
Spectral Mapping with Imaging 
Spectrometers 

Abstract 
A technique for producing maps from reflectance-mode 
shortwave infrared airborne imaging spectrometer data is de- 
scribed. The reflectance signatures of hydrothermal altera- 
tion minerals are identified by the location and relative 
depth of absorption features in the 2.2-pn region. The sensi- 
tivity of detection can be adjusted by changing the depth 
threshold criterion for absorption features. Correct classifica- 
tion rates are quant$ed using image subtraction of ground 
truth data, then optimized by varying the depth threshold. 
The technique is easily modified to identify other spectral 
features, such as emission features. 

Introduction 
Producing geologic alteration maps from imaging spectrome- 
ter data requires rapid, automated identification and recogni- 
tion of the spectral absorption features characteristic of 
hydrothermal alteration minerals. A spectral mapping tech- 
nique is presented here that is based on matching the spec- 
tral features of pixel spectra to known spectral signatures. 
The data must be in reflectance mode; the technique cannot 
be used on absolute radiance data because spectral features 
due to ground reflectance are too subtle in raw radiance 
spectra. 

Imaging spectrometers currently acquire data in one of 
two modes that are fundamentally different. Data from the 
NASA instruments (AIS-1, AIS-2, and AVIRIS) and from the Geo- 
physical Environmental Research Imaging Spectrometer 
(GENS) are acquired in absolute radiance mode, and must be 
processed using log-residuals or a related technique in order 
to obtain reflectance-mode data. Data from the Geoscan Ad- 
vanced Multispectral Scanner Mark I1 (Geoscan) are acquired 
in relative radiance mode, and are similar to reflectance- 
mode data. Various techniques, briefly outlined below, have 
been devised to show spatial patterns of alteration minerals 
based on spectral signatures. However, these techniques have 
not, in general, utilized the standard methods of analyzing 
reflectance spectra. 

The technique presented here is based on spectral analy- 
sis methods that are fundamentally related to an expert's 
judgment and knowledge of mineral chemistry and spectros- 
copy. It thus differs from most other techniques which are 
based primarily either on the statistics of a particular data 
set, or on generalized pattern matching algorithms that are 
unrelated to infrared reflectance spectroscopy. 

The method was tested on data from the Yerington Min- 
ing District of west-central Nevada (Figure 1). The Yerington 
area was chosen because parts of it have already been 
mapped in detail (Dilles, 1983; Roffett and Dilles, 1984), and 
the extensive horizontal exposures of an originally vertical 

hydrothermal system provide an excellent opportunity for 
mapping large-scale alteration zones using remote sensing. 
The area is characterized by a Jurassic porphyry copper sys- 
tem that has been tilted 70°W by Tertiary basin and range 
faulting. The sericitically altered parts of the hydrothermal 
system, which are well exposed in the Singatse Range and 
Blue Hills, have been mapped in detail (Dilles, 1983). There 
are, however, no published maps of alteration farther west in 
the Buckskin Range. 

The image maps generated by this technique reproduce a 
traditional map of sericitic alteration. GERIS data (acquired in 
1987) have higher spectral resolution, but were not as suc- 
cessful as Geoscan data (acquired in 1989) at reproducing 
Dilles' (1983) alteration map due to a lower signal-to-noise 
ratio. To optimize the spectral identification technique, mis- 
matches between classified images and the traditional altera- 
tion map were quantified by subtracting a digitized version 
of the alteration map from the classified remote sensing data. 
A depth threshold producing the minimum total error rate in 
the previously mapped Singatse Range was determined, and 
then applied to similar data in the unmapped Buckskin 
Range. The resulting alteration map of the Buckskin Range 
shows an alteration zone with an alunite/pyrophyllite core 
surrounded by areas of sericitic alteration. 

Data Acquisition 

GERlS 
is manufactured by GER of New York. It has three sepa- 

rate detector arrays that measure the wavelength ranges 0.499 
to 1.083 pm (24 channels), 1.080 to 1.800 pm (7 channels), 
and 1.980 to 2.494 pm (32 channels), all with 12-bit dynamic 
range (0 to 4095). Only data from array number three (1.980 
pm to 2.494 pm) were used in this study. The data were ac- 
quired in 1987. The instrument is designed so that "no gain 
and offset adjustment is necessary" (Collins and Chang, 
1988). The dynamic range of the instrument encompasses the 
entire observed dynamic range of electromagnetic radiation 
from the Earth's surface between 0.5 and 2.5 +m (Figure 2a). 

The raw data from GERIS have the general appearance of 
the solar irradiance spectrum at the Earth's surface (Figure 
2a), and must be processed to obtain reflectance-mode data. 
Log residuals (Green and Craig, 1985) were used to convert 
raw data to reflectance-mode data; other techniques include 
internal average reflectance normalization (Crowley et al., 
1988; Kruse, 1988), reflectance regression (Lyon et a]., 1975; 
Marsh, 1979; Abrams et al., 1988; Gardiner et al., 1988; Kier- 
ein-Young and Kruse, 1989; Lyon and Honey, 1989b), flat 
field correction (Goetz and Srivastava, 1985; Hutsinpiller and 
Taranik, 1986; Feldman and Taranik, 1986; Feldman and 
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Taranik, 1988; Carrere, 19891, and atmospheric modeling 
(Cone1 et al., 1986; Cone1 et al., 1988; van den Bosch and Al- 
ley, 1990). 

Wavelength calibration was verified by comparing the 
positions of absorption features in training sets from areas of 
known ground mineralogy to published spectra of the min- 
erals sericite, alunite, and pyrophyllite (Lee and Raines, 
1984). There was a one-channel offset between published ab- 
sorption wavelengths and the nominal wavelength of the 
channel with observed absorption. To correct for this offset, 
the wavelength calibration for detector array number three 
(channels 32 to 63) was shifted by one channel. Kierein- 
Young and Kruse (1989) discovered a similar one-channel 
offset in a different GENS dataset during calibration to atmos- 
pheric CO, absorptions. 

Geoscan 
Geoscan is produced by Geoscan Pty. Ltd., a division of As- 
ton Mining in Perth, West Australia. Geoscan records 24 
wavelength bands during flight. The bands recorded at Yer- 
ington in 1989 include ten between 0.522 and 0.955 pm 
(Visible and Near InfraRed, or VNIR), eight between 2.044 and 
2.352 pm (Short-Wave InfraRed, or SWIR), and six between 
8.64 and 11.28 pm (Thermal InfraRed, or TIR). Only the eight 
shortwave infrared (SWIR) bands were used in this study. 
These data have an &bit dynamic range (0 to 2551. 

The Geoscan instrument uses a very different approach 
to obtaining reflectance-mode data remotely. Rather than 
measuring absolute radiance, as G E R I ~  and the NASA instru- 
ments do, the detector gains and offsets in Geoscan are ad- 
justed to measure relative radiance, which approximates 
reflectance. Figure 2b shows the gain settings for Geoscan. 
Instead of measuring absolute radiance and then removing 
the effects of solar illumination and atmospheric filtering 
with post-acquisition processing, the Geoscan acquisition 
mode measures relative radiance by adjusting the channel 
gains and offsets immediately before data acquisition. These 
adjustments remove the spectral pattern of solar irradiation 
and atmospheric filtering during acquisition, and for most 
purposes, the data need no further processing to be treated as 
reflectance data. 
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Fig. 1. Location map. 

The wavelength calibration supplied by Geoscan was 
verified with field data and was used without modification. 

Methods for Airborne Spectral Mapping 
Previous Work in Spectral Processing 
A variety of techniques have been developed for extracting 
mineralonic information from s~ectra l  data. The techniaues 
can be dhided into two categohes: the multivariate ap-a 
proaches, where spectra are treated as multidimensional 
data, and knowledge-based approaches, where specific 
knowledge of mineral spectroscopy is utilized. 

Several multivariate approaches have been designed to 
enhance differences between pixel spectra, but not to iden- 
tify the pixel spectra. Principal components analysis has 
been used since the first days of Landsat MSS data (e.g., Tay- 
lor, 19741, and has been followed by other techniques such 
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Fig. 2. (a) GERls acquisition mode: 12-bit, absolute radi- 
ance. Heavy line is solar irradiance at the Earth's surface 
(after Valley, 1965). Bars show schematic range of sensi- 
tivity of a few channels. Note fixed gain and offset of all 
channels. (b) Geoscan acquisition mode: 8-bit, relative ra- 
diance. Heavy line is solar irradiance at the Earth's surface 
(after Valley, 1965). Bars show schematic range of sensi- 
tivity of a few channels. Note adjustments to gain and off- 
set according to solar irradiance. 
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as band moment analysis (Rundquist and Di, 1989) and Che- 
byshev polynomial fitting (Chiu and Collins, 1978). The 
meaning of the patterns and colors in the images produced 
by these techniques is not known without detailed correla- 
tion to a map. These approaches can often discriminate, but 
not identi&, different geologic units. 

The most commonly used technique for identifying 
spectra in imaging spectrometer data is binary encoding, well 
described by Mazer et al. (1988) and used by Hutsinpiller 
and Taranik (1986), Feldman and Taranik (1988), Kierein- 
Young and Kruse (1989), Kruse et al. (1990), and others. A 
related approach utilizes least-squares residuals to match 
spectral characteristics (Fraser et al., 1986; Kierein-Young 
and Kruse, 1989; Kruse et al., 1990), while Taranik and 
Kruse (1989) code the slope of adjacent spectral points to 
match the more subtle spectral shapes of iron oxides. These 
techniques match patterns in binary codes of pixel spectra to 
patterns in a library of known spectra. 

The most important of the multivariate approaches is 
spectral mixture modeling, because essentially all pixels 
comprise spectra from multiple materials. Early work by 
Hapke (1981) on microscopic mixing was modified by John- 
son et al. (1983), Clark (1983), and Clark and Roush (1984), 
and was more fully developed by Mustard and Pieters (1986; 
1987a; 1987b; 1988). In using spectral mixing to analyze re- 
motely sensed spectra, each pixel spectrum is assumed to be 
composed of a combination of different end-member spectra 
(e.g., Smith and Adams, 1985; Adams and Smith, 1986; 
Boardman, 1989). The pixel spectrum is deconvolved into 
proportions of end-member spectra, but knowledge about re- 
flectance spectroscopy is used only to develop a mixing 
model, not to analyze and identify the spectra of individual 
minerals. Crowley and Virgo (1988) found that mixed-layer 
clays have the same spectral signature as physical mixtures 
of the two end-members. 

Imaging spectrometer data can be richer in information if 
analyzed with a knowledge of mineral reflectance spectros- 
copy than if analyzed only as n-dimensional multivariate 
data. The virtue of general knowledge-based approaches is 
their more complete utilization of high resolution data as in- 
frared reflectance data, rather than simply as multidimen- 
sional data or as a collection of a few individual absorption 
features. There are several approaches to using knowledge of 
reflectance signatures. 

Kruse (1988) developed the simplest technique utilizing 
the spectral absorption parameters of depth, position, and 
shape to produce a colored image, although the technique is 
non-specific in that it does not identify any particular ab- 
sorption feature or mineral. A number of techniques have 
been devised that are sensitive to one aspect of a particular 
absorption feature or mineral. Most of these use the differ- 
ence or ratio of two or more bands to identify the relative 
depth of a particular absorption feature. Honey and Daniels 
(1986) and Feldman and Taranik (19881 use band ratios, (i.e., 
channel x / channel y) and Lyon and Honey (1990) use band 
differences to identify particular absorption features. Relative 
Band Depth (RBD) images developed by Crowley et al. (1988; 
1989), Crowley and Podwysocki (1989), and Kingston and 
Crowley (1989) utilize differences between groups of bands 
to identify a particular absorption feature, and are more ro- 
bust in noisy spectra. These techniques are limited to observ- 
ing three differences, hence three absorption features, at one 
time. More than three band differences can be assessed by 
using principal components analysis in a technique known 
as directed or selected principal components, described by 
Fraser et al. (1986), Crowley et al. (1988), and Hutsinpiller 
(1988). 

Several "expert systems" have been developed that are 

designed to mimic a human expert's style of spectral analy- 
sis. Goetting and Lyon (1986), and Yamaguchi and Lyon 
(1986) developed an expert system for laboratory spectra 
based on feature-coding and code-matching that is the basis 
for the technique presented here for imaging spectrometer 
data (Rubin, 1989). Lyon and Zhu (1989) extended the sys- 
tem to utilize absorption feature shape. Kruse, Taranik, and 
Kierein-Young (1988), and Kruse, Calvin, and Seznec (1988) 
developed a rule:based expert system for identifying spectra. 
Ali et al. (1989) developed a knowledge-based expert system 
based on characteristic features in infrared spectra. 

A New Method for Spectral Mapping Using Imaging Spectrometer Data 
The infrared reflectance spectrum of a mineral is determined 
by its physical chemistry, and can be characterized by the 
position, depth, and shape of absorption features caused by 
molecular constituents in particular crystallographic loca- 
tions (Hunt and Salisbury, 1970; Hunt, 1977). To more fully 
utilize the infrared reflectance data from imaging spectrome- 
ters, a new method for automated mapping was developed 
with the following goals: 

It should be based on fundamental knowledge of reflectance 
spectra of minerals and other ground targets, not prior knowl- 
edge of a particular field area (e.g., training areas), or other 
purely statistical properties of multivariate data. 
It should be sensitive to a wide range of absorption features, 
and not limited to a few particular features. 
It should identify specific minerals and/or alteration zones on 
output images with individual colors that have specific and 
defined meanings, similar to a geologic map, rather than a 
continuous range of colors that require qualitative interpreta- 
tion. Historically, remote sensing images have often been 
more visually appealing than informative because colors have 
often not had specific, definable meanings. 
The system should be relatively fast, and able to handle the 
large data transfer rates of future spaceborne imaging spec- 
trometers. 

The technique is patterned after the expert system for analy- 
sis of laboratory spectra developed by Yamaguchi and Lyon 
(1986). It is suitable for any wavelength-calibrated data in re- 
flectance form, but not for data in raw radiance form. In raw 
(absolute) radiance form, the effects of solar irradiation and 
atmospheric filtering dominate the smaller effects of ground 
reflectance. The technique is outlined below, and described 
in greater detail by Rubin (1989; 1991). 

The technique is a distinctive expert system because it 
allows the user to vary the spectral analysis criteria in terms 
of both judgment (in the form of the depth threshold) and 
knowledge (in the form of the code database, or "knowledge- 
base"). 

FEATURE EXTRACTION 
Deviation from the spectrum average is used to define ab- 
sorption features. The pixel average is a useful reference be- 
cause it accounts for pixels that have different overall 
brightness due to shading. A channel is determined to be an 
absorption if it (1) is a local minimum and (2) falls more 
than a given threshold (D) below the spectrum average. Fig- 
ure 3 illustrates the determination of absorption depth in a 
typical log residual GEMS spectrum from an area with serici- 
tic alteration. The sensitivity of absorption feature detection, 
and hence image classification, can be adjusted by changing 
the depth threshold. The result of feature extraction is a list 
of the minima in each pixel spectrum. The system could be 
easily modified to identify features such as emission peaks, 
slopes, inflection points, or any other attribute of spectra. 

FEATURE CODING 
The presence or absence of absorption features (or other 
spectral attributes) in one or more diagnostic wavelength 
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boxes can be summarized in a simple code. Each wavelength 
box is labeled with a single-digit number (using hexadecimal 
notation for numbers greater than nine). If an absorption falls 
within one of the wavelength boxes, the number of that 
wavelength box is entered into the code for the spectrum. 
The code for a spectrum consists of a list of the numbers 
corresponding to those wavelength boxes where absorption 
features occur. The codes are arranged in order of decreasing 
absorption depth. Absorptions which occur outside of the 
wavelength boxes are not recorded in the code. 

CONSTRUCTING A CODE DATABASE 
The codes of known or predicted spectra are entered into a 
database. The spectra can be obtained from laboratory or 
field measurements, or from training sets of known ground 
surface mineralogy in imaging spectrometer data. By select- 
ing which codes to include in the database, the user can vary 
the knowledge component of classification decisions. The 
user can also specify whether a group of codes (correspond- 
ing to either multiple spectra, or spectra that are ambiguous 
due to noisy data) are to be placed into a single class. 

CODE MATCHING 
The code for each pixel in an image is matched against the 
codes in the database by a simple character-by-character 
string match. If the code for a pixel matches one of the codes 
in the database, the pixel is assigned the color code corre- 
sponding to that mineral or alteration type. If there is no 
match for the pixel, the pixel is not assigned a color. The re- 
sulting image consists of pixels color-coded for specific alter- 
ation zones. 

Misclassification Assessment Using Image Subtraction 
The classified Geoscan image of the Ann-Mason area shows a 
close resemblance to Dilles' (1983) Younger Alteration Map 
of sericite-bearing mineral assemblages. (To facilitate com- 
parison with spectral data sensitive to sericite, Dilles' map 
was simplified to combine all sericite-bearing mineral assem- 
blages into one unit of "sericitic" rock.) The older GERIS im- 
age of the same area also showed clear similarities, but was 
more ambiguous than the Geoscan image due to lower spatial 
resolution and noise in the spectra. The better spectral sig- 
nal-to-noise ratio and higher spatial resolution of Geoscan 
data allow a more detailed comparison of classification re- 
sults to Dilles' alteration map. 

The simplified version of Dilles' "sericite" map was pre- 
pared in a digital format and geometrically registered to the 
Geoscan image maps for comparison (Figure 5). By digitally 
subtracting the map from the image, the differences and sim- 
ilarities of the classification results could be quantified. A 
classification was considered a correct positive if both the 
classified image and Dilles' map show the area as altered 
(i.e., a pixel that is white in both Figure 4 and Figure 5). A 
correct negative was an area that both the classified image 
and Dilles' map show as unaltered (i.e., a pixel that is greys- 
cale in Figure 4 and black in Figure 5). A false positive was a 
pixel classified as altered in an area Dilles mapped as unal- 
tered (i.e., white in Figure 4 and black in Figure 5). A false 
negative was a pixel classified as unaltered in an area that 
Dilles mapped as altered (i.e., a pixel that is greyscale in Fig- 
ure 4 but white in Figure 5). 

As the depth threshold was changed, the relative rates of 
"correct" and "incorrect" classification changed. For exam- 
ple, because a smaller depth threshold allowed more pixels 
to be classified as altered, the number of false positives in- 

Results creased and the number of false negatives decreased. Con- 
versely, a stringent depth threshold criterion caused very few 

Figure is an example a GeOscan image. In the pixels to be classified, which resulted in fewer false positives 
area shown in this image, the mineral sericite is the only but more false negatives. Figure 6 shows the relationship be- 
mineral detectable remotely in significant quantities; hence, tween the depth threshold and the degree of mismatch be- 
the image is essentially a map of the distribution of sericite. tween Dilles' map and the classified images. 
The sensitivitv of the classification can be adiusted bv 
changing the hep& threshold of the feature extractio; algo- 
rithm. The section below describes a method for optimizing 
the accuracy of classification by changing the depth 
threshold. 

I 600 1000 1400 1800 2200 
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Fig. 3. Absorption features are identified as local minima a 
threshold depth D below the spectrum average. 

Fig. 4. Classified Geoscan image of sericitically altered por- 
tions of the Yerington district. Sericitic alteration is shown 
in white; depth threshold = 25. 
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Fig. 5. Digitized form of simplified version of Dilles' (1983) 
Younger Alteration map. Geometrically registered to Geos- 
can imagery. 

The choice of an optimal depth threshold depends on 
the desired results of classification. The best threshold may 
be considered one that produces equal probability of a false 
positive or a false negative (D = 21 in Figure 6). Alterna- 
tively, the best threshold might be one that produces the 
lowest total mismatch of false negatives plus false positives 
(D = 25 in Figure 6). It should be noted that the threshold 
for the lowest total mismatch produces an image where mis- 
classified pixels have a strong bias toward false negative 
classification. A more complex decision might be based on a 
loss function that describes the costs of a false negative or a 
false positive misclassification, then finds the threshold pro- 
ducing the minimum loss. 

The degree of mismatch between spectral mapping and 
Dilles' alteration map is a function of both the difference in 
support size, and the difference between detection of min- 
erals versus mapping of alteration assemblages. The support 
size of "ground truth" is different for spectral mapping at a 
scale of &metre Geoscan pixels and 20-metre GERIS pixels, 
and different again for a geologic map. Additionally, imaging 
spectrometry is able to detect minerals with objective mea- 
surements, while a geologic map is a mixture of objective ob- 
servation and subjective interpretation. The mismatch is an 
error only if one technique is used to indicate or approxi- 
mate the results of another technique. Mismatch is thus not 
necessarily equivalent to error. 

Conclusions 
The spectral mapping technique presented here, based on 
fundamental principles of infrared spectroscopy, successfully 
reproduced a traditional geologic map with a low degree of 
misclassification. Image subtraction of ground truth data al- 
lowed quantitative optimization of classification criteria, and 
extension to a new area that did not have previously avail- 
able ground data. By incorporating expert spectroscopic 
knowledge and decision criteria, the technique is superior to 
others that rely only on multivariate statistics or prior 
knowledge of the area. 

The signal-to-noise characteristics of the input data were 
found to be extremely important in determining their value 

for use in classification. The 1987 GERIS data for the study 
area had much more noise (estimated SIN = 5:l) than the 
1989 Geoscan data (S/N = 20:l; Lyon, 1989a). In spite of the 
increased spectral resolution, the GEIuS data were not as use- 
ful as the Geoscan data. In fact, the wavelength bands used 
for feature coding effectively decreased the spectral resolu- 
tion of the GERIS data. The bandpasses of the Geoscan instru- 
ment, though wider than those of GERIS, were selected for 
alteration mapping, and the resulting data are very useful. 
These results indicate that, within reason, signal-to-noise 
should not be sacrificed at the expense of spectral resolution. 

M i s m a t c h  w i t h  A l t e r a t i o n  Map 
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