
Using Multisource Data in Global Land'
Gover Characte rizalion : Goncepts'

Requirements, and Methods
Abstract
Global land-cover data are needed as baseline information
for slobal chan*e research. Multisource data, both coarce-'rtsdlution 

satelite data and ancillary data, werc used to
produce a land-cover charccteristics database fot the conter-
qinous United Stotes. AncrJJory data, including elevation
and ecological region data sets, were critical to the develop-
ment, refinement, and information content of each class ln
the database. They contibuted essential evidence for labd-
ing and rcfining land-cover c/osses where differing types
were represented by single spectral-temporal signatures. The
characterization process can be expanded to a global effort
depending on (1) the availability of global satellite co.verage,
(zj the qiality and availability of ancillary data, and (s) the
evolution of morc sophisticated data visualization and
analysis techniques.

lntroduction
The global change research community has a critical need for
current and comprehensive information on the Earth's land
cover (Townshend ef o/., 1991; IGBP, 1992), Both the National
Research Council and the International Geosphere-Biosphere
Programme (tcar) have declared that global land-cover data
are foremost priorities (U.S. National Academy of Science,
1990; IGBP, 1990). Traditionally, land-cover data have been
used for extrapolation of site-specific field data into a global
spatial context. More recently, land-cover data were used in
the development of process-level models at individual sites
and then were applied to the parameterization of algorithms
for global analyses. Land cover is viewed as an essential ele-
ment in biophysical remote sensing methods in which land-
scapes are stratified into enumeration units so that inversion
techniques can be used to estimate regional biophysical pa-
rameters (i.e., leaf area index, evapotranspiration, and net
primary production).

Investigators have explored methods for generating land-
cover information from Advanced Very High Resolution Ra-
diometer (AVHRR) data aboard the National Oceanic and At-
mospheric Administration's (ruoaa) TIRos series of satellites
(Goward ef o/., 1985; Townshend et o/., t99t; Loveland et
o1., t99t; rGBP, 1992). Although the AVHRR sensor has re-
stricted spectral and spatial resolution compared with the
sensors on board the Landsat and spot satellites, it possesses
temporal resolution advantageous for analyses of global land
cover. A location on the Earth's surface is observed twice
daily by the AvHRR sensor (once during daylight). The rela-
tively coarse (1 km) spatial resolution of avnRR data yields a

smaller, manageable volume of data for global analyses. For
land observati6ns, Avgnn channels 7 and 2 are commonly
used to compute a Sreenness index such as the normalized
difference vegetation index (tlovI) (Goward, 1989)' Compos-
ite images sh6wing the maximum value of the NDVI for each
pixel dirring a multiple-day period (usually 10 or 14 days)
iesult in friuent clear obieivations of the Earth's surface
(Holben, tgg;6; Eidenshink, 1992),

AVHRR "greenness data" such as the NDVI are useful for
depicting chinge in vegetative activity ower time-(Goward ef
ot., rsas; Townshend et al., 7987). Land-cover classification
and characterization with AVHRR data is often based on asso-
ciations between land-cover types and variations in periodic
observations of greenness through one or more growing
cycles (Lloyd, 1990). However, problems exist in discrimi-
niting between land-cover types exhibiting similar phenolo-
gies (Townshend et ol., lsst).- 

Research, conducted jointly by the U.S. Geological Sur-
vey's ERoS Data Center and the Center for Advanced Land
Minagement Information Technologies, recently demorr-
strated that multitemporal AvHRn data, supplemented by an-
cillary data and analyzed in a structured manner, can be
used effectively to characterize land cover (Loveland ef o/.,
1991). A set of Z8-day maximum NDVI composite images cov-
ering the contertninous United States were clustered into 70
soectral-temporal classes and subsequently stratified, refined,
and labeled using ancillary data. The result was a 1S9-class
land-cover characteristics database.

The U.S. study has illuminated many issues that must be
addressed in large-area land-cover characterization founded
on analysis of coarse-resolution satellite image data' Such ef-
forts require the use of "multisource data." Multisource data
include digital images obtained through satellite remote
sensing and data from ancillary sources, including terrain,
soils, ecoregion, meteorological, and climatic data sets. The
U.S. prototype efforts define and illustrate concepts and
methods central to land-cover classification at continental
and global scales.

The principal objectives of this research are to
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o establish the conceptual basis and requirements for using
multisource data in global land-cover characterization,

o detail multisource data analysis methods used in the proto-
type effort to characterize land cover for the conterminous
United States,

o evaluate the potential for employing such methods in global
land-cover characterization, and

o identify needs for future research and data set development.

Background
Remote sensing specialists have long recognized the impor-
tant role of anCillary data in image interpretation (Campbell,
1978; Townshend and Justice, 1981; Estes ef o1., 1983). Dur-
ing the last two decades, significant advances have been
made in developing techniques and strategies for using ancil-
lary data to improve the results of satellite image analysis.
Most efforts have focused on Landsat digital image classifica-
tion for land-cover mapping (Hutchinson, 1982), The vast
majority of research using ancillary data for improving digi-
tal image classification has dealt with applications of digital
terrain data in classification refinement. Commonly, tenain
data are used either to adjust image brightness values for
changes in radiance due to rugged relief (Jones et o/., 1988),
or to sort and (or) subdivide spectrally derived classes to re-
duce confusion and error induced by the spectral insepara-
bility of certain land-cover types. The latter application is of
more concern here,

In one of the first demonstrations of classification im-
provement with ancillary data, Fleming and Hoffer (1979)
used models of observed relationships between land cover,
slope, aspect, and elevation to significantly improve a forest-
cover map of an area in the southern Rocky Mountains de-
rived from Landsat multispectral scanner (MSS) data. Miller
and Shasby (1982) tested both subjective and quantitative
techniques for deriving terrain-related decision criteria to en-
hance Landsat vSS-based maps of vegetation and forest fuels
in Arizona and Montana. They reported significant increases
in classification precision and a 20 percent improvement in
classification accuracy when terrain data were used in post-
classification data analysis.

Investigators have made efforts to employ other types of
ancillary data in satellite image analysis, Pettinger (1982)
used agricultural, upland and lowland environmental strata,
and decision rules based on field research to adjust a Land-
sat MsS land-cover classification in Idaho. He showed that
the stratification improved both the detail and the accuracy
of the map. Cibula and Nyquist (1987) used terrain data and
climatological data (precipitation and climate regimes) in a
Landsat vSS classification of Olympic National Park, Wash-
ington. The ancillary data and decision logic were used to
increase the number of unique land-cover classes from g to
21, resulting in an overall accuracy of 91.7 percent. Franklin
(1989) used Landsat thematic mapper (TM) data, aeromag-
netic, and geologic data in developing maps of geologic
structure in central Newfoundland. He also described the
joint use of terrain data (elevation, slope, aspect, and upslope
and downslope convexity) and land systems (ecoregion) data
in a Landsat MSS classification of Gros Morne National Park,
Canada. He reported that classification accuracy improved
from 40 to 85 percent when ancillary data were used.

As geographic information system (cts) technology has
developed, and integrated Gts-image analysis software has
become more common, opportunities for using ancillary data
and remotely sensed data in concert have expanded (Trotter,
1991). Innovations in data analysis based on expert systems
and related techniques facilitate implementation of complex
multisource data analysis strategies (Mason et o,1., lgBB; Sri-
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nivasan and Richards, 1990; Wang and Civco, 1992)' Bolstad
and Lillesand (1992), for example, demonstrated that such
approaches improved Landsat tM classification of northern
Wisconsin land cover by about L5 percent. Although im-
nroved software and analvsis methods are now available,
prog.ess in using multisource data'for land-cover classifica-
tion has been slow. In most respects, lesearchers have only
begun to realize the potential for combining remotely sensed
and ancillary data in such efforts (Trotter, 1991).

Rationale for Using Multisource Data
Our contention is that land cover characterization employing
AvHRR data, because of their coarse spatial resolution and
constrained spectral resolution, requires the use of ancillary
data. Limitations of the sensor are compounded by the fact
that AvHRR satellite data are usually employed for observing
very large areas such as continents. These large land masses
possess enormous variation in terrain, climate, land use, and
ecosystems. Even classifications based on multitemporal sat-
eilit6 data are insufficient because phenologic similirities be-
tween disparate cover types are common at continental
scales.

Virtually all previous research on the use of ancillary
data in land-covei classification has focused on relatively
small areal domains (e.g., one satellite scene or a relatively
small geographic region), A new and different set of prob-
lems are encountered in land classification when the objec-
tive is to map a continent where environmental complexity
and diversity can be much greater than that dealt with in
typical satellite remote sensing studies. A multisource ap-
proach is essential for land-cover characterization over such
vast areas,

In addition, ancillary data can contribute more stable in-
formation to characterization, in contrast to satellite data,
which fluctuate with the changing seasonal patterns of vege-
tation. Although the multitemporal wtvl data provide a use-
ful measure of photosynthetic activity through time, allowing
aggregation and regionalization of the land surface, addi-
tional (nonsatellite) information is needed to describe and re-
fine land-cover units. A multisource approach, including
both satellite and ancillary data, is crucial to the develop-
ment, refinement, explanation, and information content of
each land-cover class under analysis.

Campbell (1978) classified image interpretation proce-
dures into five broad strategies. Four of these, he asserted,
depend on the use of ancillary data for success. Most anal-
yses of AVHRR data fall within Campbell's class of "probabi-
listic interpretations." He noted that, "because of the
importance of non-image information ... in the application of
a probabilistic interpretation process, relationships defined ...
are valid only for a particular region" {Campbell, 1978, p.
267). Research in the conterminous United States supports
this contention. When dealing with areas encompassing large
latitudinal, elevational, climatic, and anthropogenic varia-
tion, continual adjustments of models, rules, and assump-
tions about relationships among image, Iandscape, and
environment must be made (or, in other words, between im-
age and ancillary data).

Experiences from the Gonterminous U. S. Database
Creation of the prototype conterminous U.S. land-cover data-
base included (Figure 1)

o processing and classifying AVHRR data,
o labeling and postclassification stratification of pixel clusters

using ancillary data, and
o compiling the final land-cover characteristics database. Al-
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TeeLE 1. ANcILLARY DATA SErs, Sounces, UNtrs oF MrlsuREt"teNt, AND UsE
or rge Dnn,

Data Set Source Units

Introduction ol Ancillary Data
Ancillary data in a variety of forms, including discrete, the-
matic, and continuous, were used to augment database de-
velopment, labeling, and postclassification stratification. The
anciilarv data included elbvation, frost'free period, ecore-
eions. maior land resource areas (wnlJ' and land-use and
iand-covei data, These data sets, described in more detail by
Loveland et o1. (1991), are summarized in Table 1. The
ecoregions and Mm.a, data contain associated attributes (Ta-
ble 2I which were especially useful in the database develop-
ment.

Application of Ancillary Data
In'the conterminous U.S. research, ancillary data were found
to contribute to classification and characterization of land
cover in two ways: (1) for iterative labeling and describing
clusters and claises, and (2) for postclassification refinement
of spectral-temporal classes by spatial subdivision and merg-
ing (see Figure 1),- 

Preliminary labeling involved comparison of regional
patterns exhibiied by individual spectral-temporal classes
with a wide variety of maps, images, and published data.
Both traditional visual-subjective methods and less tradi-
tional dieital-obiective methods were used' Postclassification
refinemei'rt involved "deterministic modeling" (Franklin,
1989). Visualization software was used to develop decision
rules utilizing a combination of field experience and analysis
of digital ancillary data similar to that used by Miller and
Shasby (1982),

Le-BnrrNc wrrH Atcru-anY Dara.
Each of the original 70 clusters was evaluated in terms of its
spatial distribution, phenology (as portrayed graphically by
piottine the wovt against time), and association with the an-
biUary?ata. In thiJway, descriptions for the initial 70 clus-
ters identified clusters with confusion which required
subdivision and indicated which types of ancillary data
might provide useful separation criteria.- 

Iniormation was extracted from the ancillary data layers
for labeling using cts overlay procedures. Each spectral-tem-
poral cluster was intersected with the ancillary data layers,
and counts or proportions for each association were com-
piled. For example, Figure 2 shows the distribution of cluster
35. Descriptive (tabular) attributes of the ancillary data (i.e.,
elevation, MLnq,, and ecoregion) are attached as characteris-
tics of the spectral-temporal cluster (Tables 3 to 7). These
data provided the basis for class Iabeling and description
[Table B).

Label refinement occurred at several stages following the
clustering of the multitemporal NDM data, The intersection of
each class with each ancillary data set provided additional
information about each land-cover region, contributing to a
convergence-of-evidence methodology. Graphic visualization
of the data contributed to improved understanding of the
classes as they were labeled and stratified.

PosrclasstnlcATloN Rumrururrur wirH Anctrr-anv Deta'
After preliminary labeling, each cluster was evaluated visu-
ally to identify separation criteria, Using visualization tech-
niques developed at the EROS Data Center, each cluster was
observed with the associated distribution (histogram) of the
elevation, ecoregions, and frost-free data. Subdivisions were
made to avoid separating spatially contiguous pixels. Of the
59 spectral-temporal clusters that were subject to postclassi-
fication stratification, 27 were divided into two classes, 14

Use

Elevation
Climate
Ecoregions
MLRA6
LULCs

DMAl
NOAA4
USEPAs
SCS?
USGS9

feet (20-ft resolution)
frost-free days
Ecoregions attributes
MLRA attributes
LULC attributes

I 2 l q 3

US
US

T

rDefense Mapping Agency (1986)
,Labeling
3Stratification
aNational Oceanic and Atmospheric Sewice (1979)
5U.S. Environmental Protection Agency (Omernik, 1987; Omernik
and Gallant, 1990)
oMajor land resource areas
TSoiI Conservation Service (USDA SCS, 1981)
sland use and land cover
eU,S. Geological Survey (USGS, 1986; Anderson et al., 1976)

Treue 2. ArrRreures Accoupnuvtxe EcoREetoru x.to Mruon UND REsouRcE
Anen (ume) DATA SErs.

Data set Attributes

Ecoregions Name
Landform
Potential natural vegetation
Land use
Soils

MLRA Narne
Land use
Elevation
Topography
Average annual precipitation
Average annual temperature
Average frost-free period
Potential natural vegetation

though this paper is mainly concerned with the second step,
an overview of the first step is necessary. A more detailed
summary of processing and classifying AvHRR data is found
in Loveland et o/. (1991).

Processing and Classifying AVHRR Data
Daily 1-km AVHRR data from NOAA 11 were calibrated to re-
flectance, scaled to byte range, and georeferenced to the
Lambert Azimuthal Equal Area map projection. Eight 28-day
composites acquired from March to October 1990, based on
maximum NDvt decision rules, were used as input to cluster-
ing and classification, A masking procedure ensured that
classes exhibiting high intraclass variance, such as water,
bare soil, clouds, snow, and ice, did not dominate the clus-
tering process. An unsupervised clustering algorithm (Iso-
class) and minimum-distance-to-mean classification were
used to define 70 spectral-temporal (seasonally distinct) clus-
ters. A 20 percent systematic sample of each of the eight
composites was employed to derive initial cluster statistics.
In all but ten cases, the clusters were not associated with a
single cover type. Confusion occurred where several different
land-cover types (i.e., agriculture and deciduous forest) were
classified into one cluster, Ancillary data were then used to
identify within-cluster confusion and to stratify clusters into
distinct land-cover types,
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Processing Classifying
Labeling/

Postclassif ication
Stratification

- USGS Land UseAand Cover
. MLRA

Fgure !. Processing flow for the conterminous U.S. land-cover characteristics database.

- Elevation
- Frostfree days
- Ecoregions

were split into three, and 1B were subdivided into four to six
classes, resulting in 189 initially stratified classes.

The ecoregions data were used as the most frequently
applied stratifier. These data provided separation rules for
clusters B6 times as the sole separation criteria and 59 times
in conjunction with either frost-free period or elevation crite-
ria. The ecoregions data were especially useful in situations
where a single spectral-temporal cluster represented several
different land-cover types that were spatially separate. Eleva-
tion data were used 31 times as the sole separation criteria
and 47 times in combination with the other two ancillary
Iayers. Elevation data helped in situations where disparate
land-cover types were in close proximity to each other. The
continuous nature of the elevation data allowed interactive
adjustment of the separation criteria. Altogether, elevation
and ecoregions data were used, either alone or in combina-
tion, to solve 127 occurrences, or 67 percent, of cluster con-
fusion during the conterminous U.S. data base construction.

Combining small (<1,000 pixels) land-cover classes was
determined by spatial association and similar phenology as
depicted in the NDVI multitemporal characteristics, Using
these criteria, 70 cluster segments from different parent clus-
ters were merged into 28 classes in the final database.

Land-Cover lssues and the Multisource Data Approach
It was apparent early in the U.S. land-cover work that com-
mon approaches for applying ancillary data in labeling and
postclassification would not perform well. Within small geo-
graphic regions, elevation data can often be used to sort and
(or) subdivide spectrally similar classes based on models of
terrain-vegetation relationships. However, because of the
Iarge latitudinal range of the United States, a single elevation
threshold could not be used to divide disparate land-cover

types that had similar phenologies defined by their Novt
Breenness curves and belonged to the same spectral-temporal
class. As one moved northward, a given elevation threshold
had to be adjusted "downslope" to compensate for the di-
minishing length of the growing season, making establish-
ment of "global" models difficult and impractical. In many
instances, the frost-free period was a more effective ancillary
data source; however, it may be more difficult to obtain in
global coverage than elevation data,

Experiences from the conterminous U.S. Iand characteri-
zation study suggest that classification confusion was most
often related to climatic and anthropogenic factors. Climatic
influences include the simple latitudinal and elevational
Iimits on the growth of vegetation. Land-cover types that
were often found to have similar spectral-temporal I\tovt sig-
natures included irrigated agriculture and forest, coastal wet-
Iands and desert shrubland, and tundra and desert
shrubland.

Four types of confusion were encountered: (1) those be-
tween natural landscapes, (2) those between natural and an-
thropogenic landscapes, (3) those between anthropogenic
landscapes, and ( ) undistinguished outliers. These types of
problems probably will occur in any continental or global
Iand-cover classification effort.

Narunar, Larvoscarr Colrusrolt,
Confusion between natural land-cover types is frequently in-
fluenced by climatic factors. Many of these problems are re-
lated to topography and are easily solved using digital
elevation data, when available at the appropriate resolution.
However, for mountain ranges that cover large latitudinal
distances (e.9., the Rocky Mountains of North America or the
Andes of South America), elevation influences vary. The

PE&RS



/ .
,i t?

i F,,
i f  

. '
- t-lF=-

-,f';o.
,T

Figure 2. Spatial distribution of cluster 35.

Percent
Name
Landform
PNV-
Land Use
Soi ls

TlsLe 3,  PrRcEnr Co-OccuRnErucE or CLusreR 35 wlrHrN SeLrctEo
Econectot'ts.

Attribute Attr ibute Value

with ccoregions, are a suitable substi tute for thc frost-free pe-

riod. Common natural landscapc confusion encountered in-

cludcd areas rvith low seasonal NDVI values such as tundra,

dcscr t  shrub land,  and coas ta l  rve t lands .

Nnlunnl-Ats'r'I tRoPoc!;NIC L'lwoscaps Coxt'uston-'
Sini lar i ty bctrvcen natural and human-inf luenced landscape-s

I i .c.,  rvi ldland forcsts and grasslands vorsus agricultura] landl
rvas thc most common landscape confusiot l  in the U.S. data-
base. I t  takcs many forrns and can bc addrcssed using several
anci l lary variablcs. A cotnmon problem is agricultural vege--

tat ion sharing the sane spcctral-temporal prof i les as natural
vcqctat ion. In somc cases, alt i tude is a factor, rvhi le other
.oJ"s arc inf lucnccd by the spatial patterns of rainfal l  or soi l
tcmpcraturcs. Alt i tude-relatcd problems can be solved '"vi th

digital elcvation data. Thc othcrs may be corrcctcd lvi th
cif l icr cl imatc variablcs or ccorcgions.

ANlrrnopocriNlc LANDSCAPE CoNFUSIoN.
Land managcmcnt  and sc t t lement  p rac t ices  car tse  complex
pr<;blcms in lanrlscapc confusion. I f  the confusion is inter-
ipcrscd, corrcct ing i t  is ncarly irnpossiblc. \Vhen the confu-
s ion  is  spat ia l l y  separa tcd ,  ecoreg ions  are  the  most  log ica l
anc i l la ry  var iab lc  fo r  pos tc lass i f i ca t ion  s t ra t i f i ca t ion '

Urunrs lrNcutstt l tD Ou'r l t trR Coh*I 'usloN.
A cer ta in  amount  o f  con fus ion  is  caused b f  image ar t i fac ts ,
mixed p ixe ls ,  and a tmospher ic  contaminat ion  There  are
rarcly good stratcgies to solve thesc types of problems.

4 6 . 6
Central  Great  Pla ins
Irregular  p la ins
Blucstern/grama prair ic ,  b luestem prair ie
C rop land ,  c rop land  w i l h  g raz i ng
Dry mol l isols

Percent
Name
Landform
PNV*
Land Use
Soils

I  l . J

Southern and centra l  Cal i fornia p la ins and hi l ls
Irregular plains, tablelands, Io'.v mountains
Cal i fornia oakwoods,  chaparral ,  Cal i fornia steppc
Open rvoodland,  grazing
Light colored soils of subhun'rid rcgions

Percent
Name
Landform
p\n/ *

Land Use
Soi ls

Texas Blackland Prair ies
I r " o o " l " r  n l e i n c

Bluestem, needlegrass,  buf fa lo grass
Cropland
Vert isols

* potential natural vegetation

frost-free period r,vas found to rcpresent adequatcly thc inflr-r-
ence of lat i tude on elevation zonation of vegetation in the
conterminous U.S. study, and is l ikely to be useful in othcr
regions of the world, Elevation data, used in conrbiuation
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TreLE 4, Pencerur Co-Occunneruce or Clusrgn gs wrs Lnlo-UsE AND LAND-
Coven (lulc) Dnre ev Ar.loensoru Leveu ll Cnreeontes'

Percent Category

TeaLE 6, Fnosr-Fnee Pentoo Srnrtsrtcs ron CrusreR gs.

Statistic Days

78.00
5.42
5 . 1 8

209
44

338
48

180
n i )

Cropland
Evergreen forest land
Shrub and brush rangeland

Mean
Std. Dev.
Maximum
Minimum
Mode
Median

Methods for Solving Land.Cover Confusion in the
Conterminous United States
The following three examples illustrate working solutio^ns for
landscape coifusion encountered in characterization of the
conterminous United States. Original cluster 35, an example-
of natural-anthropogenic landscape confusion, was described
as mostly winter wheat in the central United States and Pa-
cific Noithwest, but also included a significant area of cool
season grasslands in the California hills. Labeling was based
on ancillary data (see Tables 3 to 7) and the class multitem-

TlaLe 5. PEnceu Co-OccunneNcs or Clusren 35 wtrHtN Seucreo Mruon
LANo REsouRcE AREAS.

poral Nnvt curve [Figure 3). The disiributiol of the cluster
within several ecoregions with similar attributes indicated a
suitable separation criteria. Pixels within five ecoregions

[Plate 1), all located along the Pacific coast and containing
open woodland or chaparral Iand cover, were separated by
an overlay procedure to form new class 150, and the remain-
ing pixeli became new class 13. Class 150 was subsequently
la6eied as containing annual grasses, manzanita, oak, and
white pine; class 13 was described as winter wheat.

In another example of natural-anthropogenic confusion,
cluster 57 was identified initially as agricultural Iand cover

Attribute Attribute Value TISLE 7, ELEvlrtoru STelslcs FoR CLUSTER 35.

Statistic FeetPercsnt 77,8
Name Central Rolling Red Prairies
Land Use Range/grazing (40%); croplw.wheat (20%);

woodland/urban/pasture (20%)
Elevation 300-500m
Topography Dissected plain, undulating to gently rolling hills
AAP1 625-900mm; maximum in spring

Mean
Std. Dev.
Maximum
Minimum
Mode
Median

1 ,469
897

7,068
1

200
1 , 3 6 1

AFFP3 190-230 days
PNV4 Mixed prairie (indianBrass, bluestem); trees/ehrubs

AAT,

Percent
Name
Land Use

Elevation
Topography
ArtPl
AAT,
AFFP3
PNV{

74-78"c

9 .9
Central Rolling Red Plains
Range/grazing (60%); qoplw.wheaVsorg. (35%) ;

irrig. (5%)
500-900m
Dissected plains
500-750mm; maximum in sPring
14-18'c
185-230 days
Mid/tall grasses (bluestem, sand sagebrush, gramasJ

TneLE 8. DEscRrpnoN or Ontctt'uu CLusren ss.

35.0 Class 35
35.1 General-main area is in Kansas and Oklahoma. Some in

Washington, Oregon, and California.
35.2 Groups

35.2.i Kansas/Oklahoma - winter wheat with some rangeland.
35.2.2 OregonlWashington-eastern parts of States near Co-

lumbia River. Winter wheat in east. AIso found in Wil-
lamette Valley.

35.2.3 California-cool season grasses.

o
z

" sils--A1r- dio- dn 
' 

its tiz 
' 

aiso 
' 

stzt 1u25 Przo
End of Biweekly Period

Figu re 3. Mu ltitemporal normal ized d ifference vegetation
index plot for cluster 35.

Percent 6.7
Name
Land use

Texas Blackland Prairie
Crops/cottorVsorghum (40%); pasture (45%)

Elevation 100-200m
Topography Level to gently rolling dissected plain
AAP' 750-1150mm; maximum in spring and fall
AAT, 77-27"c
AFFP3 230-280 days
PNVa Prairie (bluestem) with oaVelm savanna along river

Percent 5.2
Name Sierra Nevada foothills
Land use Grassland (75%); dryland ag. (5o/o); brush/open forest

(2o%)
Elevation 200-500m with peaks to 1200m
Topography Rolling to steep dissected hills and low mts.
AAP' 350-900mm; dry hot summers, cool moist winters
Au{T'z 13-18"C
AFFP3 200-320 days
PNV4 Annual grasses, shrubs (chamise, manzanita),

trees (oaVpine)

laverage annual precipitation
2average annual temperature
raverage frost-free period
apotential natural vegetation
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in the Midwest, but mostly coniferous forest elsewhere. The
distribution of elevation for original cluster 57 (Plate 2) was
positively skewed toward low elevations (less than 1,500 ft).
Interactive visualization of the data permitted examination of
possible subdivision thresholds and their resulting spatial
distributions, Accordingly, spatial context was considered
along with the ancillary data for each stratification decision.
Cluster 57 was subsequently subdivided using a 3,000 ft ele-
vation threshold and divided into two new classes: class 156,
which contains lodgepole pine, Douglas fir, and aspen, and
class 34, containing wheat, soybeans, corn, and pasture (see
Plate 2).

Figure 4 shows an example of multistage stratification
using ancillary data applied to a more complicated form of
cluster confusion. Original cluster 5B presented a challenge
to Iabel and stratify successfully because it contained several
kinds of landscape confusion. The cluster had portions of
natural, anthropogenic, and mosaic landscapes, as well as
undistinguished outliers. Using a three-step process, cluster
58 was subdivided into six classes in the final data base (Ta-
ble 9). First, class 55 was subdivided using the ecoregions
data (see Figure 4, e); pixels within four ecoregions located
in the southeastern plains and mid-Atlantic and Gulf coastal
plains were included in this class. Class 55 was labeled a
cropland/woodland mosaic, with predominant vegetation in-
cluding oak, pine, soybeans, corn, cotton, and peanuts (see
Table 9). The rest of the pixels of cluster 58 were stratified in
two stages (see Figure 4), first into two areas and second into
smaller regions, some of which were merged with parts of
other clusters to form the final class structure.

Classes 47, 777, and 93 were stratified using both ecore-
gions and elevation (see Figure 4, de). As a group, they were
either within the ecoregions of the Northwest coastal moun-
tains or between 5,500 and 72,OOO ft in elevation in remain-
ing ecoregions (except within those defining class 55). Class
47 was further stratified by the ecoregions of the central and
northeastern plains. This cropland/woodland class was dom-
inated by corn, soybeans, sorghum, and mixed woodlots (see
Table 9). Class 93 was further divided by the ecoregions of
the Appalachian }{ountains and northeastern uplarid regions.
This class was labeled southeast deciduous forest, consisting
mostly of oak, hickory, and some mixed cropland. Class g3
was small and was subsequently merged with portions of
two other parent clusters. Class 1L7, western coniferous for-
est, consisted of all the pixels from cluster 5B within the
Northwest coastal range ecoregions above 5,b00 ft in eleva-
tion, mostly in the Rocky Mountains. This coniferous forest
class was dominated by ponderosa pine, lodgepole pine,
western white pine, and Douglas fir (see Table 9).

The remaining two classes, 36 and 136, were initially
stratified together using elevation (less than 5,500 ft) and
ecoregions other than the Northwest coast and the southeast-
ern plains (see Figure 4, de). Class 136 was subdivided by
the ecoregions in the northwest Great Lakes and northeait
highlands regions, This class merged with another cluster
segment and is a mixed forest composed mostly of oak, ma-
ple, ash, jack pine, and red pine. The final cluster segment,
class 36 (cropland and pasture), consisted mainly of iorn,
soybeans, and hay pasture {see Table 9) and waj contained
within the northwest Great Lakes ecoregions.

The above procedures demonstrate flexible and interac-
tive approaches to land-cover regionalization combining
clustering procedures with postclassification stratification
and merging. The process developed for the conterminous
U.S. land database provides a methodology that can be ap-

plied to global land characterization, given the availability of
appropriate satellite and ancillary data.

Data Requlremenb and Sources for Global Land-Cover Characterization
The global change research community is increasingly orga-
nized in their call for the development of global land-cover
databases. The IGBP, for example, has identified land-cover
data as a top research priority (IGBP, 1990). The IGBP has fur-
ther clarified this requirement by specifying that 1-km AVHRR
data are the logical basis for global land-cover data sets (lcrr,
1992). An initiative is underway to organize the multitem-
poral 1-km AVHRR data needed for a global land-cover map-
ping effort. However, a parallel effort is needed to organize
the multisource data required to permit accurate global land-
cover characterization.

Class labeling requires data that support the identifica-
tion of land cover, vegetation, and. other environmental char-
acteristics of individual land-cover regions. For this purpose,
consistent, detailed, and spatially comprehensive vegetation,
land-cover, and soils maps are especially useful. However,
such data with continental coverage are rare. Although not
ideal, local or regional maps are valuable, particularly if ap-
plied to visual interpretation rather than automated class la-
beling. Because methods of visual interpretation for class
labeling are more flexible and adaptive, data requirements
are less rigid. However, additional data may be needed for
the more rigorous postclassification refinement application.

Postclassification refinement requires more control and
consistency in ancillary data. These data must (1) span the
entire continent; (2) serve as surrogates for the climatic, eco-
logical, or anthropogenic factors that create spectral or multi-
temporal class confusion; (3) contain the qualitative or
quantitative information that conelates to the sources of con-
fusion; and (a) have compatible geographic scale and loca-
tional accuracy.

Global Data Requirements
The minimum set of ancillary variables needed for postclas-
sification refinement contains digital elevation data and
ecoregions. Both data types are likely to be available for con-
tinental mapping. Climate variables, particularly the frost-
free period and monthly precipitation, are also desirable but
are less likely to be available in a suitable form.

Drcrran Elnvanroru DRra,
A global digital elevation data set, ETOPOs, is currently avail-
able from NoAA's National Geophysical Data Center. How-
ever, because of its approximate resolution of 10 km (based
on a cell size of 5 arc minutes), it is inadequate for rep-
resenting vegetation patterns related to elevation zonation in
irregular terrain. Several organizations have programs under-
way to develop 1-km global digital elevation models (oeu).
The U.S. Geological Survey, with the National Aeronautic
and Space Administration, is investigating several options
for generating a global DEM. The Committee on Earth Obser-
vation Satellites is also promoting an multiagency effort to
prepare a global DEM. It is likely that appropriate elevation
data soon will be available for a global land-cover mapping
effort.

Econrcrorus.
There are several global ecoregion frameworks that can be
used for land-cover characterization. The U.S. Forest Service
has deve)oped ecoregions based on climate, climax vegeta-
tion, and soils (Bailey, 1989; Bailey and Cushwa, 19Bi). Re-
searchers at Moscow State University have mapped two
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Plate 1. Postclassification stratiflcation of cluster35 into class 13 (green) and class 150 (red).
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ecoregion frameworks for the globe, One is based on climate,
soils, and potential natural vegetation, and the other includes
those plus current land use (Alekseyev et al., 7gB8). A draw-
back of these products is that their minimum mapping unit
(map scale 1:15,000,000) is more coarse than 1-km AVHRR
data, Small-scale data, however, may be the best available
sources. Although there are excellent national ecoregion
interpretations, it is unlikely that they can be combined to
form consistent continental coverage. However, these data
can contribute effective labeline information.

Cnvarr Vam,A,sr.ss,
To use climate data for postclassification stratification, it is
necessary to spatially interpolate surfaces for each variable.
Adequate representation of precipitation, temperature, or
frost-free period require enough stations so that major re-
gional patterns are depicted. Global monthly temperature,
precipitation, and atmospheric pressure climatic data are
available (Vose ef al., tgg2); however, the spatial distribution
of available stations may not be adequate for postclassifica-
tion analyses at a 1-km resolution.
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Global Data Sources
The United Nations Environment Programme Global Re-
source Information Database is one source for elobal and na-
tional data sets (UNEP, 1990). Many countrieslincluding
Australia, Canada, and the former Soviet Union-have the-
matic data sets equivalent to the ecoregions data used in this
research (Omernik, 1987). Anci)lary data sets are available,
both in global coverages (Matthews, 1985) and national cov-
erages (for example, Canada (Wiken, 1986; Ecoregions Work-
ing Group, Canada Committee on Land Classification, 19Bg)
and Australia (Walker ef o/., 1985)).

Summary and Conclusions
Ancillary data provide information crucial to the success of
large-area land-cover characterization based on NOAA A\|HRR
data. They contribute essential evidence for labeiing and re-
fining land-cover classes where differing types a.e i6p-
resented by a single spectral-temporal signature. The
attributes of ancillary data, used in conjunction with the spa-
tial distribution of a spectral-temporal region, are the basis
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Plate 2. Postclassiflcation stratification of cluster 57 into class 34 (orange) and class 156 (green)'
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Figure 4. Postclassification processing of
cluster 58.

for selecting the appropriate ancillary variable(s), choosing
the most reisonabie threshold(s), and making a division.

The challenge of characterizing the land surface at global
scales is to analyze larger areas while extracting essential in-
formation from multisource data. Processing of global data
sets presents new computational and interpretational chal-
lenges. Large areas possess great variation in climate, terrain,

TreLE 9, Ftnel Cuqss DescRtprtorus ron CLusteR sa Seci,4eNrs.

Class
No. Cover type Primary vegetation types

3 6

5 5

9 3

177

1 3 6

Cropland./pasture
Cropland/woodlots

Woodland./cropland

Mixed-foresVcrop

Western-conifer

Northern-forest

Corn, soybeans, pasture/hay
Corn, soybeans, sorghum,
mixed-woodlots
Mixed-oak, pine, soybeans,
corn, cotton, peanuts
Oak, hickory, mixed-pine,
mixed-crops
Western white, ponderosa,
Iodgepole, douglas fir
Oak, maple, ash, jack-pine,
red-pine
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and vegetation, compounding spectral-temporal confusion
among disparate land-cover types, Because a global effort to
characterize land cover will probably incorporate a continen-
tal strategy, continents crossing the equator (i.e,, Africa and
South America) may pose more complex problems. Similar
vegetation mosaics affected by different growing seasons in
the Southern and Northern Hemispheres may exhibit signifi-
cantly different spectral-temporal signatures; however, the
basic types of landscape confusion discussed in this paper
are expected.

As larger areas are studied, more advanced methods will
be necessary to understand satellite and ancillary data rela'
tionships. New techniques in data exploration and visualiza-
tion will permit analysis of ancillary data and may reveal
complex relationships in the data that are vital in explaining
Iand-cover characteristics. Although automated techniques
may afford simpler, more efficient methods for doing such
work, the interaction of the analyst remains the key to the
process of postclassification stratification of large areas be-
cause of the complexity of the decision process and the re-
quirement for expert knowledge and reasoning. Therefore,
methods should be developed that assist rather than replace
the analyst,

The success of global land-cover analysis, central to fu-
ture global change research, will depend on (1) the availabil-
ity of global satellite coverage, (2) the quality and level of
information within available ancillary data to solve areas of
confusion, and (3) the evolution of improved techniques for
extracting information from both types of data.
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