+~~

(33)

(34)

(35)

(36)

(37)

From the above two equations, two unknowns (e.g., Xs and Y,) can be solved for in terms of the third unknown (e.g., Zs); by
introducing their values into Equations 33 to 35, two solutions of Zs can be found. Then two sets of e)(posure station coordinates
Xsu Ysl' ZSl and Xs2, Ysv ZS2 are determined for each set of Ri •

From Figure 1, a mixed product can be made from vectors 12, 13, IS; that is,

T = IS . (12 x 13)

The two exposure stations give two values of T which have different signs. If T is positive, the exposure station is determined
correctly. So from at most four sets of R" one to four solutions of the exposure stations are finally determined.

To sum up, the routine of finding the exposure stations is as follows:

(1) L" Lv L3 are computed from Equations 2 to 4 using the given coordinates of control points in the ground coordinate system.
(2) D" E1, F, are computed from Equations 8 and 10 using the image cooordinates.
(3) M 2, M 3, M., Ms' the coefficients of the biquadratic polynomial, are calculated from Equations 22 to 27.
(4) Solving the biquadratic Equation 27, one to four real positive solutions of n are obtained.
(5) From each positive value of n, a set of R1, R2, R3 is computed from Equations 28 to 31.
(6) From each set of R1, Rv R3, the coordinates of exposure stations are computed from Equations 33 to 37. After computing the value of T,

the correct exposure station coordinates are selected.

THE METHOD OF FINDING THE ROTATIONAL PARAMETERS

ROTATIONAL PARAMETERS USED IN THE COMPUTATION

Because the singularity problem exists in the computation of trigonometric functions, attempts have been made by photogram­
metrists to construct the rotational matrix by using algebraic parameters (Thompson, 1959; Schut, 1958-59). However, these
methods have not proven practical (Zeng, 1990).

Pope (1970) proposed four algebraic parameters d, a,b,c to construct the rotation matrix R. Hinsken (1988) derived a complete
set of formulae to make the Pope parameters applicable in practical photogrammetric computation. Details of the Pope-Hinsken
algorithm can be found in Hinsken (1988) and Zeng (1990).

where

[

d2 + a2
- b2 - c2

R = 2(ab - cd)

2(ac + bd)

2(ab + cd) 2(ac - bd) ]

d2
- a2 + b2 - c2 2(bc + ad)

2(bc - ad) tf2 - a2 - b2 + c2

(38)

(39)
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It has been proven in practice that the Pope-Hinsken algorithm has no problem of singularity and readily converges (Le., it
has a large convergence radius).

To give a physical interpretation to these parameters, assume that

M = [a b cjT.

Then, we can get

RM = M. (40)

Hence, after transforming M by R, M remains unchanged. The physical meaning of a,b,c is shown in Figure 3. After the
transformation of R is executed, the coordinate system is rotated by an angle y around vector M (the rotation axis).

In view of Equation 39 and Figure 3, it follows that

(41)

Assume that

a = b = c = So.

Vector M is written as follows:

(42)

Vector t, perpendicular to vector M, can be expressed as follows:

(43)

From the condition of orthogonality, we have

toM = O.

Then, it follows that

Assume, without loss of generality, that

Let the angle between vector t and R transformed t be denoted by y. Then

to R tj'tjX'ltj = cos 'Y

where

By expanding and manipulating Equation 44, it follows that

1 - 6 5~ = cos 'Y

Lm = V(l - cos'Y)/Z =~

Thus, the rotation angle y of the coordinate system has been expressed in terms of the rotation parameter d by Equation 45.

FINDING THE ROTATION AxiS

Assume that

(44)

(45)

al,bl - two unit vectors of control points with origin at exposure station,
ap,bp - two unit vectors of image points of corresponding control points,
g (X, Y,Z) - rotation axis of coordinate system from object space to image space.
The plane perpendicular to the plane formed by ap and al and bisecting the angle between ap and al is the plane smlg. Using

bp,bl, a similar plane smZg can be formed. The intersection line of smlg and smZg gives the rotation axis g (Figure 4).
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FIG. 3. The physical meaning of a,b,c.
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FIG. 4. Determination of the rotation axis.

y

Plane sm1g is defined by

g x ap - g x al = 0

Plane sm2g is defined by

g x bp - g x bi = 0

Using

ap = [apx, apy, ap.V, bp = [bpX' bPY' bpX,
Equations 46 and 47 are expanded into the following:

(apx - aIx) X + (apy - aIy) Y + (ap. - al.) Z = 0

(bpx - bIx) X + (bpy - bIy) Y + (bp. - bl.) Z = 0

Then the direction numbers of the rotation axis g are

p = (apy - aIy)(bp. - bl.) - (ap. - aI.)(bpy - bIy)

q = (ap. - aI.)(bpx - bIx) - (apx - aIx)(bp. - bl.)

r = (apx - aIx)(bpy - bIy) - (apy - aIy)(bpx - bIx)

FINDING THE ROTATION PARAMETERS d, a, b, C

The rotating angle of the coordinate system from object space to image space is "I; that is,

(g x ap) 0 (g x aI)
cos "I = Ig x api x Ig x all

From Equation 45, it follows that

d = V(l + cos "1)/2

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Because the direction numbers and coordinate components of the rotation axis g are proportional, then from Equation 39, it
follows that

(53)

(54)

(55)
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In the above derivation, two object control points are enough to find d,a,b,c (see Figure 4); thus, the third point can be used
for checking. Because there exist one to four solutions for the exposure station, this leads to one to four solutions for the rotation
parameters as well.

If the fourth point exist, transforming the image coordinates of that point to object space by R (constructed by d, a, b, c or d,
- a, - b, - c), we obtain a vector in the object space system. By checking whether the fourth control point is situated on the
vector, a final unique solution for the exterior orientation parameters can be selected.

In order to perform the check, the direction numbers of the vector are used and the direction number in x-direction is defined
as 1.0. In fact, two coordinates of the fourth point are enough for this checking.

To sum up, the routine for finding the rotational parameters is as follows:

(1) The vectors of image points are normalized (becoming unit vectors). Taking the exposure station as origin, the vectors of control points
are constructed and normalized.

(2) From the vectors of two control points and their corresponding image vectors, the direction numbers p,q,r of the rotation axis are computed
using Equation 50.

(3) The rotating angle 'Y is computed using Equation 51.
(4) d is computed using Equation 52.
(5) The rotational parameters a,b,c are computed using Equations 53 to 55.
(6) Using d,a,b,c, the rotation matrix R is constructed by using Equation 38. After transforming the image vector of the fourth point into object

space by R and checking whether the fourth control point is situated on the vector, a final unique solution can be selected.

PRACTICAL TEST

A program has been written to realize this algorithm. One set of practical data measured at the inner test field of the Institute
of Mine Surveying RWTH Aachen, Germany IS used to illustrate the effectiveness of the algorithm.

The object coordinates (in m) are given in Table 1.
The image coordinates (in mm, focal length f= 63.874 mm) are given in Table 2.
The coordinates of the exposure station are

Xs = 95.562 m, Ys = 117.443 m, Zs = 9.632 m
The rotation parameters are

d = 0.385499, a = 0.376372, b = - 0.589498, c = - 0.601852
These parameters correspond to the angular parameters

a = 127.558°, {3 = 101.379°, 'Y = .092°
By using points 1, 2, and 3, the results of the computation from this program are as follows:

nt = complex, n2 = complex, n3 = 1.458805, n4 = 0.860057
Solution 1 gives

Xs=95.568 m, Ys=117.448 m, Zs = 9.632 m
d=0.385300, a =0.376255, b= -0.589595, c= -0.601958

Solution 2 gives
Xs=110.512 m, Ys=108.764 m, Zs= -4.362 m

d=0.024307, a=0.531449, b= -0.845769, c=0.040556
Checking with the fourth point, the image coordinates are transformed into the ground system. The results for solutions 1 and

2 are shown in Table 3 and Table 4, respectively. After the direction numbers in the x-direction are defined as 1.0, we can compare
whether the vectors of the fourth point computed from image point and control point are equal or not.

It is clear that solution 1 is the correct choice.

TABLE 1. THE OBJECT COORDINATES (IN M) TABLE 3. THE RESULTS OF SOLUTION 1

No. X Y Z image object point
point

1 107.9605 115.7181 12.0221 No. X Y Z X Y Z
2 110.7004 106.7036 5.4821
3 106.2431 102.2492 8.9984 1 1.000 -.139 .193 1.000 -.139 .193

4 110.8310 112.8439 8.9997 2 1.000 -.710 -.274 1.000 -.710 -.274
3 1.000 -1.423 -.059 1.000 -1.423 -.059
4 1.000 -.301 -.041 1.000 -.301 -.041

TABLE 4. THE RESULTS OF SOLUTION 2

TABLE 2. THE IMAGE COORDINATES (IN MM) image object point
point

No. X y No. X Y Z X Y Z

1 -19.460 14.218 1 1.000 -2.732 -6.432 1.000 -2.722 -6.414
2 11.814 -13.100 2 1.000 -11.264 53.831 1.000 -11.130 53.228
3 36.978 -1.188 3 1.000 1.521 -3.122 1.000 1.525 -3.128
4 -9.028 -1.165 4 1.000 -24.532 -150.725 1.000 12.915 42.292
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THE MULTIPLE-VALUED PROBLEM OF SPACE RESECTION

Fischler and Bolles (1981) discussed the multiple-valued nature of space resection in detail. Figure 5 shows a tetrahedron with
an equilateral triangle base ABC and with legs which are all equal. In leg SA there exists another point N, from which the
constructed triangle NBC is equal to ABC. This gives the second solution for the exposure station. The same cases exist for two
other legs. These demonstrate the four real solutions to the system of Equations 12 to 14. Fischler and Bolles (1981) have found
a fourth point D (Figure 5) that moves to D' on the line SD when A moves to N. Thus, A,B,C,D give the same four solutions.
In other words, four points in general position do not produce a unique solution. They concluded that: first, when four control
points lie in a common plane (not containing the exposure station, and such that no more than two of the control points lie on
any single line), they can produce a unique solution; and second, six (or more) control points in general position will always
produce a unique solution. In our opinion, the first conclusion is really correct, but the second one is doubtful. Let's discuss this
point in detail.

Assume that two solutions have the following results:
Exposure stations:

left station: X,v Y,v Z'I
right station: X,y Y,y Z'2

Rotation matrix:
From the left rotation parameters dl , av bv Cv construct the following rotation matrix T I by using Equation 38:

The corresponding data for the right rotation parameters are dy a2, by C2 and T2:

[
rl1 rl2 r13]

T2 = r 21 r 22 r 23

r31 r32 r33

(56)

(57)

We will show how many points can meet these two solutions. Can there be more than five?
Assume that the image point has image coordinates x, y, z = - f where f is the principal distance. Then a point which meets

the solutions must satisfy the coplanar condition of three vectors of the left image point, the right image point (they are the same
point in the image plane but, after being transformed to different exposure stations, they have different vectors), and the base
from the left exposure station to the right exposure station.

Assume that the base vector has three components: Bx=X'2-X,V BY =Y'2- Y'I' Bz=Z'2-Z'I. The image vectors have following
components:

Left image vector:

XI = 111 X X + 112 X Y + 113 X Z

YI = 121 X X + 122 X Y + 123 X Z

Zl == 131 X X + 132 X Y + 133 X Z

s

(58)

c

FIG. 5. The tetrahedron with an
equilateral triangle base.
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Right image vector:

The coplanar condition is as follows:

Bx By Bz

Xl Y1 Zl = 0

X2 Y2 Z2

Expanding Equation 60, we obtain an algebraic equation of second degree as follows:

N 1x2 + N2Y2 + N 3Z2 + N 4xy + NsYz + N 6zx = 0

335

(59)

(60)

(61)

Equation 61 represents a surface of second degree containing the exposure station. After substitution of z = - f into Equation
61, we get

(62)

Equation 62 represents a curve of second degree on the image plane.
This means that any image point which lies on this curve represents an object point which fits the two solutions. 50 there are

an infinite number of points which can fit the two solutions and we can not draw a conclusion that six points in general position
will always produce a unique solution.

To demonstrate this feature, we take the example shown in Figure 5. Three control points are vertices of an equilateral triangle.
The coordinates of the control points are listed in Table 5.

The coordinates of exposure station are Xs= 0, Ys= 0, Zs = 70 m. The coordinate system of the image is parallel to the ground
system. The program gives four exposure stations which have the coordinates (Figure 6) listed in Table 6.

For stations 51 and 54' Equation 61 gives the following:

40.6989 xy - 8.3919 xz = 0

or

x(y - 0.20619 z) = 0 (63)

When the focal length f = 0.07 m and z = - f, namely on the image plane, Equation 63 represents two straight lines: X = 0 and
y= -0.014433 m. They are presented in the image plane as a bisector of angle A' and one side B'C' of the triangle (Figure 7).

From stations 51 and 52' Equation 61 gives the following:

or

9.9388x2 - 9.9388y2 + 1l.4752xy - 30.0005yz - 17.3217zx = 0

(x + 1.73205 y) (x - 0.5773 Y + 0.01667) = 0 (64)

Equation 64 degenerates into two straight lines on the image plane. They are a bisector of angle C' and side A'B'. The similar
case is valid for stations 51 and 53'

TABLE 6. THE COORDINATES OF FOUR EXPOSURE STATIONS

TABLE 5. THE COORDINATES OF THREE CONTROL POINTS A.B,C

No.

B
C
A

X
(m)

-25.0
25.0
o

Xs

y
(m)

-14.4337
-14.4337

28.8675

Ys

Z
(m)

o
o
o

Zs
Cl

S3

y

IS.

1\.(0.28.868.0)

----tL---~---''r---x

d------f-:o-------4> C(25.-14.433.0)
8(-25. -14.433.0) a ..

$2

o
39.099

-39.099
o

o
-22.575
-22.575

45.148

70
39.476
39.477
39.476

FIG. 6. The four exposure stations obtained
from the tetrahedron in Figure 5.
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From S2 and S., Equation 61 gives the following:

-41.3428x2 + 41.3427y2 + 47.7404xy + 17.0497yz - 9.8437zx = 0

or

(x - 1.73205 y) (x - 0.5773 Y - 0.01667) = 0 (65)

Equation 65 degenerates to lines A'C' and B'b'.
Hence, we can draw an important conclusion: for the space resection shown in Figures 5 and 6, in accordance with each image

point positioned on the sides and bisectors (including the extension parts) of the triangle A'B'C' (or in common, on the line
represented by Equation 62), there exists a certain control point calculated by forward intersection from the two exposure stations
(the two solutions). That point does not provide more information to do the space resection than did the three original points.

To illustrate the real positions of these control points, we pass a plane through a, Su A, S4 (Figure 8). It is clear that a,SuA, S4
are positioned on a common circle (curve). Any control points lying on this curve do not provide more information to do the
space resection. We call it the critical curve. The sides themselves of the triangle ABC are locations of such control points as well.

Taking the data from RWTH Aachen as a practical example, Equation 62 gives the following:

x2 + 6.246411y2 + 158.4873xy - 67.03379x - 7.57918y + 302.4823 = 0 (66)

Equation 66 is a hyperbola whose graph is shown in Figure 9. The fourth image point does not lie on this hyperbola.
The program contains a subroutine which tests the fourth image point as to whether it lies on the curve presented by Equation

62. If so, it tests further by forward intersection to determine if it lies on the critical surface.

CONCLUSiON

The space resection utilizing three control points can be solved successfully with the algorithm proposed in this paper without
iteration and initial information regarding the exterior orientation. The space resection produces one to four applicable solutions.
If there is a fourth point and it does not lie on the critical curve, they can produce a unique solution.
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APPENDIX

The general solution of an algebraic equation of fourth degree is

X4 + a1 x X3 + a2 x X2 + a3 x X + a4 = 0

Let

Then Equation Al becomes

X = Y - a/4

(AI)

(A2)

Y4 + b1 X Y2 + b2 X Y + b3 = 0

If b2 = 0, then four solutions can be obtained from following equation:

Otherwise, a real solution of the following cubic equation is found; that is,

Assume that

u = V + b/3

Then Equation AS becomes

V3+PxV+q=O

If

(q/2)2 + (p/3)3 = K > 0,

one real solution, V1 is

V1 = 3 j-q/2 + V(q/2)2 + (p/3)3 + 3 j-q/2 - V(q/2)2 + (p/3)3

If

(q/2)2 + (p/3)3 = K < 0,

one real solution V1 is

where

G = (-1 + i x V3)/2, G2 = (- 1 - i x V3)/2

i = yCT

By derivation, V1 is obtained as

V 1 = 2 x v=p;3 x cos(pi - tan- 1 V3 + w/3)

where

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)

(A10)
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If q>O

If q<O

If q = 0
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pi = 3.14159

w = pi - tan- 1(yC1(j(q/2»

w = tan- 1 (yC1(j( -q/2»

(All)

(A12)

w = pi/2

Substitution of V1 into Equation A6 yields a solution U1 of Equation A5.
Then four solutions Y v Yy Y3, Y. of Equation A3 are obtained by the following equivalent equations:

)'2 - y'U1 - b1 Y + (U/2 + b.j(2 x y'U1 - b1»= 0

Substitution of Yv Yz, Y3, Y. into Equation 2A yields the four solutions Xv Xy X3, X. of Equation AI.
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