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Abstract 
The common transformation sequence adopted for obtaining 
digital object space coordinates in almost all modern analyt- 
ical systems, whether analog-image or digital-image type, is 
the so called image-model-object space arrangement. In this 
approach, an image data processor [I-processor) composed of 
correlators [sometimes involving a human operator) converts 
the raw image data into feature-based image vector data. 
Taking corresponding pairs at a time, a model processor (M- 
processor) converts the image vector data to the model space 
equivalent, while an object processor (0-processor) reduces 
the model vector data into object space vector data; all the 
processors operate in real time. Through a reversion of their 
operations, these processors can reduce a given object space 
vector into two image space vectors. Given that the errors 
and eficiency of other components are fixed, the accuracy 
and efjiciency of the data reduction system is directly influ- 
enced by the accuracy and efFciency of the M-processor in- 
cluded in its design. In this paper, three algorithmic designs 
are considered for the M-processor. These include image 
space intersection, model-space parallax vector bisection, 
and model-space y-parallax averaging. These three designs 
are included in three prototype implementations of a digital 
data reduction system. Empirical studies involving both real 
and simulated data show that the processor based on paral- 
lax vector bisection in the model space is the most suitable 
for implementation in a PC-based workstation when cycle 
time is critical. 

Introduction 
Improvement in microelectronics and the growth of software 
technology have provided the impetus for PC-based imple- 
mentations of analytical data reduction systems. Nowadays, 
due to advances in CCD-scanning technology and the reduced 
cost and increased capabilities of modern computing devkes, 
low-cost digital data reduction workstations are evolving. Be- 
cause of their potential for automation of the reduction 
process, they are attracting the attention of photogramme- 
trists. Operationally, such a system is an input-output device 
which converts raw digital image data into the required spa- 
tial information in or near real time (Figure I), sometimes in- 
volving the human operator. When supported by a graphics 
program and a database management program (preferably a 
GIS), the possible applications of such a system are numer- 
ous. These include (1) production of orthoimages (digital or- 
thophotos), (2) 3D map updating, (3) compilation of land-use 
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and topographical maps, (4) acquisition of DTM, etc. For d 
these uses, raw digital images, obtained from scanned analog 
images or acquired directly using digital sensors, may be em- 
ployed (Miller et al., 1992; Schenk and Toth, 1992). 

In general, three data processors are involved in the real 
time operation of such a system (Figure I), namely, image 
space processor (I-Processor), model space processor (M-pro- 
cessor), and object space processor (0-processor). 

The I-processor, which may include the human operator, 
is an image space pixel-vector and vector-pixel converter 
which performs a forward operation involving the measure- 
ment or extraction of coordinates of points, lines, and polygo- 
nal features from digital images using procedures, such as 
image correlation techniques (image matching) (Ackermann, 
1984) or edge extraction (Hellwich and Faig, 1992). Further- 
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Figure 1. Configuration of a digital photogrammetric 
workstation. 
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more, this processor performs a reverse operation (vector to 
pixel conversion) in which image space vector data is trans- 
formed back to the original digital image. The reverse operation 
is useful for applications requiring the superposition of vector 
data on the raster image, such as (1) image space map updating 
operation for which an existing digital map has to be superim- 
posed on the image, (2) checking the spatial fidelity of digi- 
tized features through highlighting of the pixels corresponding 
to the features in the original digital image as they are being 
digitized, and (3) real time movement of the measuring marks 
to certain image locations specified in the object space. In 
these cases, the I-processor reduces the image space vector data 
to the appropriate pixel location in the digital image. 

The M-processor (mainly a software engine) performs a 
forward data conversion operation which involves the com- 
putation of the model coordinates from two corresponding 
image space vectors. It employs the principles of analytical 
geometry to construct mathematically the projective relation- 
ship between the image (or measurement) space and the ste- 
reomodel space to achieve the data transformation. 
Moreover, it performs a reverse function in which a given 
model space vector is projected into its constituent image 
vector through an inversion of the forward vector operator 
(Faig, 1984; Ghosh, 1988). This enables the recovery of the 
corresponding image space vectors that were transformed to 
the model space as required in applications such as those 
stated earlier. 

The 0-processor is a software engine whose forward op- 
eration turns a model vector into the object space. It uses the 
concepts of projectivity between the model space and the ob- 
ject space to achieve the transformation. Through an inver- 
sion process, this processor also converts a given object 
space vector into its model space equivalent. 

Technically, the I-processor is very important; and, in 
practical terms, it is often the most expensive and difficult to 
implement of all the components of a digital system. The ex- 
traction of spatial entities from a digital image inherently is a 
knowledge-based operation which requires the skill and in- 
telligence of a human operator. But while research is still 
being conducted towards the development of the so called 
image expert systems which expectedly will emulate human 
intelligence and automate the process, many of the current 
implementations rely, to varying degrees, on the human op- 
erator for successful operation. 

Nonetheless, the concern of this paper is neither the 
composition of the I-processor nor of the 0-processor, but, 
rather, the design and operational issues of the M-proces- 
sor. Consequently, to narrow the discussion to the issues of 
interest, we require the following assumptions. First, we 
assume that we have in place an I-processor (of suitable 
design) capable of supplying the image vector data at a cer- 
tain optimum level of system efficiency, operational speed, 
and processing accuracy. Second, because the 0-processor 
invariably uses a standard 3D data conversion algorithm in 
its operations, it is indeed a fixed system component per- 
forming at the maximum possible efficiency. Third, we as- 
sume that the available relative and absolute orientation 
parameters guarantee optimum accuracy of the real time 
data processing, even though this accuracy is limited in 
practice by the accuracy of these orientation parameters, 
which are often obtained by measurement and computa- 
tions off-line. Therefore, the I-processor, the 0-processor, 
the operating parameters, and the possible effects of these 
entities on system performance are assumed fixed and are 
not discussed any further. 

Given these assumptions, we focus on the M-processor 
and note for a start that, because of the amount of computa- 

tion it has to perform in real time and the many possible al- 
gorithms that may be selected for its implementation, it be- 
comes the critical system component whose algorithmic 
design determines whether or not the optimum system per- 
formance will be achieved. 

Theoretically, a number of formulations exist for the oper- 
ation of the M-processor depending on the level of rigor re- 
quired. These include (1) image space intersection, (2) parallax 
vector bisection, and (3) y-parallax averaging, which are based 
on the concepts of spatial intersection of corresponding rays. 
These algorithms have been discussed by several authors 
(Schut, 1973; Miles, 1968; Ghosh, 1988), some of whom have 
concluded that, while the image space intersection with rigor- 
ous least-squares solution may be considered to give the theo- 
retically best estimates of the coordinates of the point in the 
model space, in practical terms the differences between the 
three methods are not significant and they all lie within the 
precision of the observations from which the model is formed 
(Schut, 1973; Miles, 1968). Several questions arise, however, 
when the M-processor is viewed within the context of modern 
digital systems. Being a critical component of the digital work- 
station, and performing real time round-loop computations re- 
quired to transform data from the image space to the model 
space and vice versa, it is only natural to inquire about the de- 
sign that provides the optimum system in terms of round-loop 
accuracy, speed of operation, and overall system throughput. 
These issues are critical to the performance of the system, par- 
ticularly in a PC-based implementation. 

Because it is a link between the image space and the ob- 
ject space, it is not too difficult to appreciate its influence on 
the performance of the entire system. In terms of real time op- 
eration, the M-processor has a significant influence on the 
speed of operation of the system, and, quite clearly, this influ- 
ence can be seen to depend on the complexity or rigor of the 
chosen algorithm for its implementation. Furthermore, consid- 
ering the assumptions made earlier, the M-processor deter- 
mines how much of the attainable accuracy is actually realized 
by the system; again, this depends on the numerical sophistica- 
tion of the selected algorithm for both its forward and reverse 
conversion operations. This paper attempts to answer these 
questions from a practical point of view. Although the theoreti- 
cal bases of these algorithms are well known, this paper em- 
ploys a vector based methodology to present the algorithms. 
Based on our experience, the vector space approach has more 
than a purely intellectual value. Besides providing insight into 
the operational mechanisms of the M-processor and, indeed, of 
the entire digital data reduction system, it also has a stimulat- 
ing effect in that it leads to a set of generalized computational 
schemes which make the implementation of a digital photo- 
grammetric system simple and transparent. Instead of present- 
ing rigorous derivations, we have adopted the option of 
itemizing the steps involved in the algorithms, which we be- 
lieve is more useful from a practical point of view. We have 
included these algorithms in three implementations under VMS 
on the Micro-vAx-II computer and compared them in order to 
determine the achievable accuracy and to get an idea of the 
computational speed for each design. Thus, in the rest of this 
paper we present the summary of these algorithms and de- 
scribe the experimental investigation conducted together with 
the conclusions reached. 

Theory of the Vector-Based Algorithms for the M- 
Processor 
Referring to Figure 2, we see that three vector spaces are in- 
volved in the operation of the M-processor, i.e., the left im- 
age space, the right image space and the model space. A pair 
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Figure 2. Model vector space. (a) Two corresponding im- 
age rays 1, and T2, originating at 0, and 02, respectively, 
intersect at model point a. (b) The model space is rep- 
resented by the model vectors P,,,. 

C,, C,, C, are the apparent direction vectors of the im- 
age space (which are similar to the column vectors of 
the familiar rotation matrix in analytical geometry); 
PA is the position vector of a point in the 3D space; 
Po is the vector which locates the origin of the mova- 
ble space in the fixed space; and 
the dots (-) signify inner products of vectors. 

In order to obtain the desired vector P,, Equations 1 are 
applied to both the left and right image spaces, and a pair of 
collinearity equations each may be derived as follows: 

Left image: 
Let PA = P,, Po = 0, C, = i, C, = j, C, = k (left image 
of a dependent pair relative orientation). Putting these in 
Equation 1, we obtain the first two equations in Equation 
2. 

Right image: 
Let PA = P,, Po = b, and evaluate C,, C,, C, from the 
relative orientation elements (right image of a dependent 
pair relative orientation). Substituting these in Equation 
1, we obtain the last two equations in Equation 2. 

of conjugate image vector data (Figure 2a), are numerically 
converted to model space vector data, and conversely, given Thus, two sets of collinearity equations are obtained 
model space vector data (Figure 2b), are resolved into two which, when treated simultaneously in a least-squares 
conjugate image space vector data. Using the Apparent and process, produce the required vector operator. 
Real Directions of Vector Spaces (ARDOvS) methodology 
(Olaleye, 1992), the vector-based algorithms which achieve Computational steps: 
these data conversions are easily derived. Briefly, ~ O V S  (1) The four collinearity equations are 
states that, to every photogrammetric vector space, there is a 
set of natural directions (as seen by elements within the kJc-P,,, + i-P, = o 
space) and a set of apparent directions (as seen by elements 
outside the space). When two such spaces are to exchange kyk.Pm + j-P, = 0 
elements, one space is always the fixed space, which in the 
ARDOVS concept is called the R-space with natural directions kxC,.Pm + C,-P, - kxC,-b - C,.b = 0 
i, j, k, and apparent directions R,, R,, R,. The other space is 
then the movable soace with natural directions i'. i'. k'. and I<:C,-P, + C,.P, - kyC,.b - C,-b = 0 ... . 
apparent direction; c,, C,, C,. 

In order to utilize the ARDOVS concept, a decision has to 
be made as to which space is the fixed and which is the 
movable. Through an intuitive process, we know that the 
model space is the fixed space, i.e., the R-space, while the 
two images are movable or C-spaces. Consequently, we have 
a choice of formulating the M-processor algorithm in the im- 
age space, in which case, we have to project an element of 
the R-space (model space) into each of the C-spaces (left and 
right image spaces) and require their intersection in the im- 
age space. Alternatively, we could formulate the algorithm in 
the model space, in which case corresponding image space 
elements must be transformed to the model space. The first 
of our algorithms uses the image space formulation and, 
thus, is called image space intersection while the other two 
algorithms use the model space formulation and are called 
model space parallax vector bisection and model spacey- 
parallax averaging, respectively. In what follows, the compu- 
tational steps of these algorithms are given. Readers inter- 
ested in the theoretical developments are referred to the 
study by Olaleye (1992). 

Algorithm Based on Image Space Intersection 
In the moVs concept, the functional model which relates 
any 3D Cartesian space (R-space), such as model or object 
vector space, to an image space (C-space) is given as 

To evaluate Equation 2, we construct the apparent direc- 
tion vectors (C,, C,, C,) from the relative orientation parame- 
ters and scale each image vector data by the inverse of the 
camera constant: i.e., 

(2) We compute the design matrices with respect to the vec- 
tor P, by applying vector differential operators to Equa- 
tions 2 and noting that 

and 

we have 

c i-i 0 kJc-k 
A , = - [  k P, o j-j k,k-k ] 

where k, = xJc and ky = yJc; 
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Figure 3. System design based on image space intersec- 
tions. 

A = P , - b  

so that for the two rays we have 

point. Hence, for system implementation with this approach, 
Equation 3 is the iterative M-processor algorithm required. 
This has been used in the prototype design shown in Figure 
3. 

Algorithm Based on Bisection of Parallax Vector 
This performs a C-space to R-space rotation of two corre- 
sponding image space vectors into the model space; it then 
computes the shortest distance between the rotated corre- 
sponding rays and derives the model position vector by add- 
ing half of the distance to the first ray. The method uses 
direction vectors of the-two rays to compute the minimum 
parallax vector using a quasi least-squares approach after 
Cooper (1987). Basically, the method projects the left ray 
onto the natural or real axes of the model space (a conse- 
quence of the dependent pair relative orientation with model 
axes coinciding with the left image system), and projects the 
right ray onto the apparent direction vectors of the model 
space. The parallax vector bisection algorithm given below is 
for the dependent pair relative orientation. 

Computational steps: 
(1) Construct the apparent direction vectors of the R-space, 

i.e., R,, R,, R, using the parameters of relative orientation 
and compute the following (note that Pa and P: are corre- 
sponding image space vectors and R,, R,, R, are the same 
as the row of vectors of a 3D rotation matrix in analytical 
geometry): 

- - - 
(TI. T,) T,.b - ?;,.b 

S, = 
D 

(2) The model coordinate vector is then computed as 

This algorithm is used in the system design shown in 
Figure 4. 

and from an application of least squares, we obtain the Algorithm Based on y-hrallaxAveraging 
iterative operator This method is similar to that for the parallax vector bisec- 

pg = pg-1) + (ATA) - 1 ~ ~ f .  (3) tion except that the parallax vector is assumed to have only a 
y-component, i.e., the lack of intersection occurs only along 

The approximate model space vector required to start the y-direction in the model space. The last few lines of the 
the iteration may be taken as the left image vector for the computational steps in the previous section are changed to 
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vector bisection. 

Hence, the M-processor may be written as 

This has been used in the design shown in Figure 5. 

Algorithm for the Inverse M-Processor 
Conceptionally, the task here is to resolve the model space 
vector element into its left and right image space vector ele- 
ments. This involves a projection of the model space vector 
Pm (Figure 2b) onto the appropriate image space axes, which 
in the ARDOVS theory is an R-space to a C-space operation. 
One way to derive this algorithm is to simplify the C-space 
collinearity Equations 1 or 2 to obtain the constant multi- 
pliers k,, ky for both the left and the right image cases. 

For the left image, we have 

right image 
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and, for the right image, we have 
least time. The data in Table 3 show the variation of the dis- 
tortions introduced into the left image and the right image by 
each of the three processors. As expected, the first and sec- 
ond processors introduce equal distortions on both the left 
and the right images, whereas the third is seen to introduce 
more to the right image than to the left image (see also Fig- 
ure 8). However, this differential distortion will only be sig- 
nificant when the measurement noise is less than about 2 to 

TABU 1. RMSE OF DISTORTIONS IN IMAGE SPACE ( p ~ )  
-- - - - - - - 

Data set sysl sys2 sys3 

This inverse M-processor algorithm has been used in the 
system designs of Figures 3, 4, and 5. 

Experimental Investigation 
On the one hand, this experiment was designed to determine 
the amount of distortion introduced into the data conversion 
process by each of the M-processors in the course of a round- 
loop data processing (i.e., image to model, model to object, 
object to model, and model to image data conversions). On 
the other hand, it was to ascertain their relative speed of op- 
eration in the process. The underlying idea of the test was 
that, because the three system configurations given above 
differ only in the M-processor, any differences in their per- 
formance are attributable to the different algorithms used for 
the M-processor. 

Three data sets were employed for the test. The first da- 
taset was a simulated block of four stereopairs generated 
with micrometre accuracy. The second dataset was a subset 
of four stereopairs from the Edmundston Block which covers 
an area in north western New Brunswick. The selection was 
based on a previous study that showed points in these 
models to be of higher accuracy than the average for the 
whole block (Moniwa, 1977). The third dataset was the en- 
tire Edmundston Block of 12 stereopairs. The relative and 
absolute orientation elements for each dataset were com- 
puted by an off-line module prior to the treatment of the 
data, and these values were held fixed in the three systems. 
Each set was passed through each system and processed in 
batch mode, one model at a time, from the image space 
through the model space to the object space (the object space 
is represented by the database in Figures 3, 4, and 5), and 
through the reverse operation the data were returned to the 
image space. The returned data were then compared with the 
original and the differences recorded. Furthermore, the times 
for processing each data set were recorded, and from these, 
the average time (cycle time) taken to convert one point by 
each processor was determined. 

Results 
Table 1 shows the RMSE of the differences between the input 
and the recomputed image points (in km) averaged over all 
the points in each block for both the left and the right im- 
ages. Table 2 shows the average time (in milliseconds) for 
converting one point from the image space to the model 
space and back to the image space for the three processors. 
Figure 6 is a graphical illustration of the data in Table 1. It 
shows that the distortions from the three processors are prac- 
tically the same, and that the distortions increase with the 
level of inaccuracies of measurement. Figure 7 shows graphi- 
cally the average time taken for both forward and the reverse 
conversion for one point. It is seen that the time for the im- 
age space intersection is about three times more than for the 
other two methods, and that the y-parallax method used the 

Note: sysl refers to the algorithm based on image space intersection 
sys2 refers to the algorithm based on bisection of the parallax 
vector 
sys3 refers to the algorithm based on y-parallax averaging. 

TABU 2. FORWARD AND REVERSE CONVERSION TIME FOR ONE POINT (MS) 

svsl sys2 sys3 

Data set 

TABU 3. RMSE OF LEFT AND RIGHT IMAGE SPACE DISTORTIONS (PM) 

Data set system Left Right 

- 
a s. - Sysl 

10 z S Y Q  

3 w Sys3 

0 
1 2 3 

Data set 

Figure 6. RMSE of image distortions for three data Sets of 
different precision. 
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Figure 8. Variation of distortion of left and right photos for 
t he  three systems. 

3 k m ,  a n d  t h u s  c a n  b e  neglected for all  practical  purposes ,  
w h i c h  renders  th is  less rigorous process still fully accepta- 
ble. 

Closing Remarks 
It follows f rom the  results of th is  investigation that  t h e  three  
processors considered provide t h e  same  accuracy wi th in  
practical  l imitations.  Th i s  confirms results of o ther  investiga- 
t ions i n  th is  area. Furthermore,  t he  me thod  of image space  
intersection provides t h e  most  rigorous solut ion b u t  con-  
sumes  t h e  largest t ime; therefore, th is  me thod  is  not  recom- 
m e n d e d  for systems i n  w h i c h  t h e  requirement  for speed is 
critical. O n  aggregate, i t  i s  concluded that  a n  M-processor 
based o n  t h e  parallax vector bisection algorithm will  lead to  
the  most  efficient sys tem implementat ion i n  a microcompu-  
ter-based environment .  
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