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Data Classification, Visualization, and 
Enhancement Using n-Dimensional 

Probability Density Functions (nPDF): 
AVIRIS, TIMS, TM, and Geophysical 

Applications* 

Abstract 
The n-Dimensional Probability Density Functions (nPDF) ap- 
proach is a user-interactive image analysis technique which 
overcomes many of the inherent limitations of traditional 
classifiers. In this paper we illustrate the applications of 
nPDF analysis in three broad areas: data visualization, en- 
hancement, and classification. For data visualization, nPDF 
provides a method for transforming multiple bands of data 
in a predictable and scene-independent way. These transfor- 
mations may be designed so as to enhance a particular cover 
type, or to give the best visual representation of the multi- 
band image data. These approaches are illustrated with the 
enhancement of hydrothermally altered areas in Thematic 
Mapper (m) data, and the display of a false-color composite 
of six bands of Thermal Infrared Multispectral Scanner 
(ms)  imagery. Spectral frequency plots of the nPDF compo- 
nents give a multispectral view of data distribution that can 
be used to investigate the number and distribution of spec- 
tral classes in a high dimensional data set. In addition, these 
plots are used in a non-parametric classification of the im- 
age for discrimination of discrete classes, as well as for 
classes that are mixtures at the sub-pixel scale. In a mixed 
deciduous and coniferous forest, an nPDF Deciduous Forest 
Index shows a high correlation with percent deciduous vege- 
tation determined from field surveys. A classification of ~ M S  
imagery of Death Valley results in excellent discrimination 
of 13 discrete rock types. Classification of 1~ data, as well 
as classification of combined geophysical data, is used to il- 
lustrate the power and variety of complex applications. The 
procedure is the opposite of a "black box" approach: nPDF 
transformations and plots show graphical representations of 
the spectral and informational class distributions, and the 
user decides on the exact location of the spectral boundaries 
of each class in the classification. In comparisons with stan- 
dard statistical classifiers, nPDF is extremely accurate and 
fast, making it possible to analyze large data sets, such as 
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fill scenes of Advanced Visible/Infrared Imaging Spectrome- 
ter (AVIRIS) data, on a personal computer. 

Introduction 
The n-Dimensional Probability Density Functions (~PDF) is a 
new, highly user-interactive approach to image processing. 
The technique has applications throughout the procedure of 
data display, enhancement, analysis, and classification. DPDF 
is both very fast and highly effective, making it ideal for 
processing high dimensional data such as Thematic Mapper 
(TM) or Airborne VisibleIInfrared Imaging Spectrometer 
(AVIRIS) imagery on a personal computer. In this paper we il- 
lustrate the broad application and versatility of the approach 
using multiple data sets: TM data of known hydrothemally 
altered areas in Lincoln County, Nevada; six-band Thermal 
Infrared Multispectral Scanner (TIMS) data of Death Valley; 
correlation maps of gravity and magnetic data of Lincoln 
County, Nevada; AVIRIS data of Maricopa, Arizona; and TM 
data of Northwestern Ontario, Canada (see Figures 1 and 2 
for location maps of the test sites.) 

Commonly used classification techniques, such as maxi- 
mum likelihood and Mahalanobis, have a number of inherent 
limitations. These limitations include: (1) The memory re- 
quirements of the computer routines tend to be very large for 
high dimensional data, and the run-times are very long; 
therefore, the algorithms tend to be implemented in com- 
puter routines that allow for only a limited number of input 
bands. (2) The algorithms are relative classifiers, and thus 
training fields from all spectral classes need to be identified 
prior to classification. Classes are described statistically; 
therefore, it is very difficult to check if the training fields se- 
lected represent the entire data. (3) Class overlap, class dis- 
tribution, and interclass distances can be shown for only two 
bands at a time. Furthermore, interclass distances can be 
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Figure 1. Index map showing the location of the test sites: (A) Death Valley, California; (B) Lincoln County, Nevada; (C) 
Delamar, Nevada; and (D) Maricopa, Arizona. 

shown only statistically. (4) The algorithms assume the data 
are normally distributed, although this is rarely the case. 

The ~ P D F  procedure (Cetin, 1990; Cetin and Levan- 
dowski, 1991), which overcomes many of the problems de- 
scribed above, can be conceptualized as a projection of 
multi-dimensional data onto selected two-dimensional 
planes (see Appendix 1 for a mathematical explanation of 
the calculation of the nPDF components.) Most image 
processing packages include a routine to show the bispectral 
frequency distributions: the frequency of occurrence of each 
combination of DN values in a scene. Now assume we have a 
three-band multispectral digital image. Because the fre- 
quency data are three-dimensional and form a data cube (see 
Figure 3), a conventional image processing package would 
generate a total of three bispectral frequency plots. These 
views are perpendicular to the faces of the cube, and for our 
three-dimensional data there are three unique views (the 
other three sides of the six cube faces are simply mirror im- 
ages of the first three). Thus, even in this simplest of cases, 
with only three dimensions, the image analyst is expected to 
form a mental synthesis of the overall data distribution from 
three separate graphs. 

Clearly, to form an adequate view of the data distribu- 
tion, we need a three-dimensional model which we can ro- 
tate on the video monitor. Although this can be 
implemented, we are obviously back to square one if we in- 
crease our spectral range to four-dimensional data. Thus, a 
better strategy is to view the data from selected corners of 
the data space, a procedure that can be generalized to any 
number of dimensions. In the case of our hypothetical three- 
dimensional data, we might, for example, find it useful to 

look at the data from the corner which corresponds to the or- 
igin (i.e., 0 DN) in band 1, and the maximum value (i.e., DN 
255) for the other two bands (Corner 4 on Figure 3.) Al- 
though this view of the data frequency distribution is only 
two-dimensional, unlike the bispectral plot projection, it 
gives a view of all the bands simultaneously. Furthermore, 
because remote sensing data are typically highly correlated 
and rarely use the entire potential range of data combina- 
tions, we do not necessarily need multiple projections to 
gain insight into the data distribution. 

An efficient and conceptually elegant method of calcu- 
lating these perspectives is to calculate how far, in DN units, 
each data frequency point lies from one of the corners of the 
cube. In Figure 3, for example, we can estimate the position 
of a point in the data frequency space by calculating the dis- 
tance from that point to corners 1, 2, 3, or 4. These hyper- 
dimensional distances, which we call nPDF components, are 
used as the axes of the ~ P D F  frequency plots. These plots 
provide an excellent perspective of the data distribution, 
even in the case of very high dimensional data, such as 
AVWS (see section on classification.) 

Frequency plots of two nPDF components (hyper-dimen- 
sional distances) provide an excellent perspective of the 
multi-dimensional data distribution. Ignoring complimentary 
corners, there are six possible combinations of two corners 
from which to view the data distribution (1-2, 1-3, 1-4, 2-3, 
2-4, and 3-4.) Depending on the spectral distribution of the 
classes of interest, the user can select corners which provide 
the maximum separation of the classes. 

The cube model has the advantage of being a concep- 
tually simple way of describing corners in multi-dimensional 



of "a" values depends on the number of input bands; thus, 
the corner corresponding to the origin (corner 1) in a four- 
band image would be described as (0000). 7 The nPDF approach to data processing involves more 
than simply investigating data distributions. First, by trans- 
forming the original spectral data into new ~ P D P  hyper-spec- 
tral distance bands, the procedure can be used for data 
visualization and enhancement. In addition, n + ~  component 
plots provide a powerful tool for multispectral image classifi- 
cation. nPDF is, therefore, an integrated, user-irllteractive ap- 
proach to image analysis. 

Data Visualization 
The first stage of data analysis often involves d ta visualiza- 
tion. In remote sensing, this is usually carried ut by viewing 
the data as an image, typically a false-color co posite. How- 
ever, a conventional false-color composite can / nly display 
three bands at a time, and therefore has limited, value for 

space. However, it does tend to limit the choice of corners 
for four- and higher-dimensional data. Where this is a prob- original image variance is 
lem, we use the "a" values (see Equation 1 in Appendix) to bands. Paradoxically, the 
describe the corner location. Thus, in Figure 3, corner #2 is as the number of bands 
also labeled (OOl), which can be interpreted as a corner that out such a procedure 
is the minimum for the first two bands, and the maximum in 
the third band. Using this convention, the length of the list sulting image 



Another disadvantage of pet\ is that it is scene dependent, 
and is heavily affected by noise present in the data. 

An alternative approach is based on the nPDF image 
processing technique, and overcomes the problems of Princi- 
pal Component Analysis outlined above.'In nPDF data trans- 
formation, output bands are calculated by determining the 
hyper-spectral distance from each pixel to selected corners in 
the data space using Equation 1 (see Appendix.) Thus, each 
new output pixel has a DN value determined by how far that 
pixel lies from the particular corner in the data space that 
the analyst chooses. 

These nPDF transformation images may also be combined 
in a false-color composite to provide a good perspective of 
the overall variation in a multi-band image, for example, an 
AVIRIS or TM scene. The approach works particularly well for 
TIMS data, where standard false-color composites of radiance 
data are typically lacking in color variations. Unlike a decor- 
relation stretch (Plate la)  of TIMS radiance data (Gillespie et 
al., 1986), the nPDF procedure does not tend to enhance 
noise in the data, and can display information from all six 
TIMS bands in one image (Plate lb.)  

Although there are many possible corners to choose 
from, we find that two or three corners generally are suffi- 
cient to display most of the relationships in TM and TIMS 
data. The procedure is very fast, making it possible to experi- 
ment, and rapidly find three bands that make an effective 
false-color composite. Obviously, this experimentation can 
be random, but with even a minimal knowledge of the shape 
of the spectral curves of the classes in the scene, one can 
choose corners to highlight particular relationships in the 
data. For example, an output band calculated from the corner 
corresponding to the origin in all bands is equivalent to an 
albedo image. An output band calculated from the corner 
representing zero in all bands (a = O ) ,  and the maximum (a 
= 1) in a selected band, will enhance cover types that have 
absorption features in the selected band. Furthermore, each 
output pixel is calculated independently and thus the results 
are scene independent, unlike a principal component trans- 
formation. 

pared to the other classes, B (43) and C (421, in the output 
bandy, (Table 1.) 

We want to have high values for the class B in the out- 
put bandy,; therefore, a, should be set to 0 for the input 
bands 1 and 3, and a, should be set to 1 for the input bands 
2, and 4 since the class B has higher values in the input 
bands 1 and 3, and lower in the input bands 2 and 4 com- 
pared to the class C. Similarly, for the output bandy,, where 
we want to have higher values for the class C, a, should be 
set to 0 for the input bands 2 and 4, and a, should be set to 1 
for the input bands 1 and 3. Table 1 illustrates how the 
process results in enhancement of classes A, B, and C in out- 
put bands y,, y,, and y,, respectively. When an RGB color 
combination for the output bands (y, = red, y, = green, and 
y, = blue) is used, the classes A, B, and C will be seen as 
red, green, and blue, respectively. The mixed pixels will be 
seen as the combination of the colors (for example, mixture 
of the classes A and B will be enhanced as yellow, mixture 
of all classes will be seen as white, etc.) Landsat TM data of 
Delamar area in Lincoln County, Nevada were used to illus- 
trate the application of the enhancement technique (see sec- 
tion on classification of diverse data.) 

Classification 
In addition to data visualization and enhancement, the nPDF 
approach may also be applied to both supervised and unsu- 
pervised classification. A major advantage of nPDF classifica- 
tion is that it is based on an approach to classification quite 
unlike that of traditional classifiers, and therefore avoids 
many of their problems. For instance, most traditional ap- 
proaches are relative classifiers that require all spectral 
classes to be identified prior to classification, without pro- 
viding any reliable method of checking that this has been 
achieved. By contrast, nPDF is an absolute classifier, it is ex- 
tremely fast, and it can use an unlimited amount of input 
bands. The procedure utilizes the power of its data visualiza- 
tion capabilities so that the analyst is given a clear depiction 

Data Enhancement 
The nPDF approach can be used to enhance features of inter- 
est in transformed bands (Cetin and Levandowski, 1991; 
1992.) In order to achieve this, the analyst needs to select the 
values of the variable "a" in Equation 1 (see Appendix) 
based on the spectra of the classes of interest. If the original 
DN values for the class of interest are higher than the other 
classes in band j, the variable aj should be set to 0 (in this 
case, the original DN value of the class is used in Equation 
1.) Alternatively, if the class of interest has comparatively 
low DN values in band j, a, should be set to 1 (this time the 
original DN value of the class is subtracted from the maxi- 
mum DN value, 255 for this study, to obtain a higher output 
value.) When the summation is performed, the transformed 
band value will tend to be highest for the class of interest. 
This enhancement approach is, thus, a maximization tech- 
nique. The procedure is then repeated for each class. 

Three classes, A, B, and C, with hypothetical spectral 
values (Figure 4) are used to show how this technique works. 
Let us assume that we want to have high values for the 
classes A, B, and C in output bands y,, y,, and y3, respec- 
tively. For the output bandy,, a, should be set to 0 for all the 
four input bands because the class A has the highest value in 
all the input bands. When the summation is performed and 
divided by the square root of number of bands (assuming S 
= 2 9 ,  the class A will have the highest value (60) com- 

Bands 

Figure 4. Hypothetical reflectance curves. 

TABLE 1. HYPOTHETICAL DN VALUES FOR THREE COVER TYPES AND THREE BAND 
OUTPUT DATA. 

Input Bands Output Bands 

Class 1 2 3 4 YI Yz Y3 
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of the relationship between the data distribution and the 
class boundaries. 

In the following sections, the ~ P D F  classification tech- 
nique is explained using TIMS data of Death Valley, Califor- 
nia. This is followed by a TM example, where the relative 
percentages of two classes within each pixel is recovered. 
nPDF classification is also used to investigate the appropriate 
window size in gravity and magnetics correlation analysis. 
Because geological classifications are notoriously subjective, 
we evaluate the comparative accuracy and speed of the pro- 
cedure with a classification of agricultural fields, using 
AVIRIS data of southern Arizona. 
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Classification of Discrete Classes 
Death Valley TIMS data, imaged on 22 July 1983 at 18:43 
GMT, were converted to radiance physical units (Palluconi 
and Meeks, 1985), and then used to estimate surface emit- 
tance using the optimum band selections procedure (Warner 
and Levandowski, 1990.) For visual analysis of the imagery, 
the radiance data were also converted into ~ P D F  transforma- 
tion images (see section on data visualization) for display as 
a false-color composite (Plate lb.) This false-color composite 
was compared to a geological map (Plate lc) of the area 
(Hunt and Mabey, 1966), and training fields representing 15 
different spectral geological classes were chosen. 

The emittance data for the 15 training fields were dis- 
played in nPDF plots, using "a" values of (111111) and 
(110000) for the two axes (Plate Id.) This plot shows that 
some classes, such as the Quaternary Older Fan Gravel, have 
a distinct signature. By comparison, as might be expected, 
the Limestone and Dolomite is rather poorly separated from 
Younger Fan Gravel (Carbonate.) Finally, there are cover 
types that are not separable at all. Three such classes of the 
original 15 training fields in Death Valley were merged with 
other classes, leaving the 12 classes shown in Plate Id. When 
the entire emittance data set is also plotted in the same ~ P D F  
space (Plate le), and compared to the training data distribu- 
tion, it can be seen that the 12 classes cover most of the 
spectral distribution of the original scene. However, note that 
the classes in the training data do not adequately cover the 
spectral distribution along the bottom edge of the scene dis- 
tribution (Plate le.) 

For classification, the analyst overlays the ~ P D F  plots of 
the data and training field distribution on the computer 

,, a 
d,."d "./ 

..,'."-e 
44 

n iet 

monitor, and then digitizes the boundaries of the classes the 
analyst wishes to identify. In Plate If, a thirteenth class has 
been digitized to represent the unknown class. The digitized 
regions are then converted to a lookup table, which is used 
to classify the entire image. At this stage the unknown class 
was identified as a spectrally distinct unit within the Saline 
Carbonate/Sulfate zone, by comparing the final classified im- 
age to the geological map (Plate lg.) 

0 20 40 60 80 1C 

Percent Deciduous Cover 

Figure 5. Graph of the average nPDF Deciduous 
Forest Index versus the percent of the total basal 
area of the forest community contributed by de- 
ciduous species. 

Classification of Mixtures 
The TIMS Death Valley application demonstrates the proce- 
dure of standard classification, where it is desired that the 
scene be classified into discrete classes. In some cases, how- 
ever, the classes of interest are mixed at the sub-pixel scale. 
For example, in a geobotanical study of Quetico Provincial 
Park, Ontario, the percentage of deciduous trees in a mixed 
coniferous - deciduous forest was found to increase in green- 
stone areas, compared to the surrounding granites (Warner et 
a]., 1991; Warner et a]., 1993). Thus, it is the relative mixture 
of deciduous and coniferous trees, rather than the identifica- 
tion of discrete classes, that is of interest in this area. The TM 
data (Plate lh)  was imaged on 21 August 1986. 

Plate li shows the ~ P D F  spectral distribution of the TM 
scene, and the figure has been annotated to indicate the in- 
formational classes. Note that in this example the axes are 
numbered by the convention of a hyper-spectral cube (see 
Figure 3.) Using ground reference data, a forest trend is iden- 
tified in the ~ P D F  spectral plot, and the entire scene is trans- 
formed to a new ~ P D F  Deciduous Forest Index, with a value 
of 0 for the most coniferous pixels, and 125 for the most de- 
ciduous. This transformation is carried out in a manner anal- 
ogous to the nPDF transformations described for the TIMS 
data in the section on data visualizations. In this case, how- 
ever, the transformation is along a line identified in the ~ P D F  
spectral distribution plot, instead of simply representing a 
distance to a corner. Non-forested areas are separately classi- 
fied, thus demonstrating the advantage of ~ P D F  as an abso- 
lute classifier in which only the classes of interest need be 
identified. 

The validity of the transformation was checked using 11 
field surveys, which were located randomly throughout the 
study area. The surveys were carried out using the standard 
forest mensuration technique of polyareal plot sampling 
(Husch et al., 1982) with the aid of a 9.3 factor prism. In this 
way the proportion of each species as a percentage of the to- 
tal cross-sectional area of tree trunks in the measured forest 
stand was determined. In the relatively even-aged forests of 
Quetico, there are few understory trees. Thus, this propor- 
tional tree trunk-based measurement provides a surrogate es- 
timate of the relative dominance of each species in the forest 
canopy imaged from above by the satellite. Although these 
field data are rather limited, Figure 5 suggests that the aver- 
age nPDF Deciduous Forest Index determined from the TM 
data shows an excellent linear relationship with the percent 
deciduous cover identified in the field survey. 

Classification of Diverse Data 
Landsat TM data of Delamar area in Lincoln County, Nevada 
were used to illustrate enhancement and classification for 
mapping hydrothemally altered zones. The Delamar area is 
underlain by Cambrian and Tertiary rocks, with most miner- 
alization occuring in the Cambrian section. Hydrothermal al- 
teration in this area is very extensive at the surface and 
centers around the Delamar mine (Ekren et al., 1977.) The 
rocks in the area are altered largely to argillic mineral assem- 
blages. Iron staining is also common. 



A small block of training pixels for each of three cover 
types was selected from the Delamar TM scene (Plate l j )  (Ce- 
tin and Levandowski, 1992): mine tailings, hydrothermal al- 
teration, and vegetation (see Table 2.) 

As seen from Table 2, original DN values for the mine 
tailings class are higher in all bands than the other classes. 
Therefore, a, in Equation 1 was set to 0 for all input TM 
bands to enhance the mine tailings class in output band 1. 
The hydrothermal alteration class has low DN values in 
bands 2, 4, and 7, but high DN values in bands 1, 3, and 5. 
By contrast, the vegetation class has the opposite character: 
low in bands 1, 3, and 5, high in bands 2, 4, and 7. Thus, for 
output band 2, in which the hydrothermal alteration is de- 
sired to have higher values, al was set to 1 for the input 
bands 2, 4, and 7; and was set to 0 for the input bands 1, 3, 
and 5.  Similarly, for output band 3, for which it is desired 
that vegetation has the highest values, al should be set to 0 
for the input bands 2, 4, and 7; and al should be set to 1 for 
the input bands 1, 3, and 5. The calculation results (output 
band values) using the a, vaIues are given in Table 2. As 
seen from Table 2, the classes mine tailings, hydrothermal 
alteration, and vegetation are enhanced in output bands y,, 
y,, and y3, respectively. The resultant data with three bands 
were displayed using red color for band 1 ly,), green for 
band 2 &), and blue for band 3 Cy,.) This false-color com- 
posite successfully displayed altered areas in green. 

The maximization image above demonstrates that "a" 
values of (000OoO) and (010101) produced an effective en- 
hancement of the cover classes of mine tailings and hydroth- 
ermal alteration. These same "a" values are, therefore, the 
most appropriate for image classification. The ~ P D F  data dis- 
tribution shows that there are three clusters in the data 
(Plates l k  and 2a.) Analysis of the training data shows that 
these clusters are associated with (from left to right in Plate 
lk)  vegetation, clay alteration, and mine tailings (Plate 2b.) 

The nPDF classification was also used to support the 
analysis of geophysical correlations for Lincoln County, Ne- 
vada. The entire study area is 110 kilometers (east-west) by 
160 kilometers (north-south) in extent. Gravity (Plate 2c) and 
reduced-to-the-pole magnetic data were co-registered to the 
same Universal Transverse Mercator (UTM) grid. The mag- 
netic (Plate 2d) data were compiled at 2,740 meters, and 
therefore the gravity data were upward continued to this 
level. Both data sets were also upward continued to the 
5,000- and 7,000-metre levels. For each level, the first deriva- 
tive of the gravity was then calculated. Correlation analysis 
was then performed on the three levels of gravity and mag- 
netics data, using window sizes of 3, 5, and 9 kilometers. 
Graphs of the nPDF data distribution for each of these anal- 
yses showed that the window size of 9 kilometers gave the 
best result, with the most geologically significant clusters in 
nPDF space (see Plate 2e.) 

Comparative Accuracy and Speed 
Classification accuracy may best be evaluated in areas of 
comparatively uniform cover, such as the AVIRIS scene (Plate 
2f) of 4 October 1990, which covers southern Arizona. For 
comparison of nPDF to traditional classifiers, we were limited 
to no more than 15 bands, as that is the maximum allowed 
by the image processing software used (ERDAS, 1990.) By 
contrast, nPDF classification and analysis can use a virtually 
unlimited number of bands. For example, 180 bands of 
AWRIS data were used in an nPDF classification. The nPDF 
analysis of a small test site (Plate 2g) within this scene fol- 
lowed the procedure outlined for the classification of dis- 
crete classes (Plate 2h.) As discussed previously, training 
fields for the discrete classes were mapped into the nPDF 

TABLE 2. AVERAGE DN VALUES FOR THREE AREAS OF KNOWN COVER TYPE IN THE 
DELAMAR, NEVADA TM SCENE AND THREE BAND OUTPUT DATA USING THE 

ENHANCEMENT (MAXIMIZATION) TECHNIQUE. 

Class 

Input TM Bands 
(DN values) Output Bands 

Mine Tailings 120 70 85 100 160 89 108 149 115 
Hydrothermal Alteration 100 55 60 65 120 35 78 159 122 
Vegetation 95 60 50 80 70 40 68 148 138 
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Figure 6. Effect of number of bands on classifica- 
tion run time. 

spectral space (Plate 2k.) Plate 2i shows the nPDF plot of 
AWNS data and Plate 2j shows the nPDF plot of the test site. 
A look-up table using the training data distribution was cre- 
ated, and the test site was classified using the supervised 
nPDF classification (Plate 21.) The results of this, and more 
traditional classifications, are compared in Table 3, which is 
based on detailed ground information(P1ate 2h.) nPDF had 
the highest overall accuracy rate, 71 percent, compared to 53 
percent for minimum distance, 67 percent for maximum like- 
lihood, and 68 percent for Mahalanobis distance. 

The nPDF technique is also very fast. Figure 6 shows that 
the run-times of the traditional techniques are several times 
longer than ~ P D F ,  and that for the Mahalanobis distance and 
maximum-likelihood classifiers, run-times increase exponen- 
tially with the number of bands. Furthermore, the nPDF clas- 
sification is unaffected by the number of classes (Figure 7), 
whereas the run-time for minimum distance increases line- 
arly with the number of classes, and for the remaining classi- 
fiers the increase is approximately exponential. 
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Figure 7. Effect of number of classes on classifica- 
tion run time. 
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P. 

Palluconi, F. D., and G. R. Meeks, 1985. Thermal Infmred Multispec- 
tral Scanner (TIMS]: An Investigators' Guide to TIMS Data, JPL 

To demonstrate the power of the ~ P D F  approach, the en- Publication 85-37, Pasadena, California, 24 p. 
tire AVIRIS scene of 512 lines by 614 pixels with a total of Warner, T. A., and D. W. Levandowski, 1990. Optimum band selec- 
180 bands, representing over 56 megabytes of data, was tions for estimating emittance from TIMS data, Proceedings of 
classified using the Maricopa training information. This en- the second Thermal Infrared Multispectral Scanner fllMS) 
tire classification took 12 minutes and 48 seconds using a Workshop (Abbot, E. A., editor], 6 June 1990, JPL Publication 

Northgate 25 megahertz 486 computer. 90-55, pp. 31-35. 
Warner, T. A., D. J. Campagna, C. S. Evans, D. W. Levandowski, and 

H. Cetin, 1991. Analyzing remote sensing geobotanical trends in Summary Quetico Provincial Park, Ontario, Canada, using digital elevation 
The ~ P D F  approach provides a complete procedure from data data, Photogrammetric Engineering 8 Remote Sensing, 
visualization, to enhancement and classification. In a typical 57(9):117%-1183. 
analysis these steps all support each other. The classification Warner, T. A., D. W. Levandowski, R. Bell, and H. Cetin, 1993. To- 
relies on data visualization techniques, and may incorporate poveg: A rule based geobotanical program to classify aeromag- 
data enhancements. It is the opposite of a "black box" ap- netic, topographic and remotely sensed vegetation community 

data, Proceedings of the Ninth Thematic Conference, Geologic proach: the spectral and informational class disbibutions are 
I:34 5-356. presented in graphical form and the nature of transforma- 

tions, data perspectives, and spectral classes may be investi- 
gated by producing ~ P D F  plots and transformations of the Appendix 
original data. In an unsupervised classification, the nPDF plot The ~ P D F  approach may be explained using a cube model 
of the spectral distribution provides information as to the (Cetin and Levandowski, 1991.) A generalized distribution of 
best estimate of the number and starting locations of the highly correlated digital remotely sensed data in three-di- 
means for the clusters. For supervised classification the rela- mensional feature space is shown in Figure 3. In three-&- 
tionship between the spectral information in the entire scene rnensional feature space the feature vector is defined by 
and the informational classes is clearly presented. Mixtures X= [xlx2J3]. The location of a point within the range of the 
can be classified, for example, into the proportion of decidu- total possible measurement space can be described by the 
ous vegetation in a mixed deciduous-coniferous forest. nPDF distances to the two corners of the cube shorn  in Figure 3. 
analysis also supports complex analyses of geophysical data. They are 
The procedure is not only more accurate than conventional 
classifiers, but also much more rapid. Dl = (x: + xi + x$)* and D, = [x; + x$ + (R - X,]~]U~. 
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For the multi-dimensional case, the feature vector is defined 
by X= [xlsr,sr,, ...A], where n is the dimension of the data 
and R is the maximum possible range of the data (255 for 8- 
bit data.) When a hyper-dimensional cube is used, the vector 
magnitudes (the distances to the two corners) for n-dimen- 
sional data are 

where j is the band number. A generalized formula for the 
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distance to the corners of a hyper-dimensional cube can be 
written as (i is the corner or component number) D, : if I j = 1 4 , .  a = 0 

j = 2,3,5,6 ,... a = 1 

(1) The ~ P D F  formula is 

nPDF, = S * D, 1 (2B'T * NB1I2 1 
There are eight possible corners of a three-dimensional 

cube as is shown in Figure 3. Four of the corners can be se- 
lected as principal corners (1 through 4); the remaining cor- 
ners (5 through 8) are complimentary to the four principal 
corners. For the hyper-dimensional cube model, "a" values 
for Equation 1 are as follows (j is the band number): 

Dl : For all j values a = 0 

where 

nPDF, = component i of nPDF, 
i = corner number, 
S = desired scale for the ~ P D F  axes, 

D, = calculated distance for component i, 
BIT = number of bits of input data, and 
NB = number of bands used. 

A convenient scale for these nPDF components is 8 bit in 
range, and thus a two-dimensional frequency plot requires a 
256 by 256 array. 
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