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Abstract
The standard approach to integration of satellite imagery
and sub-surface geological data has been the comparison of
a map-view image interprctation with a selection of sub-sur-
face cross-sections. The relationship between surface and
subsurface geologr can be better understood through quanti-
tative thrce-dimensional (sn) computer modeling. This study
tests techniques to integrate a so digital terrain model with
3D sub-surface interpretations. Data types integrated, from a
portion of the Paradox Basin, southeast Utah, include Land-
sat TM imagery, digital elevation data (ntu), and sub-surface
gravity and magnetic data. Combined modeling of basement
and topographic features suggests the baditional lineament
analysis approach to structuruI interpretation is over-sim-
plistic. Integration of otu and image data displayed in sn
proved more effective for litholog discrimination than a
map-view approach. Automated strike and dip interpretation
algorithms require DEM data at resolutions better than 70 m
by 90 m. The methodologr tested is beneficial to interpreta-
tion of imagery data in ftontier exploration areas.

lntroduction
Integration of remote sensing and digital terrain modeling
has been demonstrated to produce significant gains, and it is
a well-established technique in areas such'as environmental
impact assessment (Baker, 1991J, landslide hazard assess-
ment (Huang and Chen, 1991), and surface mineral explora-
tion (Braux et o1., 1990), Software has been developed that
combines image data with digital elevation models (onv) and
produces three-dimensional surface displays with perspec-
tive viewing (e.9., Duguay et o/., 1gB9; McGuffie ef o/., 1989;
Morris, 1991). In addition, the value of integrating remote
sensing with geographic information systems (cts) has been
demonstrated and software packages are available (e.g., Bult-
man and Getting, 1991; Runsheng et al., tgst).

However, in the field of trying to deduce sub-surface ge-
ology from satellite imagery, three-dimensional (so) model-
ing techniques, beyond the display of a single surface in
perspective, have not been fully employed in an integrated
fashion. The standard approach to combining sub-surface
data with image interpretation has been the comparison of a
map-view (zn) image interpretation with a selection of sub-
surface cross-sections. The resulting synthesis would be de-
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scribed through a series of non-quantitative, idealized, so
block diagrams. But this approach does not get the most in-
formation out of the data, and may result in unrealistic mod-
eling of geological features such as fault geometries and
lithologic boundaries.

This study tests techniques to integrate a ro digital ter-
rain model with sn subsurface interpretations in order to
construct quantitative models of the geology. In particular, it
aims to demonstrate methods that will be beneficial in inter-
pretation of imagery data in frontier exploration areas where
few sub-surface data are available. The key objectives are

o To gain a better understanding of the relationship between
subsurface geology and surface geology as rnterpreted ftom
satellite imagery; and

. To test if, and by how much, the three-dimensional methods
developed in this study facilitate the understanding of sub-
surface geology.

This study is multi-disciplinary in the sense that it incorpo-
rates concepts and methods from the fields of remote sens-
ing, geographic information systems, subsurface geology,
digital tenain modeling, computer mapping, and three-di-
mensional modeling to establish a methodology to maximize
the interpretation of the geological information.

Study Area
The Blanding sub-basin of the Paradox Basin in southeast
Utah was selected to test the methodology as it is a proven
hydrocarbon province with plgntiful subsurface data and
good surface exposures. The setting and a summary of the re-
gional structural features are shown in Figure 1. Structural
relief on Mesozoic reference horizons is approximately 6,000
feet from the base of the Blanding Basin to the crest of the
Monument Upwarp.

The Paradox Basin was formed during Pennsylvanian
time as a transtensional basin, with the main deformation oc-
curring along northwest- to southeast-trending fault zones,
seen in surface imagery as prominent lineaments such as the
Nequoia-Abajo Lineament (Knepper, 1982; Stevenson and
Baars, 1986). This pattern is complicated by a perpendicular
series of regional lineament zones trending northeast to
southwest. Within the study area are three major Iineaments
(Figure 1). The Four Corners Lineament, trending NW-SE,
defines the southern limits of the Paradox Basin, and is a
strike-slip fault with right-lateral displacement. The NE-SW-
trending Coconino Lineament is interpreted by Davis (1978)
as a major partitioning element in the basement extending
beyond the Paradox Basin. The Monument Upwarp and
Comb Ridge Monocline are features along the Coconino Li-
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neament. The House Creek fault zone consists of several NE-
SW-trending en echelon faults that suggest left-lateral move-
ment (Stevenson and Baars, 1986), which is compatible with
these being antithetic shear faults to the NW-SE-trending
fault zones. A deep-seated fault underlying the Comb Ridge
monocline lies en echelon to the House Creek fault zone
(Stevenson and Baars, 1986). During Laramide time (Late
Cretaceous to Early Eocene), the Colorado Plateau was sub-
jected to compressional forces, and large-scale inversion
structures, such as the broad upwarps and monoclines, were
developed (Blakey and Gubitosa, 1984; Peterson, 1986;
Blakey, 19BB).

The area of interest is between 110o to 109" longitude
and 37o to 38" latitude North, in southeast Utah. Pennsylvan-
ian and Permian age rocks are exposed on the Monument
Upwarp fFigures 2 and 3). Late Permian and early Jurassic
rocks are exposed in Comb Wash. The Jurassic-age Wingate,
Kayenta, and Navajo formations are exposed.on Comb Ridge.
A major surface topographic feature, on the eastern boundary
of Comb Ridge, is the Abajo Mountains which are formed by
Oligocene laccolithic intrusions. East of Comb Ridge are
younger Jurassic and Early Cretaceous units exposed in river
valleys and on the mesa cliffs. Major drainages within the
study area include the San |uan River that tracks across the
southern portion from east to west. As the San |uan crosses
Comb Ridge and the Monument Upwarp, there is a classic
goose-neck incised meander-loop pattern associated with an-
tecedence. Major north-south drainages include Montezuma
Creek, Recapture Creek, Cottonwood Wash, and Comb Wash
(Figure 3). South of the San Juan River, surface exposures of
Jurassic Morrison Formation to Navajo Sandstone are masked
by Recent aeolian deposits.

Methods

Data Set
A seven-band Landsat Thematic Mapper (rv) image in digi-
tal format was used in this study for lithologic discrimina-
tion. Two images were tested: a three-band decorrelated
principal components (rC) image (bands 7,4,5,7 with PC 1,2,3
displayed in Red, Green, Blue (RGB), respectively), and a
stretched false-color composite (bands 1,4,5 displayed in
RGB, respectively). The stretched false-color composite image
was the most useful in regional lithological interpretations.
The noise introduced in the PC image by the equal weighting
of decreasing PCs was accentuated when the image was re-
sampled to larger pixels, negating any spectral enhancement
that this method produced at full resolution.

Digital elevation data for this study were obtained from
the USGS l-degree digital data set (1" DEM data are used to
map at a scale of 1:250,000). These data have a pixel resolu-
tion of 70 bv 90 metres with a vertical accuracv of 30 m and
a horizontai accuracy of t30 m. The gravity and magnetic
interpretations are from Case and ]oesting (7972). The inter-
preted depth to basement was digitized from the map
(1:250,000); the locations of interpreted basement faults were
digitized as a separate file.

Data Processing Procedure
The processing stages are outlined in Figure 4. The first stage
includes the digital image processing of Landsat TM Imagery
to enhance the surface geology interpretation. The enhanced
image was combined with digital elevation data (DEM) to pro-
duce a digital terrain model (oru) to further improve the
interpretation of the surface geology. The onu data were
compared with the gravity and magnetic interpretations
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using two-dimensional GIS overlay techniques and three-di-
mensional surface comparison methods to identify the rela-
tionship between surface topography and sub-surface
basement structures. The co-registered image and nslvl data
were used to test the usefulness of automatic strike and dip,
using software developed by researchers at the University
College, University of London. Finally, the RAINDRoP soft-
ware developed by Morris (1991) was run on the Dnv data to
identify major drainages.

To test the proposed methodology, three commercially
available software packages are linked: Image Processing Sys-
tem from Erdas, CPSa mapping package from Radian Inc., and
the Stratigraphic Geocellular Modelling (sctvt) Package from
Stratamodel Inc. The Erdas System used in this studv is a
personal-computer version mounted on a Compaq 386 under
Dos. The cPs3 and SGM software run on a SiliCon-Graphics
IRIS Unix workstation. Network software was used to translate
files between DoS and Unix formats.

Results

Structural Interpretation
The methods that are traditionally used for lineament analy-
sis in remote sensing are summarizedby Drury {1987). The
standard technique includes an initial stage of image
processing using high-pass and directional filters that detect
edges with preferred orientations, followed by visual inter-
pretation of lineaments with a classification scheme based on
the degree of confidence. In some studies, the strike of inter-
preted lineaments are plotted on a rose diagram to gain an
understanding of trends in the regional structural fabric. This
approach has been successfully automated (Saether ef a1.,
1991).

The ability of this technique to distinguish between sur-
face lineaments that represent geology and those of man-
made origin varies considerably (Saether et aL.,1991; Baum-
gardner, 1991). Factors that control the accuracy include the
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Figure 1. Location map showing regional structural features
and study area (after Stevenson and Baars, 1986).
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figure 2. Stratigraphy and lithologies exposed
in the study area (after Hintze, 1988).

Figure 3. Geological map of the study area (after uscs
geological maps 1:1,000,000). PP: Pennsylvanian; P:
Permian; Tr: Triassic; JTr: Triassic-Jurassic; J1: Middle
Jurassic; J2= Upper Jurassic; K1: Lower Cretaceous;
Qg: Quaternary, Q: Quaternary.
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Figure 4. Data processing procedure used in this study.
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Figure 5. Two-dimensional display in Erdas of orv data in
gray-scale and basement faults overlay (white lines).

Figure 6. Display in scM of surface DEM and grid of base-
ment. Note the location of Montezuma Creek in relation-
ship to the lowest point in the Blanding Basin. The
attribute displayed is elevation in metres. Surface topo-
graphic features are projected onto the basement grid.

scale and type of data, the method of interpretation, and the
geological setting of the study area. Unfortunately, repeated
misuse of these techniques has Iead to the criticism of the
whole of remote sensing as "geo-art" and has left many
structural remote sensing researchers scranlbling to justify
their methods (Drury, 1987).
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Figure 5 shows a 2D GIS overlay of the basement faults
on the surface DEM data. This demonstrates various degrees
of correlation of surface topographic features with inter-
preted basement faults, For example, it is evident that the
Comb Ridge Monocline corresponds to the position of a ma-
jor subsurface fault, In contrast, the San Juan River position,
which has been interpreted as being fault controlled, can be
seen to correspond to three different sub-surface fault seg-
ments, not just one. Note that Baars (1981) has suggested that
the position of the San Juan River to the west of the study
area is modified by Recent aeolian deposits. At the opposite
extreme, although the major NE-SW-trending basement fault
associated with the Coconino Lineament has a decided sur-
face expression, the position of the sub-surface structure
coincident with the Four Corners Lineament is less distinc-
tive and would not be evident in a zD image lineament inter-
pretation alone.

Montezuma Creek is the second largest drainage in the
study area and has a linear surface expression traditionally
attributed to fault control. When comparing the position of
Montezuma Creek to subsurface features, there is no associ-
ated sub-surface fault. However, comparing the surface nsv
with the depth to the basement in a 3D display (Figure 6), it
is evident that the position of Montezuma Creek corresponds
to the topographically lowest point in the ancestral Blanding
Basin, which suggests an alternative causal relationship.
These relationships are easily verified through the incorpora-
tion of geophysical horizons between the surface and the
basement.

The results of this study suggest that the relationship be-
tween surface topography and sub-surface structures is more
complex than is generally assumed in traditional two-dimen-
sional image lineament analysis. Three-dimensional display
of oeu data with gravity and magnetic data yields a more
complete interpretation for subsurface exploration.

Automatic Stdke and Dip Determination
Automated determination of strike and dip measurements
from remotely sensed imagery can greatly improve structural
interpretation, and has been demonstrated in several areas.
Morris (1991) successfully applied these techniques in the
Snowdonia National Park, United Kingdom, with Airborne
TM data at a 5-m resolution and nnu data derived from digi-
tized contours scaled to 5 m. The computed strike and dip
measurements are within 5" of field measurements (Morris,
1991). Researchers at Imagerie Stereo Appliquee au Relief
(ISTAR, 1992) in France have demonstrated, using SPOT im-
age data and image-derived oru, that similar automated
techniques can be applied successfully at a 2O-metre resolu-
tion. Lang et al. (7987 and pers. comm.) have demonstrated
the use of automatic strike and dip determination in combin-
ing Landsat ru data ( 30-m by 30-m resolution) and uSGs
7.S-minute DEM (30-m by 30-m resolution) to map geologi-
cally in the Big Horn Basin, to a scale of t:25,000. It is im-
portant to emphasis that in all three of these studies areas
the surface geology is exposed on a relatively flat surface
where variation in elevation is a direct reflection of the
structural dip of the beds.

To test automatic strike and dip techniques on this study
area, software developed at University College, University of
London, by Kevin Morris was used. A trial was made with
USGS 1'Dev which has a spatial resolution of 70 by 90
metres. The image data were from a decorrelated principal
components image from Landsat rlt bands 1,4,5, and 7, in
which the first three PCs were displayed in RGB. The image
and Dnu data were rectified to the state-plane coordinate sys-
tem and the image data were resampled to 70 m by 90 m to
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match the DEM resolution. Validation was with USGS map
data and field survey of the study area.

Although there was an adequate match for the construc-
tion of an overlay of image and nnu for regional lithologic
interpretation, there undoubtedly was registration error intro-
duced due to the warping and rectification of the image data
independently of the oru. This, in combination with the
poor vertical and horizontal accuracy of the 1o osv data, Ied
to failure of these methods to consistently estimate the true
strike and dip of the units. There is a good surface exposure
of lithologic boundaries; however, they are exposed on cliff
faces rather than on a relatively flat surface. The fact that the
Iithologic contacts in the Utah study area are located on cliff
faces that range between vertical to 40' complicates the ap-
plication of automatic strike and dip calculation and will re-
quire a very accurate match between the image and the nev
data.

This study has proven that a data spatial resolution of 70
m by 90 m is not adequate for the use of automated strike
and dip determination in an area that has thls type of expo-
sure. An evaluation of these methods using the full resolu-
tion TM data and USGS 7.S-minute DEM data is currentlv in
progress.

Lithology Interpretation
The traditional method for rock type discrimination is de-
soibed by Drury (1987). Information provided by the spec-
tral characteristics of the terrain is important and is best
portrayed in multispectral color composite images. For this
study, a stretched false-color composite, using bands 1,4,5 in
RGB, respectively, was found to be preferable to principle
components methods.

in this study, the integration of co-registered image data
and nevt data displayed in three dimensions was found to
significantly increase the ease of interpretation of rock types.
A portion of the surface lithology model is shown in Figure
7. The area is the southern part of Comb Ridge displayed
with 3O-metre pixel resolution (DEM 70- by 90-m data resam-
pled to 30 m by 30 m). Due to the low sun angle at the time
of imaging, much of the NW portion of Comb Ridge is in
shadow. But the integration and so modeling can overcome
this problem. Lithological contacts are associated with subtle
slope breaks on the cliff faces. Thus, through interpretation
on the southern faces of the cliffs of spectral variance in the
image associated with lithology contacts, and identified with
a slope break in the oev data, the lithologic contacts can be
extrapolated to the northwestern shadowed areas. The SGv
software allows the interpreter to produce a variety of per-
spective views through interactive rotation of the model on
screen. These factors greatly improve the interpretation of
the surface geology.

Conclusions
The methods used in this study have demonstrated the use-
fulness of this approach as a petroleum exploration tool. The
advantages are

o The combined modeling of basement structures and topo-
graphic features gives the structural interpreter a better un-
derstanding of the relationship between surface topography
and sub-surface structure. The results of this study suggest
that the traditional two-dimensional lineament analysis ap-
proach is over simplified. More studies, using the methodol-
ogy described here on a variety of structural settings, are
needed to fully understand how topographic expression re-
lates to sub-surface structural geology. In the meantime, stud-
ies of satellite imagery should use a combination of the
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Figure 7. scM digital terrain model of a portion of the
Comb Ridge Monocline. lmage data are a false-color com-
posite of bands 1,4,5 in R,G,B, respectively. The 70- by
9O-metre DEM data have been resampled to 30 by 30
metres to match the image resolution.

traditional zD lineament analysis approach and the methods
described here to interpret structural detail.

o The integration of co-registered oru data and image data dis-
played in three dimensions is a more effective method for in-
terpreting surface lithology than the traditional 2D imaSe
interpretation approach. The results of this study demonstrate
that, through a 3D combination of the lru and image data,
the distribution of lithology is easily interpreted and better
understood.

o The use of automatic strike and dip algorithms in study areas
of this type is expected to be unsuccessful at the DEU resolu-
tion on the order of z0 by 90 metres, and higher resolution
DEM data are recommended.

Although the full potential of this methodology has yet to be
tested, it is envisioned that, using these methods, so models
can be constructed from remotely sensed data sources, such
as satellite imagery, and gravity and aeromagnetic surveys, to
gain an understanding of regional geological relationships.
This provides a low-cost method that could be utilized in the
early stages of petroleum exploration. The initial model can
be later expanded by including intermediate horizons con-
structed with either geophysical data or wellJog data to un-
ravel the full geologic history of a given sedimentary basin.
Results can then be used in conjunction with established
basin analysis techniques.
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