
Automatic Ship Detection in Satellite 
Multispectral Imagery 

Abstract 
In recent years, very little attention in the literature has been 
given to the task of automatically detecting shipping vessels 
in optical satellite imagery. A method for achieving this goal 
is described for both SPOT Multispectral and Landsat The- 
matic Mapper data. Essentially a task in pattern recognition, 
the method utilizes masking, filtering, and shape analysis 
techniques. Results showing a high degree of accuracy have 
been obtained with test data. 

Introduction 
Situated in the south pacific ocean, New Zealand relies 
heavily on its international shipping activities both for trade 
and with respect to its fishing industry. Because the territo- 
rial waters of New Zealand are so extensive, when compared 
to the land mass, monitoring shipping movements is difficult 
and costly. This present study has been motivated by an in- 
terest in assessing the multispectral data now available, for 
its usefulness in tracking the movement of shipping in the 
waters of the large Exclusive Economic Zone surrounding 
New Zealand. In 1978 McDonnell and Lewis (1978) showed 
that detection of large ships was theoretically possible with 
Landsat multispectral data. With a ground resolution of only 
79 m, these data have now been superseded by both SPOT 
multispectral and Landsat I'M data, at 20-m and 30-m resolu- 
tion, respectively. 

Although operationally monitoring shipping movements 
with optical data alone is not a realistic possibility due to 
the somewhat severe constraints of cloud cover and scene il- 
lumination, the improved resolution has prompted renewed 
interest in the area, with the objective of assessing what new 
information is revealed and how adequately the process can 
be automated. 

Previous Work 
Past work in the area of remote sensing of ships and ship 
wakes is sparse and tends to concentrate more on character- 
izing a visually identified wake, than on techniques for auto- 
matic detection. The 1986 Bakerian Lecture of the Royal 
Society of London (Munk et al., 1987), entitled "Ships from 
Space," gave a comprehensive treatment of wake geometry, 
comparing the classic Kelvin wake as seen in optical images 
with the long "V"-like trail which results from Bragg scatter- 
ing in Synthetic Aperture Radar (SAR) images. Unexpected 
"V-like wakes in optical images returned from a 1985 space 
shuttle mission were explained in terms of sun glitter from 
the titled facets of a Kelvin wake. Lyden (1988) also analyzed 
wake structure and identified three general categories into 
which wake phenomena could be classified: surface waves 
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generated by the ship, turbulent or vortex wakes, and inter- 
nal waves. The visibility of the various wake features was 
compared under various conditions such as wind speed and 
SAR look direction. 

Peltzer (1987), in his paper entitled "A Remote Sensing 
Study of a Surface Ship wake," presented results of an inves- 
tigation into the effect of a monomolecular film on the sur- 
face of the turbulent wake. The wake was imaged using a 
thermal infrared scanner, an X-band coherent microwave ra- 
dar, and a 35-mm strip camera, all aircraft mounted. It was 
found that the film attenuated the wake response in the X- 
band images and led to greater persistence of the wake in the 
thermal image. This was because the film reduced the sur- 
face roughness and prevented wind driven mixing of the 
cool wake with the surrounding warmer water. 

Work done specifically in the area of ship detection has 
commonly utilized data from one of two disparate sources: 
SAR and Forward Looking Infrared [FUR). In their assessment 
of ocean surface phenomena in Seasat SAR imagery, Vesecky 
and Stewart (1982) identified a number of factors which in- 
fluenced visual identification. These included the sea state, 
winds, currents and ship size, speed, and orientation with 
respect to the radar. Chang (1985) also used Seasat SAR data 
to demonstrate a trace confirmation algorithm for ship detec- 
tion. Bright spots were first identified in the image, which 
were possibly moving ships; then a sector sweeping ap- 
proach was used to detect the ship's wake. If there existed a 
sector around a bright spot, for which the response was sig- 
nificantly higher than neighboring sectors, a wake was con- 
sidered to be detected and the bright spot was confirmed as a 
ship. 

By far the greatest effort in the area of ship detection has 
been made in the military arena, within the scope of auto- 
matic target recognition (ATR) systems. These systems invari- 
ably utilize FLIR imagery, often provided by aircraft mounted 
sensors (Bhanu,1986; Lahart,1984). They not only automati- 
cally detect targets, but also classify them, prioritize individ- 
ual targets in the field of view, track them in real time, and 
select aimpoints. Although the resolution and information 
content in FLIR imagery bears very little resemblance to that 
of satellite based optical systems, there is some commonality 
in the techniques that can be utilized. Many ATR systems use 
classical pattern recognition methodology combined with an 
artificial intelligence knowledge-base approach (Bhanu,1986). 
Contextual information such as map and sensor data, intelli- 
gence information, and seasonal variation are used to im- 
prove accuracy and sensitivity. 

The algorithm for automatic ship detection which will 
be outlined in subsequent sections also makes use of prob- 
lem knowledge. The search domain is first restricted to the 
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areas of water in the scene. A series of filters are used to re- 
move extraneous information, while preserving the integrity 
of any ship data which may be present. All remaining objects 
are considered to be potential ships. Size, shape, and inten- 
sity measures are then used to refine the set, culminating in 
the production of a ship location report detailing the loca- 
tion, size, and heading of the ships found. 

The Original Data 
The three bands of SPOT xs show distinct contrasts in terms 
of the responses to various sea features. Band 1 data high- 
lights sediments and currents and shows ship wakes clearly. 
This can be seen in Figure la ,  which shows band 1 of a SPOT 
test image of Wellington Harbour, New Zealand. Band 3, 
however, often has negligible response to any sea feature. 
Closer inspection of the lower end of the data in this band 
reveals that ship wake information is present and the signal- 
to-noise ratio is better than that of band 1, due to the "flat" 
background which the ship wake is set against. This is illus- 
trated in Figure lb, which shows band 3 of the SPOT test im- 
age with the data stretched between counts of 0 and 15. For 
SPOT scenes, therefore, it was decided to use a combination 
of band 1 and band 3, utilizing the high contrast obtained in 
band 3 and the extra wake information available in band 1. 

Landsat TM, with seven spectral bands, offers a greater 
number of options. Because band 4 of the TM data is the near 
infrared band, it is not surprising that the response of this 
band to ship wakes is similar to that of SPOT band 3 which is 
also near infrared. Landsat band 3 also showed good re- 
sponse to ship wakes; therefore, these two bands have been 
used when processing Landsat TM scenes. Figure 2 shows 
these bands for a TM test image of an area just outside Auck- 
land Harbour, New Zealand. 

In this paper the term input image 1 is used to refer to 
SPOT band 1 or Landsat band 3 and input image 2 for SPOT 
band 3 or Landsat band 4. 

Preprocessing 
There are four preprocessing stages performed, which are as 
follows: 

Masking out the land in each input image, 
High pass filtering each image, 
Selectively combining the images, and 
Trim filtering the combined image. 

The first three stages are independent of the data source; 
however, the fourth stage is only performed on images origi- 
nating from the SPOT satellite to overcome sensor calibration 
anomalies. 

In order to make a land mask, it was first necessary to 
find a point-wise operation which gave adequate discrimina- 
tion between land and sea pixels. A heuristic approach has 
been taken based on observations of the relationship between 
the data values in the two input images for each class type. 

If l,(x,y) represent pixel y on line x in input image i and 
D(x,y) is the binary discrimination image, which is zero 
(land) when the test returns false and one (sea) when the test 
returns true, then the necessary operation for SPOT data is 

and for Landsat data is 

This discrimination image, which is illustrated in Figure 
3a for the SPOT test scene, provides a starting point for mak- 
ing a land mask. Its accuracy is generally good, apart from 
some speckling in both the land and sea regions and the sig- 
nificant fact that ships are often classified as land. 

A low pass filter is used to remove ships from the mask 
and improve the consistency of the image. An efficient im- 
plementation of a box filtering approach is used for the pur- 
pose (McDonnell, 1980) with a 41 by 41 square box. This 

(a) Band 1 (b) Band 3 

Fig. 1. SPOT test image (OCNES 1989). 
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size box has been chosen because it is large with respect to 
the anticipated size of ships and their wake and, as such, has 
the effect of removing the high frequency response to the 
ships, blurring the coastline, and removing fine speckle. It 
should be noted that at this point ships, small islands, and 
isolated clouds are all treated alike. 

A threshold is then used to regain a binary land mask 
with the land area extended into the sea. The land area is 
shrunk back to the true coastline using a 3 by 3 window rank 
filter with rank 9 (Hodgson, et al.,), also known as a Maxi- 
mum filter. Because of the rank filter's ability to propagate 
edges, each application of the Maximum filter strips the bor- 
der pixels from the land area and thus shrinks the land 
mask. Figure 3b shows the result of five applications of the 
filter, which has trimmed the land mask boundary to within 
a small margin of the coastline. 

The resultant binary image is used as the land mask and 
is applied to each of the input images so that the land pixels 
are set to the mean sea count (Figures 3c and 3dj. Using this 
approach, rather than just setting the land area to a count of 
zero, ensures that there is no sharp gradient between the 
masked area and the sea. This improves the result of the 
high pass filter, which is applied next. 

The high pass filter, applied to the two masked images, 
smooths out the slowly varying background caused by cur- 
rent flows and sediment (Figures 3e and 3f) .  Again, a 41 by 
41 filter window is used because this is relatively large com- 
pared to the expected target size. This has the effect of set- 
ting the background to zero and small sea features to counts 
relative to the surrounding sea. This filter works well, al- 
though sparse areas of low valued noise remain in the result- 
ant images. Because of the different response characteristics 
of the original bands used, there seems to be little correlation 
between the noise remaining in each image at this stage. 

The two filtered images need to be combined in such a 
way that all the shape information is preserved while the 
noise is not reinforced. This makes a simple addition inap- 

propriate; instead, the approach taken is to use image 1 
where it is non-zero and accept image 2 elsewhere. This 
means that, in the combined image, ships and their wakes 
get shape information from both input images. Figure 4 
shows the different shape information provided by each of 
the filtered images for the large ship in the SPOT scene which 
is labeled as 3 in Figure 8a. The typical situation is illus- 
trated where image 1 contributes information about the 
shape of the turbulent far wake and image 2 contains more 
non-zero pixels on the leading edge. 

Often in SPOT data there exists a low valued vertical 
striping in the third band with a count one above the back- 
ground. This is due to the uneven calibration of the original 
CCD sensors used to collect the data. It is not normally no- 
ticeable in the level 1A imagery and is not apparent in the 
images of Figure 3; however, at this stage in the preprocess- 
ing it usually becomes quite evident. Therefore, a 3 by 3 trim 
filter is used, only in the case of SPOT data, to remove this 
effect. The center pixel is set to zero if six or more of the 
pixels in the window are zero. This has the effect of remov- 
ing single pixel wide lines and "chopping up" others. There 
is negligible effect on the target ships and their wakes. 

Analysis 
Figure 5 shows the images after preprocessing is complete. 
Each image is predominantly zero apart from small sea fea- 
tures such as rocks, islands, small cloud, scattered noise, and 
ships. As a starting point, each distinct object, defined as 
having no 8-connected non-zero neighbors, is considered to 
be a possible ship. This connectivity convention is chosen 
because the tail of a ship wake often consists of only diago- 
nally connected pixels. Recognizing these pixels as part of 
the wake is critical to discriminating the ship wake shape 
from other less elongated objects. 

A one-pass scan conversion algorithm (Bell, 19731 is 
used to build a contour sequence of each object boundary 
which is used during analysis as a representation of the ob- 

Aa 

(a) Band 3 (b) Band 4 

Fig. 2. Landsat TM test image (OEOSAT 1989). 
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Fig. 4. Contribution of input images to ship 
shape in the final preprocessed image. 

Refinement by Area 
Naturally, only objects of a realistic size should be consid- 
ered as potential ships. Areas are calculated using a discrete 
application of Green's theorem (Riddle, 1984). The object 
area is defined as the area in square pixels inside the line 
joining the center of the border pixels. Because it is possible 
for ships to be smaller than one pixel for either of the sen- 
sors under discussion, the lower size limit was set according 
to the smallest object that could be positively identified in 
the image. An area of three square pixels was chosen as the 
lowest valid area. The upper size limit represents the largest 
area that a ship and its wake could be expected to cover. The 
purpose of the upper limit is generally to rule out "ob- 
viously" oversized objects such as clouds and islands. It is a 
coarse method of selection for which threshold value is not 
critical. A value of 150 square pixels has been chosen to al- 
low a "margin of safety," i.e., very large objects are ruled out 
early in the analysis but those that are questionable are re- 
tained to be analyzed and possibly rejected by one of the 
more computationally intensive refinement procedures. Be- 
cause the upper limit of 150 is not critical, the value is used 
with both SPOT and TM data. 

Refinement by Shape Analysis 
Once unrealistically sized objects have been ruled out, a 
study is made of the shape of each remaining object. A mea- 
sure of the elongation of the object is needed to identify 
those objects which conform to the typical profile of a large 
ship or ship and its wake. Clearly, it is important to use a 
shape measure which is position and orientation indepen- 
dent. This is achieved using a form of moment analysis (Hu, 
1962; Smith, 1971). The generalized formula for the simple 
moment M,! is as follows: 

M~ = jjB x r f ( x ~ )  dx d~ (11 
ject shape. The class of possible ships is gradually refined by 
performing a series of tests to see whether individual objects where R is a finite region over which fix,y] exists and i and j 
meet certain ship criteria. are integers. 

(a) SPOT (b) Landsat TM 
Fig. 5. Final preprocessed test images with the input images masked, filtered, and combined. 



By the Uniqueness Theorem (Hu, 1962), the moment se- 
quence {Mil} is uniquely determined by flx,y) and flx,y) is pil = [ I B  ((x - FJ cos 0 + ly - ,7 sin q i  
uniquely determined by {Mil}; therefore, it can be said that + ( - ( X  - X ) s i n 0  + ly - 7 ) c o s  19)ldudy (5) 
{Mi,} characterizes the shape of f(x,y). In practice, most of the 
coarse shape information is contained in the first few low- Because m,, and m,, are zero by definition, so too are plo 
order moments with higher order moments adding the higher and pol for all values of 0; therefore, we take the second mo- 
frequency shape components. A combination of low-order ments pZO and poz which can be written as 
moments has therefore been used as a measure of object r r  

elongation. 
Because only the shape is being considered, it is possi- 

ble to simplify Equation 1 by setting flx,y) = 1 inside the 
object and f(x,y) = 0 outside. This gives 

where B is the region occupied by the object being consid- 
ered. 

Moments generated from Equation 2 are not position or 
orientation independent. They depend on the location of the 
object with respect to the origin and its orientation with re- 
spect to the x and y axes. To achieve position independence, 
moments are calcuIated using the object centroid as the ori- 
gin. The coordinates of the centroid (Si,y) are defined as 

MO, - MI. 7 - x = -  
Moo' Moo 

where Moo = J JB &,dy is simply the area of the object. 
The first moments, required to calculate the centroid, are 

found by applying a discrete method of evaluation (Freeman, 
1961) which uses the object border in chain code form. Cen- 
tral moments, found by taking the centroid as the origin, can 
then be calculated as follows: 

Central moments are translation invariant but not rotation in- 
variant. It can be shown that, if the (x,y] axis is rotated 
through an angle 8, the rotated moment is given by 

pixels 
V) 
Q) 
c .- - 

Fig. 6. Principal axis of ship profile. 

pzo = ] J B  ((x - a cos 0 + 01 - yl sin 0) z& dy (61 

p o , = ~ ~ ( - ( ~ - ~ s i n 8 + l y - f l c o s e ) ~ & d y  (7) 

These may be reduced to terms of mil as follows: 

1 1 
~ Z O  = - (m,, + m,,) + ; (m,, - moJ cos 20 - m,, sin 20 

2 

1 1 
poz = ; (mzo + moz) i- ; (moz - mzo] cos 28 - m ,, sin 20 

The values of each of these moments change as 0 is varied. If 
p,, is minimized, then the resulting angle 0 should define 
the axis from which the edges of the shape deviate least, i.e., 
in the case of a ship and wake, the axis should lie along the 
direction of travel. In order to find the minimum p,,, dp,, / 
dB is found and set equal to zero. This gives 

tan 2$ = 2m11 
(mzo - moz) 

Clearly, this may yield either the minimum or the maxi- 
mum, so a check is performed. Defining pcL; to be /li/ when 0 
= Op, @ is set to @J + 712 if pb, > piO. The axis defined by 
Bp is called the principal axis (see Figure 6 1. The second- 
order moments pgOZ and pio for any given object are size, po- 
sition, and orientation independent. 

A good measure of elongation is the ratio pb, : p:,. A 
threshold level of 0.2 has been selected because this gives 
correct discrimination on test data. For many larger ships, 
the calculated value will be as low as 0.01. It has been recog- 
nized that this measure is less appropriate for smaller ves- 
sels, where the pixels occupied by the craft often depend 
more on its location with respect to pixel boundaries than on 
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Fig. 7. Relationship of object maximum intensity to object area. 
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(a) SPOT (QCNES 1989) (b) Landsat TM (EOSAT 1989) 

Fig. 8. Ships automatically located in test scenes. I 

its actual shape. For that reason, the ratio threshold of 0.2 is 
relaxed for objects of small area. Specifically, the threshold 
is varied linearly between 0.2 and 0.4 for areas in the range 8 
to 3 pixels. 

Refinement by Maximum Intensity 
Those objects that pass the shape criteria are tested to estab- 
lish whether they are just conveniently shaped noise, or 
something more significant. Each object in the class of possi- 
ble ships is scanned in the preprocessed image to determine 
its highest pixel count. The brightness of a ship and wake 
system is linked to its size; therefore, an area dependent 
threshold is used to discriminate between ships and noise. 
Figure 7 shows the relationship between object size and 
maximum intensity in the preprocessed image for a range of 
ships and other objects. It can be seen from the graph that 
the solid line which indicates the threshold used levels off 
for small objects. This is because a lower limit has been set 
on the maximum intensity, requiring that it be at least three 
counts above the background, which corresponds to a value 
of 3 in the preprocessed image. A maximum of only 1 or 2 
counts above the background must be considered as resulting 
from noise even though under certain favorable conditions 
positive visual identification can be made for very small 
boats with these maximums. The implication here is that 
very small craft will not be detected by the system. This is 
true; however, the level at which the system fails is close to 

TABLE 1. SHIPS OETECTEO IN SPOT TEST IMAGE 

Location Heading Length of ship + wake 
Ship ID (NZ Map Grid) (degrees) (metres) 

the level where there is insufficient information for visual 
identification. 

Refinement by Spectral Signature 
Having reduced the class of possible ships to a set of objects 
of the appropriate size and shape to be ships which contain 
at least one bright pixel, the task is almost complete. Objects 
which have been incorrectly retained at this stage are often 
small islands. In the case of Landsat TM data, this problem 
can be overcome using standard classification techniques. A 
Bayes classification (Colwell, 1983) is done on bands 1, 2, 
and 3 of the original Landsat data using statistics calculated 
from the three bands, with the original land mask as a train- 
ing field. Objects in the class of potential ships are scanned 
in the classification image. If any of their pixels are classified 
as land, they are rejected. 

Unfortunately, the distinction between the spectral sig- 
natures of ships and land is not so clear in SPOT xs data. 

TABLE 2. SHIPS DETECTED IN LANOSAT TM TEST IMAGE 

Location Heading Length of ship + wake 
Ship ID (line,pixel) (degrees) (metres) 
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When Landsat bands 1 ,  2, and 3 are mapped to blue, green, 
and red, respectively, ship wakes appear white. However, 
under the same mapping, SPOT scenes show cyan wakes in a 
range of shades common in urban areas and present in rural 
terrain, 

Final Calculations 
Many of the previous measurements rely on the assumption 
that the entire area of the object is represented in the image. 
This cannot be guaranteed if the object is at the edge of the 
image, or if it has been partially occluded by the land mask 
during preprocessing. Under these circumstances, the size 
and shape measurements may not be a true indication of the 
characteristics of the whole object; therefore, objects that fall 
into this category are rejected. 

Further information is extracted from those objects re- 
maining, all of which are deemed to be identified ships. 
First, a measure of the length of the ship-and-wake system 
along the principle axis is made. Efforts to distinguish the 
ship from its wake have been unsuccessful, so this length is 
dependent both on the ship size and its speed. 

The principle axis calculated previously gives an indica- 
tion of the orientation of the vessel, but there are still two 
possible choices for the heading, i.e., ep or 8p + T. A robust 
peak detection method (O'Gorman, 1984) is used to find the 
intensity peak for each ship. The heading is then chosen to 
coincide with the side of the centroid containing the peak. 
Occasionally, the distance between the centroid and the in- 
tensity peak is considered too small to make a decision. 

Discussion of Results 
Examples of the type of output obtained from the detection 
algorithm can be seen in Tables 1 and 2. A "-" in the Head- 
ing column indicates that the program was unable to clearly 
identify the heading. The type of location that is reported de- 
pends on whether the original data have been rectified or 
not. In the case of the SPOT data, the scene has been rectified 
to the New Zealand Metric Map Grid (Reilly, 1977); there- 
fore, the locations are given in these coordinates. The TM 
data, conversely, have not been rectified; therefore, image co- 
ordinates are used.The locations a£ the identified craft have 
been circled in Figure 8. Each craft has been visually con- 
firmed in the image and no clearly identifiable ships appear 
to have been missed. No ground truth data are available for 
the TM scene; however, shipping records allow identification 
to be made of the three larger vessels in the SPOT scene. 
Using the numbering scheme of Figure 8, they are 

1 Eastbourne Ferry, length = 18.5m, speed = 20 knots 
2 Unknown 
3 South bound InterIslander Ferry, the "Aratika," length = 

127m, speed = 17 knots 
4 North bound Interlslander Ferry, the "Arahunga," length = 

127.4m, speed = 17 knots 

Vessel z identified in the SPOT scene is probably only a 
small pleasure craft, as are the majority of those present in 
the TM scene. In these cases nautical charts were checked to 
ensure that there were no rocks, lights, or other irregularities 
which might have been detected. Examination of charts also 
ensured that the position in question was a viable place for a 
ship to be located. 

An elongated shape, which has not been detected as a 
ship, can be seen in the TM image, southeast of the image 
center, in the proximity of ships 8 and 9. In a color image, 
this can be easily identified as an island. This is a classic ex- 
ample of the type of object which makes spectral analysis 
necessary. Because spectral analysis has only proved feasible 
with TM data, an island such as this, in a SPOT image, will 

cause a false alarm. As mentioned previously, there is also a 
lower limit on the size of craft which can be automatically 
detected. At least seven pixels must have counts above the 
background to give a border linked area of three square pix- 
els, and at least one of these must have a value at least 3 
counts above the background before the object is considered 
as a potential ship. The human eye is often able to detect a 
ship based on much less information. 

Conclusions 
The feasibility of automatically detecting ships and their 
wakes in SPOT and Landsat TM imagery has been demon- 
strated with a good level of accuracy. SPOT bands 1 and 3 
and Landsat bands 3 and 4 have proved most useful for the 
purpose. A process of elimination is used which discards ob- 
jects which fail the ship criteria of size, shape, intensity, and 
color. Relatively small craft can often be identified if travel- 
ing at speed because a long wake is generated. 

Although the detection of ships from optical imagery is 
hampered by cloud cover and low illumination, the accuracy 
obtainable under favorable conditions makes the techniques 
extremely worthwhile. It is felt that ideally an automatic 
shipping surveillance system should combine data from a 
number of different sensors. In particular, Synthetic Aperture 
Radar imagery, which is unaffected by cloud cover or illumi- 
nation, would be complementary. 
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