
Digital Photogrammetric Inversion: Theory 
and Application to Surface Reconstruction 

Abstract 
Recovering descriptions of objects represented in digital im- 
age data is the first step of digital photogrammetry. It deals 
with the dual issues of representation and inversion. The 
form of the input, i.e., digital images, and the desired out- 
put, e.g., descriptions of image events like lines, regions, or 
visible surfaces, has to be specified before the algorithms 
that derive object descriptions from primary image data are 
developed. This process is typically inverse because the 
measurements are perjormed indirectly. Many problems, in- 
cluding how to create constraints linking desired parameters 
and data, how to recover the unknown parameters from the 
constraints, how to integrate a priori knowledge to deal with 
uncertainty, and how to evaluate the quality of the solu- 
tions, can occur during this inverse process. All of these are 
the objective of this paper. We look at the issue of inverse 
problems in object-reconstruction from image data generally. 
Based on the Maximum A Posteriori (MAP) principle, we in- 
troduce a theoretical framework for the decision problem in 
the inverse process with uncertainty. As its application, we 
show how this fmmework leads naturally to recover visible 
surfaces from multiple images. We propose an algorithm for 
automatic genemtion of digital elevation models (~m)  and 
illustrate its performance with experimental results. 

Introduction 
Photogrammetry, as a traditional contact-free surveying tech- 
nique, is entering into a new stage of development. This is 
perceptible through the application of more and more tech- 
niques based on the processing of digital image data for pho- 
togrammetric purposes. In comparison with traditional 
analog and analytical methods, digital photogrammetry can 
be chiefly characterized as follows: 

8 The input, namely the original observation, is extended from 
geometric values. e.g.. coordinates of image points, to physi- 
cal measurements, e.g., intensities of image points. 
The output, namely the desired result, is concerned not only 
with geometric but also with physical properties of objects 
depicted in images. 

8 The realization of input-output transformation aims at full 
automation, contrary to the traditional approaches which rely 
essentially on the actions and intelligence of human opera- 
tors for image measurement and interpretation. 
The application range is becoming wider, from topography to 
robot vision, for instance. 

These extensions make digital photogrammetry more chal- 
lenging and more complex and therefore require new formu- 
lations of the problems and new frameworks for problem 
solving. 

Digital photogrammetry attempts to recover descriptions 
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of geometrical and physical properties of objects automati- 
cally from primary image data. Generally speaking, this is a 
typical inverse problem as the desired information about the 
world is inferred from image data. The first step of this im- 
age inversion is recovering descriptions of image events in- 
cluding lines, regions, structures, and visible surfaces from 
numerical arrays of pixels. Here the main goal could be for- 
mulated in the form "given a mapping X+Y and data Y, re- 
cover a set of parameters X." To facilitate understanding, let 
us look at a simple example of digital photogrammetric rela- 
tive orientation. Here some pairs of corresponding features in 
two stereo images and the optical flow equations describing 
the geometric relationship between these two images are 
given. Now, the main question is how to recover the un- 
known parameters in the optical flow equations, based on 
the given data which may be inexact or erroneous. 

Inverse problems are basic issues, of which we are all 
aware through our own experience in research on many 
problems in digital photogrammetry, including feature ex- 
traction, image and boundary segmentation, object recon- 
struction, and image interpretation. These kinds of problems 
are of universal significance, and their solutions are not al- 
ways straightforward. Actually, some of them belong to the 
most difficult tasks in computer applications. There are at 
least two reasons for this. First, an image does not provide 
enough information, by itself, to recover the undercon- 
strained scene. Many factors, including surface material, at- 
mospheric conditions, light source, ambient light, camera 
angle and characteristics, etc., are compounded in the image 
and contribute to a single measurement, say the intensity of 
a pixel. The various factors cannot be separated, as long as 
they are not measured. Another reason for the difficulty con- 
sists in the fact that so much information is lost during the 
imaging process that projects the three-dimensional (3D) 
world into two-dimensional (2D) images with a total reduc- 
tion of dimensions. This would be true even if there were no 
stochastic component in a digital image, because it is cor- 
rupted by both discrete spatial sampling and intensity quan- 
tization. 

In this paper, we are concerned with inverse problems 
in digital photograrnmetry. We first try to classify inverse 
problems into groups and discuss their solvability. After that, 
we focus our attention on the problem of "uncertainty" dur- 
ing image inversion which is also known as an "ill-posed" 
problem (Hadarnard, 1923). Based on the Maximum A Pos- 
teriori (MAP) principle, we introduce a framework for the in- 
tegration of a priori knowledge to solve the decision problem 
in the inverse process with uncertainty. To demonstrate the 
approach, we formulate the problem of surface reconstruc- 
tion from image data within this framework. This leads to a 
novel algorithm for automatic generation of digital elevation 
models (DEM) from multiple digital images. We then demon- 
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strate brieflv the imulementation and illustrate its uerform- TABU 1. CHARACTERISTICS OF A MAPPING f : X --, 9. 
ance with &perimehtal results. The main contribuiions of miterion 
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expression supposition 
this paper are (1) formulating problems in digital photogram- 
metric object reconstruction in a more general way, (2) pro- MAp + rnax 
viding a theoretical framework for problem solving, and (3) BE P(Y X)P(X) -, max 1). P(Y) = constant 

applying this framework for the concrete problem of recover- ML P(Y p(X I X) y, -* max 2). P(X) = constant and 1) 
LS WE- lV 4 min 

ing the geometric representation of surfaces from image data. 
3). V - N(0,E) and 2) 

Inverse Problems 
Let S represent a physical system (for example, the Earth's 
surface, or an image event like a line or a region). Assume 
that we are able to define a set of model parameters which 
describe S to some extent. These parameters may not all be 
directly measurable. We can operationally define a set of 
some observable parameters C!J whose actual values hopefully 
are relatable to a set of the model parameters X. To solve the 
forward problem is to predict the values of the observable 
parameters Y E C!J given arbitrary values of the model param- 
eters X E X. To solve the inverse problem (the identification 
problem) is to infer the values of the model parameters X 
from given observed values of the observable parameters Y 
(Tarantola, 1987). Mathematically, the inverse problem can 
be described as follows. Given a mapping f from set X into 
set 9, i.e., f : X -, 9, the solution of the inverse problem 
consists in the interpretation of data Y E  9 in order to re- 
cover the original image X E X 

Obviously, the solvability of the inverse problem is con- 
nected strongly with the characteristics of the mapping f (Ta- 
ble l l .  A mapping f is called suq'ective if every element Y E 
Y has at least one original image X = f-'(Y) E X A mapping 
f is called injective if an element Y E 9 has only one origi- 
nal image X = f-'(Y) E X. A mapping f is bijective if it is 
both injective and surjective. So a surjective mapping en- 
sures the existence of its inverse mapping and an injective 
mapping ensures the uniqueness of its inverse mapping. 

Let us now consider a linear mapping A :X 49. The in- 
verse problem is to identify X from the "data" Y and the 
equation 

Y = AX. 

The solvability of this inverse problem could be dis- 
cussed as follows: 

(1) If A is bijective and A-l is stable, one can easily get 
a unique solution X = A-'Y. 

(2) If A is injective but not surjective, the inverse prob- 
lem is overdetermined. One can, however, get a 
unique pseudo solution through minimizing the 
norm of the residual llVll = llY - f i l l .  

(3) If A is not injective, the inverse problem is underde- 
termined and there is a unique pseudo solution X 
= A+Y, where A+ is the so called Moore-Penrose In- 
version which, unfortunately, is only stable when 
the domain of A is closed in Y. 

So, it is quite clear that inverse problems are not always 
straightforward to solve by using traditional methods, i.e., 
least-squares estimation. In fact, some ambivalent non-injec- 
tive inverse problems are practically not solvable through a 
numeric process, as even a few errors in Y can destroy the 
solution totally. Unfortunately, there are many problems in 
digital photogrammetry, as mentioned earlier, which are of a 
non-injective nature and whose solutions demand new infer- 
ence techniques beyond traditional estimation methods. 

Schematically, there are two reasons for the uncertainty 
in inverse problems: intrinsic lack of data, and observation 
uncertainties. With additional information, for example, 
some a priori assumptions regarding model parameters X or 

an additional data set, many such problems can be reformu- 
lated into well-posed solvable problems. Now, the main 
question is how to integrate a priori knowledge to solve du- 
bious inverse problems. One way is to restrict the space of 
admissible solutions by introducing suitable a priori knowl- 
edge. We need criteria to impose constraints on the solution 
space and a framework to integrate a priori knowledge in or- 
der to select a unique solution (the so called "best" solution) 
for given data. Intuitively, the best solution exists only in 
connection with criteria which are, of course, strongly task 
dependent. 

The MAP Criterion 
The criterion which we introduce in this section is the so- 
called Maximum A Posteriori (MAP) criterion which is based 
on probability theory (Geman and Geman, 1984). It selects as 
the best solution the model parameters X that maximize the 
conditional probability of X given the data Y : P(X I Y), sub- 
ject to the inverse problem (Equation 1). The MAP criterion 
leads to three important estimation methods, namely, the 
Bayesian estimation method (BE), the maximum likelihood 
method (ha), and the least-squares method (LS), which are 
widely used in data processing. 

Using Bayes' theorem gives 

where P(Y I X) is the conditional probability of getting data Y 
given the model parameters X, and P(X) is the prior probabil- 
ity of X. The relation (Equation 2) shows how the "prior 
probability" P(X) changes to the "posterior probability" P(X 1 
Y) as a result of acquiring new information Y. Intuitively, the 
MAP criterion will choose X that maximizes 

if P(Y) is constant. This is the principle of the Bayesian esti- 
mation. Furthermore, under the specification that the prior 
probabilities P(X) are all the same, i.e., P(X) is constant, the 
MAP criterion leads to the simpler maximum-likelihood prin- 
ciple of selecting that X which maximizes P(Y I X). If the 
random variables to which the data Y refer are normally dis- 
tributed, the maximum-likelihood estimation will give the 
same results as the least-squares estimation which has been 
widely used in different branches of science and engineering. 
If V is the vector of observational residuals, for which E(V) 
= 0, and it is assumed that V is normally distributed, and C 
is the covariance matrix of the distribution, then we have 

P(Y I X) = P(V) = C . exp - -VTC -'V [ ] 
where C is constant. The least-squares criterion is to mini- 
mize VTI;-'V which is equivalent to yielding a maximum- 
likelihood estimation to maximize P(Y I X). 

So far we have discussed the MAP criterion and its 
progenies. Obviously, each criterion has its own supposition 
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(Table 2). The LS criterion, which is so widely used in pho- have the following optimizing problem (Equations 3, 4, and 
togrammetry as a general framework for problem solving, is 5): 
only suitable for dealing with over-constrained inverse prob- 
lems. For under-constrained inverse problems, the MAP crite- VTC -'V + 5;£(X) 2 4 min, 
rion is more appropriate as it provides a flexible framework 
to integrate a priori knowledge to restrict the solution space, 
and one can take the probability behavior of both the data with respect to Equation 7. Intuitively, this criterion, in com- 
and the desired solutions into account. This is most impor- parison with the least-squares criterion, is more powerful to 
tant as we, then, have the chance to make full use of our a deal with underdetermined inverse problems, as it gives not 
priori knowledge. only a measure for the quality of the fitting , through the first 

term in Equation 9, but also a measure for the probability of 

Restricting the Solution Space the solution, through the second term in Equation 9. So we 
can integrate our a priori knowledge into the inverse process 

  he MAP criterion provides a general approach to handle the by designing the second term in Equation 9 appropriately. Of 
inverse problem in an uncertain environment. It gives a course, designing E(X) is a skill. One needs knowledge about 
mechanism to restrict the solution space and to integrate a the physical meaning of the solution and the internal 
priori knowledge by specifying the appropriate prior proba- ence of unknown parameters, 
bilities P(X). However, the MAP criterion doesn't tell how to Generally, the second term in Equation 9 can be de- 
construct P(X). In this section we look at this issue. signed to have the form 

The parameter set X, as mentioned above, represents a 
physical system and can be considered as a space. In princi- 2 
ple, every point X in this space represents a possible solu- ,E(X)=ETC;'E, E = @ X - Y ,  
tion. It can be easily imagined that not all points in the 
solution space are meaningful. Our job is to explore the soh- where @ is an operator, g is a vector, and Xa is a mat*, 
tion space to find an appropriate point (solution). So, the They have to be determined using our a priori knowledge. If 
first problem is how to measure the appropriateness of a SO- we, for instance, know a priori that the elements x, E X, i = 
lution and how to describe the solution space. A general way 1, ,.,, m, should have values near a,, = 1, .,., m, then we can 
to do this is to define a possibility distribution of the solu- construct 
tion space P(X)(Tarantola, 1987). 

Constructing P(X) is strongly task dependent as we have a: 0 ... 0 
to know the meaning of X. If we, for instance, know a priori 
that X can be described by using a Markov random field, 
then, according to the Harnmersley-Clifford Theorem (Geman 
and Geman, 1984; Chou and Brown, 1988), P(X) can have the 
Gibbs form /1 0 ... O \  / al \ 

1 
p(x) = - c exp [- +x)], x E X .  

where C is a normalizing constant, T is the "temperature" of 
the space that controls the flatness of the distribution of the where 6, i = 1, ..., m, denote the degree of the certainty of 
configurations X, and E(X) is the energy of X which consists our a priori knowledge. 
of the sum of the local potential Let us now solve the inverse problem (Equation 1) again, 

but using the new criterion (Equation 9) which is equivalent 
&(XI = 2 Ve(x1. 

xEX 
(6) to 

The relation (Equation 5) suggests that the point in X 
with a higher energy occurs is less likely to occur. 

Now, let us come back to the inverse problem [Equation 
I). According to the the least-squares criterion (Table 2), one 
can get a unique pseudo solution by minimizing VTE-'V 
with respect to 

If%-'V + ETZilE + min. 

This leads to the new normal equation 

This leads to solving the normal equation 

Certainly, the normal matrix N = ATE-'A is regular 
only if the problem (Equation 1) is overdetermined. This sug- 
gests that the least-squares criterion can only be used to deal 
with overdetermined inverse problems. For underdetermined 
inverse problems, the least-squares criterion can not lead to a 
satisfying solution, as it does not have a mechanism to re- 
strict the solution space. 

Using the Bayesian estimation method (BE) (Table 2), we 

One can be certain that the new normal matrix N = ATE-'A 
+ @%;'@ is not singular even for underdetermined inverse 

(7) problems, if 9, Ce, and 9 are all appropriately constructed. 

Surface Reconstruction From Images 
There are, as indicated above, many problems in digital pho- 
togrammetry which can be formulated as the inversion of im- 
age data. We have proposed general approaches for inverse 
problems which provide a sound theoretical basis but offer 
few practical computational methods for dealing with con- 
crete tasks in digital photogrammetry. So, in this section, we 
go further into the application of the inverse problem theory 
to an elementary problem in photogrammetry, i.e., the com- 
puting of the representation of surfaces from multiple im- 
ages, as a solid application example. 



TABLE 2. THE MAP CRITERION AND ITS PROGENIES. 
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Figure 1. The meaning of the spatial coherence 
label I,. 

Representation of Visible Surfaces 
The role of a representation is to make certain information 
explicit at an appropriate point in the problem analysis be- 
cause the abstract information must be expressed by concrete 
representation. Thus, the choice or design of a representation 
affects the success of analysis. The representation of object 
surfaces deals with strategies and techniques for describing 
their geometrical and physical properties in a way appropri- 
ate for numerical processing. 

Let S be a set of parameters which describe the geometr- 
ical and physical properties of an object surface. The element 

f 

of S can be a concrete measure, e.g., elevation (depth), defor- 
mation, reflectivity, etc. Each element in S can be mapped 
onto the XY-plane in a 3D coordinate system and represented 
mathematically as S = S(X,Y), S E S. For computational rea- 
sons, we would rather represent S by a grid of square 1 x 1 
elements, where each element is centered at the coordinates 
(X,, of the ith element. Then, the object surface is de- 
scribed by rn x n elements: S, = S(Xi, Yi), i E fl, where d 
can be thought of as a vector belonging to the set (1, ..., rn) 
x (1, ..., n) which has totally rn x n elements. 

Sometimes we may also be interested in the spatial co- 
herence (continuity) of S. So we introduce a label set L 
whose element I, represents the strength of the spatial coher- 
ence between two neighbors S, and Sl (Figure 1). The label I,] 
can be binary: 1, = 0 for continuity between S, and Sl, I,] = 1 
for discontinuity between S, and St I,] can also take the value 
between 0 and 1, i.e., Iij E [ 0 , 1 ] ,  for continuously describing 
the coherence strength. 

. 

neither sujective 

nor injective 

surjective 

noninjective 

Forward Modeling for Constraints Generation 
The purpose of forward modeling is to find constraints link- 
ing elements in S with observations, i.e., image densities (in- 
tensities), based on physical properties of the imaging. The 
well known relationship between the image density D of a 
photographic image and the exposure H [ l u . s e c ]  is 

D(x,y) = y log H + Do 

injective 

nonsurjective 

for normal exposure, where x,y are image coordinates of an 
image point, yi= 1) is the gradation, and Do is a constant. 
Usually, y depends on the developer, the development time 
and temperature, and the photographic material. The expo- 
sure H depends, first of all, on the reflection properties of 
surfaces (Figure 2). Many natural terrain features roughly ap- 
proximate diffuse reflectors. A Lambertian surface is a per- 

bijective 
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a 0 Q \I/ \I /,/,7 

a. Perfect specular reflector b. Near-perfect specular reflector 

n o Q 

yg) I ' /  
I I / ,  I ' I / /  
I I/, 

c. Near-perfect diffuse reflector d. Perfect diffuse reflector 

Figure 2. Different types of reflecting surfaces. 

fect diffuse reflector with the property that the radiance 
L[cd.m-21 is constant for any incident angle. 

The exposure of an emulsion (Slater, 1983) can be writ- 
ten as 

where t [sec] and a[rad] are exposure time and field angle of 
a pixel, c is calibrated focal length, N is relative aperture of 
the lens, (L, - I-,), L, are luminance [cd m-2] from the sur- 
face element and of skylight intercepted by the lens; and I-,, 
I-,, are transmittance of atmosphere and optics. 

Substituting Equation 15 in Equation 14 gives 

which is a basic formula for digital photogrammetric inver- 
sion as it explains the physical meaning of observations, i.e., 
image intensities. It can be seen that there is uncertainty dur- 
ing the inversion of model parameters from Equation 16 even 
if there were no stochastic components to the observations D. 
Thus, Equation 16 is practically useless as long as no infor- 
mation about the physical calibration of the whole imaging 
process is provided. Rewriting Equation 16 gives 

where q can be considered as a constant for all pixels in the 
same image; but cC, is a local parameter which changes from 
pixel to pixel. The physical meaning of $ in Equation 17  is 
the logarithm of the luminance intercepted by the lens for a 
pixel. 

The image coordinates x and y in Equation 17 are further 
functions of the object coordinates of the surface element, ac- 

cording to the well known projection equation: 

where m is a scale factor, R is the rotation matrix containing 
three rotation angles (+,o,K), (X,Y,Z) are the corresponding 
ground coordinates of the image point (x,y), and 0 = (~,o,K,  
Xo,Y,,Zo) are camera orientation parameters. In addition, the 
intensity D(x,y) of the image point (x,y) has to be re-sampled 
from the neighboring digitized pixels by using, for example, 
a bilinear interpolation 

D = GTL, (19) 

where L denotes a set of intensities of neighboring pixels and 
G denotes a corresponding coefficient vector, respectively. 
Thus, for the ground surface point [X,Y,Z), the left side of 
Equation 17 is a function of many parameters: i.e., 

Let us now look at the problem of surface reconstruction 
from multiple images. To facilitate the analysis, we discuss 
here only the solution of recovering the surface profile illus- 
trated in Figure 3, which is represented by using K discrete 
profile points: Z,, i E fl = [I, ..., 4, from J images: M, j E 3 
= [I, ..., n, which are taken from different views and depict 
the same surface [Figure 3). In addition, we also suppose that 
the orientation parameters of these images are all known. 

For the ith profile point, we can write J constraints like 
Equation 17. For all K profile points we can write totally J x 
K constraints like Equation 17. Supposing a Lambertian sur- 
face and y 2: 1, these constraints can be further simplified 
(Zheng, 1990): i.e., 



I N S T R U C T I O N S  T O  A U T H O R S  I 
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1 2 3  . . . . . .  X 
Figure 3. Surface reconstruction from image data. 

with 

aF u = -  aF aF A = -, B = - W = F(Lo,Zo,Qo), 
a ~ '  az az' 

where V denotes the residual vector of L: Lo denotes the ap- 
proximate values of L, Z , and AZ denote the vector of ap- 
proximate elevations of profile points in LI and their 
corrections, and Q, and AQ denote approximate values of 
the unknown parameters in Q and their corrections, respec- 
tively. It is clear that Equation 23 is strongly underdeter- 
mined as V, AZ, and AQ are all unknown. The total number 
of unknowns is much larger than that of the constraints, and 
one could generally hypothesize an infinite number of differ- 
ent solutions that would meet Equation 23. So, we have to 
use criteria to restrict the space of acceptable solutions and 
to find a unique solution which will be a "best" one to inter- 
pret the image data. 

where pJ = - y,lyl, q, = q, - qJ, and we have a set of new 
parameters pj and qj, j E [2, ...,A, which describe approxi- 
mately the radiometric relationship of the image M, with the 
other images Mj, j E [2, ...,A. Our a priori knowledge about pj 
and qJ is that pJ should be near 1 and Q should be near 0. 

It is not difficult to see that in this example the left side of 
Equation 21 is a function of many parameters, including the 
elevation of each profile point (see Equations 19 and 18): i.e., 

f(Ljl,Lij,zl,pJ,q,) =0,  i E [I, ..., K l ,  j E 12, ...,A . 
These K x 01) constraints can be further denoted as 

F(L,Z,Q) = 0 

with 

= (Lll, "' ,LKl,Llz, ...,LKzttttIL119..I~LKI)T 
z = (Z,, ..., ZJT, 
Q = ( P ~ J I ~ . . . J J ~ ~ , ) ~ .  

Linearization of these constraints gives 

The MAP Based Method for Surface Reconstruction 
According to Table 2, the MAP criterion would choose Z = 
Z, + AZ and Q = Q, + AQ in Equation 23 such that the 
conditional probability P(Z, Q I L) is maximized, which is 
equivalent to maximizing P(L I Z, Q)P(Z, Q), if P(L) is con- 
stant. 

As mentioned above, the conditional probability P[L I Z, 
Q) can be simply assumed as the probability that the obser- 
vational residuals were produced by a normally distributed 
random variable [Equation 4). The problem is, now, how to 
exploit our a priori knowledge about Z and Q to constitute 
their probabilities, i.e., P[Z, Q). If Z and Q are statistically 
independent, we have P(Z, Q) = P(Z) - P(Q), 

To construct P(Z) and P(Q), one has to know the mean- 
ing of Z and Q. The vector Z, for instance, represents some 
elevations of discrete surface profile points. So, our a priori 
assumption about Z is the spatial coherence of its elements. 
This suggests that the local potential of the element Z, E Z, i E 
~7 can be written as 

Figure 4. A stereo pair of digital aerial images. 
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where N, denotes the set of totally connected subgraphs (cli- not satisfying if our knowledge is not good enough to ensure 
ques) with respect to the element Z,, Ilk E [0,1] is the connec- an appropriate determination of T. So, a very interesting 
tion strength between Z and Zk, and uz is a normalizing question is how to enlarge our knowledge and how to adapt 
constant. According to the Hammersley-Clifford theorem, the r during the inversion in order to improve the quality of Z. 
energy of Z can be computed with Information processing systems that improve their perform- 

ance or enlarge their knowledge bases are said to "learn." 

&(Z] = Z 2 [l1kzh]' = EzZ;'Ez This ability would clearly have value in digital image inver- 
iEI kENl uz (251 sion. Using parameter estimation technique, we can, for in- 

stance, adapt X, XZ, and XQ in Equation 31 iteratively during 
the inversion so that the result is robust against image noises 

Ez = GzZ -Yz, (26) with different properties, against surface discontinuities, and 
against different reliabilities of our a priori knowledge 
(Zheng and Hahn, 1990). 

with 

where 

1 -1 0 ... 0 
o 1 -1 .-. Experimental Results 

To demonstrate the feasibility of the approach for surface re- 
... construction, an algorithm was implemented (Zheng, 19901; 

0 0 1 -1 it can be understood as an iterative optimization procedure 

Similarly, because we know a priori that p should be 
near 1 and q should be near 0, so the energy of Q is 

&(QI = E&XijlEQ, 

with 

where 

which consists of the following steps: 
(I) For each of J images, create a pyramid by recursive methods 

using a low pass filter such as a Gaussian filter to remove 
gray level noise and the high-frequency components in the 
images. The filtering of level 1 + 1 is done using the corre- 
sponding image at level 1: For each pixel at level 1 + 1, its 
value is, for instance, equal to the sum of four pixels at 
level 1 divided by 4. The locations of these four pixels are 
such that each is centered at a auadrant of a sauare of s x 
s, where s is equal to 21 at level]. 

(2) Assume Q,=(l,O, ..., 1,o)T and Zo which denotes an approxi- 
mate DEM and can be for instance a plain represented by a 

(28) grid of m x n surface points with the same heights. 
(3) Assume the matrices X, mZ, Yz, XZ,aQ,YQ,BQ using the a 

priori knowledge (Equations 27 and 30). 
(4) Determine L, using Zo and the images at the top level of the 

(29) pyramids (Equation 18). 
(5) Determine the coefficient matrices U, A, B, and the vector of 

constants W in Equation 23 using Lo, Zo, and Qo (Equations 
19 and 21). 

(6) Solve the optimizing problem (Equation 31) to adapt Z, and 
Qo. 

(7) Estimate and adapt the matrices X, mz, Yz, Zz,@Q,YQ,XQ 
using parameter estimation technique. 

(8) Return to the Step 4 and determine L, again, but using the 
images at a lower level of the pyramids and the new Zo and 

1 a-  0 ... 0 0 Qo. 
This iterative optimization procedure is finished after the 
base level of the pyramids is reached. At this level the sur- 

Y Q  = ( ) XQ = ( 4 ) (3.1 face is reconstructed from the original images, 
. . . up' Figure 4 shows a stereo pair of digital aerial images. 
. . . 

0: 
They represent a piece of steep and rough wilderness with 
rock-debris. Each of them has 240 by 240 pixels. The image 

and and aq constants encoding the reliability of our scale is about 1:10,000. This image material was also used to 
priori knowledge about p and q . test the feature based and least-squares matching algorithms 

considering  ti^^^ 3, 4, 5, 25, and 28, the MAP and is regarded as the hardest one within three selected proj- 
surface reconstruction is to solve the optimizing problem ects (Hahn and Forstner, 1988). 

Finure 5 shows the automaticallv nenerated DEM and its 
1 1 1 
-VTX -'V + 7Es,1Ez + FEdX,lEQ min, (31) 
2 

subject to 

W + AAZ + BAQ + W = 0, 
Ez - @,AZ + (VI, - @,,Z,) = 0, and 

E, - OQAQ + (qQ - mQQ0) = 0. 

Surely, the surface profile Z which is reconstructed in 
this way depends on r = (X, QZ, Yz, Xz,@QYQ,X ) and they 
should be determined using a priori knowledge,%efore the 
inversion process takes place. The quality of Z is sometimes 

a post&ori accuracy. It contains 30 by30 lattice points with 
1 by 1 m2 lattice size. All heights of the same lattice points 
(900 points) was also manually measured on the Planicomp 
ClOO analytical measuring device as reference (Figure 6). The 
precision of the manual measurements is about 0.22m ( ~ 0 . 1 4  
%o of the flying height). Figure 7 illustrates the difference be- 
tween the automatically and the manually measured DEM. 
This difference can be characterized by its mean (bias) and 
its standard derivation against the bias. Taking the a poster- 
iori accuracy of the automatically measured DEM (Figure 5) 
into account, the results are 

MEAN DIFF: - 0.313m (bias), 
SDEV: 0.207m (=0.130%0 of the flying height), 
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Figure 5. The automatically derived DEM and its a posteriori 
accuracy. 

,...' *-- 

Figure 6. The manually measured DEM. 

where the precision of the automatically derived DEM is 
about the same as observed by the operator. 

Finally, we look at the image pair "House" (Figure 81, 
which is one of the 12 image pairs for the test on image 

MEAN: -0.313 m SOOT: 0.207 m 
5 

4 

3 

2 

1 

* A + * * . & 4 * * A . * A  
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-2 

-3 

-4 

-5 
0 200 400 600 800 

Figure 7. The difference between the automatically and 
manually measured OEM. 

matching of Working Group IIU4 of the International Society 
for Photogrammetry and Remote Sensing (Gulch, 1988). This 
image pair has been classified by the test organizer into the 
group of high complexity for image matching, as it contains 
almost all problems, including discontinuities, occlusions, 
shadows, and corruptions. Each image has a size of 240 by 
240 pixels and the image scale is about 1:3,000. In Figure 9, 
we show the computed surface field by means of a perspec- 
tive view and a contour map. Using this example, we want 
to demonstrate that the approach presented in this paper for 
surface reconstruction is able to deal with such problems as 
discontinuities by iteratively estimating and adapting the 
matrices Xz in Equation 31. Of course, the result shown in 
Figure 9 is not the final one, but it provides important guid- 
ance for finding physical discontinuities of the surface. In 
this case, the final surface should be reconstructed by inte- 
grating the semantic information obtained from image analy- 
sis as our a priori knowledge. The approach presented in 
this paper could be used as a theoretical framework for inte- 
grating different kinds of a prion' knowledge. 

Conclusion 
In many practical problem solving situations such as digital 
image analysis and interpretation, the available information 
is incomplete or inexact and is inadequate to support the de- 
sired sorts of logical inferences. Probabilistic reasoning meth- 
ods allow us to use uncertain or probabilistic knowledge and 
information in ways that take the uncertainty into account 
and help us accumulate evidence for hypotheses in a fair 
way. They are appropriate tools for making "just" decisions 
and they provide techniques that help to minimize risk in 
making decisions. 

In this work, we concentrate our attention on the prob- 
lem of digital photogrammetric object reconstruction and for- 
mulate it generally as a problem of image inversion and 
decision-making in an uncertain environment. Based on MAP 
criterion, we have introduced a theoretical framework for 
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I Figure 8. The image pair "House." 
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Figure 9. The reconstructed surface from the image pair 
"House." 

dealing with so called ill-posed inverse problems. We have 
shown how surface reconstruction from images can be solved 
under this theoretical basis as an application example. Of 
course, there are many problems in digital photogrammetry 
which can also be solved using the framework given here. 
So, among the goals of future work will be (1) the investiga- 
tion of the biaslvariance dilemma during the inversion. (2) 
the introduction of a learning mechanism to improve and 
adapt our a pn'ori knowledge during the inverse process, (3) 
the application of neural network technology to develop par- 
allel algorithms for solving the optimizing problems men- 
tioned above, and (4) the extension of the application range 
of the approach. 
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Erratum 
The units of measure in Table 1 of the article, "Estimat- 
ing Surface Reflectance and Albedo from Landsat-5 The- 
matic Mapper over Rugged Terrain," by Claude R. 

Duguay and Ellsworth F. Le Drew (PEeRS, May 1992, 
page 552) should read m W ~ m - ~ s r - ~ p m - ~ ,  not 
Wm-Z~r -~pn-~ .  


