
Long Sequence Time Series Evaluation
Using Standardized Principal Gomponents

Abstract
The potential of using Standardized Pfincipal Components
for the analysis of long time series of spatial environmental
data is assessed using a series of 36 monthly AWRfl-derived
xnvt images for Africa for the years 1986-88 as an illustra'
tion. The first component is found to represent the charac-
teristic NDw rcgardless of the season. The second, third, and
fourth components relate to seasonal changes in NDw. The
fifth and sirth components uncover o sensor-reloted drift in
the NDI/I values due to successively later equatorial crosslngs
of the NoAA-s satellite. The seventh and eighth components
illustrate NDW anomalies related to significant EI Ninol
Southern Oscillation (ENSz) events, primarily in southern
Africa. The technique is shown to be q comprehensive indi-
cator of change events in time series data that is sensitive to
peilodic and aperiodic events alike.

lntroduction
Principal Components Analysis (PcA) using Unstandardized
Components has long been used in remote sensing as a data
compression tool. The first two components of Standardized
pcA have also been used for land-cover classification, but
with mixed results (Tucker ef o1., 1985; Townshend ef a/.,
1987). However, a recent study has suggested the potential of
using PCA and Standardized Components as a tool for the
analysis of change in spatial time series data (Eastman,
1992a). In that study, a PcA procedure capable of analyzing
up to 12 bands was used to studv artificial data sets and
monthly avgRn-derived Normaliied Difference Vegetation
Indexr (t'uvt) imagery for Africa over the course of a year
and for the same month over four years. The results showed
that the technique is able to identify both cyclic seasonal ele-
ments of change and isolated change events. In this study, a
modification of the PcA procedure allowing a large number
of bands to be analyzed is used to study the potential of
Standardized Principal Components for the analysis of long
time series data sets.

Principal Components Analysis undertakes a linear
transformation of a set of image bands to create a new band
set with images that are uncorrelated and are ordered in
terms of the amount of variance explained in the original
data (Johnston, 1980, pp.727-7le;Mather, 7987, pp.206-
218), Most commonly, the technique has been used in re-
mote sensing as a procedure for data compression by dis-
carding minor components with little explanatory value.
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With Unstandardized PCA, the transformation coefficients are
developed by computing the principal eigenvectors of the
varianie/covarianci matrix. In this way, bands with higher
variability contribute more to the development of the new
component images. With Standardized pca (Singh and Harri-
son, 1985) the eigenvectors are computed from the correla-
tion matrix. The effect is to force each band to have equal
weight in the derivation of the new component images and is
identical to converting all image values to standard scores
(by subtracting the mean and dividing by the standard devia'
tion) and computing the Unstandardized Principal Compo-
nents of the results.

Eastman [1992a) has shown that, when the image data
set consists of a single variable time series of environmental
data, the first standardized component indicates the charac-
teristic value of that variable while the second and all re-
maining standardized components represent change elements
of successively decreasing magnitude, In addition, both East-
man (1992a) and Fung and LeDrew (1987) indicate that Stan-
dardized PcA appears to be more effective than
Unstandardized pca in the analysis of change in multi-tem-
poral image data sets.

Long Sequence Time Series PCA
In this study, the PCA procedure of the IDRISI software system
(Eastman, 1992b) was modified to allow the computation of
up to 62 components in order to examine the utility of the
approach for the investigation of long time series data. To fa-
cilitate data entry, image file names are entered by means of
a standard IDRISI time series file-a simple Asctt file of image
names that is used in a variety of time series procedures
such as image display sequencing and time profiles. Output
consists of the component images and a set of data tables.
Full tables of the variance/covariance and correlation matri-
ces, eigenvalues and eigenvectors, and component loadings
are provided for the first 12 components. In addition, a data
file consisting of the eigenvalues and the component load-
ings for all components is created in a format suitable for in-
put into a spreadsheet.

To test the technique, a 36-month sequence of ar,'nnn-de-
rived wovt data was analyzed for the continent of Africa. The
data were extracted from the NGDC Monthly Generalized
Global Vegetation Index data set within the NOAA-EPA Global
Ecosystems Database (NOAA-EPA, 1992). The data set used
consisted of 1O-minute resolution raster data sets of NoVI for
the months of January 1986 through December 1988, scaled
by NoAA to an B-bit integer range. An ocean mask image
from the U.S. Navy Fleet Numerical Oceanographic Center
Global Elevation data set, also within the NOAA-EPA Global
Ecosystems Database (NOAA-EPA, 1992), was used to mask
water areas. Assigning the value zero to all water areas as-
sures that these regions are forced to show up in the first
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lThe NDVI index is derived by dividing the difference between the
infrared and red images by the sum of the infrared and red images,
i.e,, NDVr = (IR - R)/OR + R).



Plate 1. Standardized Principal Component lmages 1 through 8 derived from monthly NDV data, January 1986 to December
1988.

component, thus removing them from all change compo-
nents,

The 36'Month Africa Time Series Experiment
The interpretation of the results of using standardized pcA
on 36 monthly NDvI images for Africa is based on the exami-
nation of the component images (Plate 1) and the graphs of
the component loadings (Figure 1). The loading charts illus-
trate the correlation between each of the 36 monthly images
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and the component being diagrammed. For example, if a
month shows a strong positive correlation with a specific
component, it indicates that that'month contains a latent
(i.e., to some extent hidden or unapparent) spatial pattern
that has strong similarity to the one depicted in the compo-
nent image. Similarly, a strong negative correlation indicates
that the monthly image has a latent pattern that is the in-
verse of that shown (i.e., with positive and negative anom-
alies reversedJ. To enhance the visualization of the
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Figure 1, Loadings (Y-axis) of the original monthly images (X-axis) on the first eight standardized principal components. Loadings
can equally be thought of as the correlation between the original images and the derived components.

PE&RS 993



comDonents in Plate 1, a linear contrast stretch was applied

to ih-e-output images of the pca software program' In the case

of the firsi compo-nent in Plate 1, the minimum and maxi-
rn.* u"lutt were used as the bounds of the stretch' For all

other components, however, stretches were forced to be sym-

t"rttiJ a6out the value 0 (the no change value) with a mild

saturation (1 percent maximum) in the tails,'zThis no change
position has a vellow color while positive and negative.
lnomalies show up in increasing levels of green or red/

bro*tt respectively' In all cases, water areas were masked to
have a black color.

The first chart in Figure 1 illustrates the loadings from

the first two Standardized Principal Components, Compo-
nent 1 (Plate 1 and Figure 1) cleally reqres€nts the character-
istic rovl integrated oi'er ali seasons-ihe loadings are.high
and very consistent over the entire period, In effect, this
component indicates that the majoielement of variability in
xovr is that which occurs spatially,

Component 2 illustrates the first change component -

the most'prevalent element of variability in wovt that is un-
correlated'with the characteristic pattern in Component 1' As
can be seen by the loadings in Figure 1,- this component
shows an annual cycle indicating that this second- major ele-
ment of variabilityin NDVI in Afiica is that caused by the
winter/summer dichotomy, Summer months correlate pos-
itively with the componeirt while winter months correlate
neeat'ivelv.'The negitive correlation thus indicates that the
*iitur m"onths tendto have an inverse pattern to the summer
Dattern shown.^ 

The second chart in Figure 1 illustrates the loadings
from the third and fourth components, Component 3, like
Component 2, also shows an annual cycle, but this time it
indiiates areas that undergo strong changes in the late spring
and autumn periods. In Plate 1, Component 3, quite pJomi-
nent positive and negative anomalies are seen in the Guinea-
Cone6lic/Zambesian and Guinea-Congolic/Sudanic vegetative
traniition zones (White, 1983). These areas are south and
north of the central equatorial forest region, respectively.
These areas experience maximum vegetation peaks in the
late fall and la[e spring, respectively, as a result of the coin'
cidence of the sun's latitudinal position and the rainy sea-
son. In addition, the image shows a quite intriguing p-ositive
anomaly across the Sahel and into th9 Ethiopi-an higilands'
The paitern in the Ethiopian highland,c is easily explained-
the area normally experi-ences wet and dry periods at these
times. However, ihe interpretation of the pattern in the Sahel
is not so obvious. The latb autumn (the time at which the
positive anomaly is strongest) is normally a time of signifi-
cant decrease in biomass, yet the image for Component 3 in-
dicates that the vegetation index is abnormally high for this
time of year, This is also the time of the Harmattan winds, a
prevailing wind pattern out of the Sahara that lea{s to- signif-
icant am6unts of dust in the Sahel, Although further data
would be needed to confirm this, the evidence in the data
suggests that atmospheric dust is leading to a Sreater NDVI .
-ia-surement than inticipated. The Sreater attenuation of the
shorter red wavelengths compared to the infrared wave-

lengths would naturally lead to a larger NDvl measurement
thai expected. Figure 2 illustrates a time series-profile over
the 36-rironth sequence of mvt measurements for a repre-
sentative area inihis region. As can be seen, the expected
sinusoidal shape of thelnnual NDVI pattern is broken by a.
distinct shoulder in the periods from November until March,
the period in which the Harmattan winds are normally expe-
rienied. The suggestion is that this shoulder results from an
abnormally higliipparent NDVI as a result of atmosphe-ric
dust. In addition, [he pronounced drop in NDVI just before
the late summer green-up period may relate to the cleansing
of atmospheric dust by early rains. These rains would re-
move duit from the aii, but the vegetation would not yet
have had time to respond. Thus, we see a drop to the mini-
mum ND\n level, followed by an increase as the green-up pe-
riod proceeds.

As can be seen in Figure 1, Component 4 shows a pro-
nounced and consistent semi-annual sequence, Examination
of the component image (Plate 1) clearly shows that this il'
lustrates the regions subject to a double precipitation maxi'
mum due to the double crossing of the Inter-Tropical
Convergence Zone (compare, for example, to Figure 18 in
wMo (1984) that maps these areas).

Components S and O are particularly interesting. The
graph of loadings for Component 5 (Figure 1) shows a-pro-
gressive trend over the three-year period. The image of Com-
ponent 5 indicates a high positive anomaly in desert areas
inote the Sahara) and t[e lakes of East Africa' Clearly this is
illogical because it suggests that desert and water areas are
incieasing in NDvI over time. A time series profile f_or repre-
sentative locations within these regions (Figure 3), however,
confirms this trend in the data, As indicated in Tateishi and
Kaiiwara (1992), the NoAA-g satellite experienced a progres'
sive delay in the time of equatorial crossing (from 14:20 in
December 1984 to 16:10 in November 19BB), Ieading to suc-
cessively shallower solar angles and, hence, longer atmos-
pheric faths. Tateishi and Kajiwara (1992) state that the
effect of this is to diminish, through scattering, the shorter
red wavelength reflectances more than the longer infrared
wavelength ieflectances. As a result, the NDVI would ap-

2A 1 percent saturation forces the highest 1 percent of data cells to
take on the brightest color and the lowest 1 percent to become the
darkest color, rlgardless of actual value. Because the stretch was
forced to be symmetrical about 0 (no change], tle stretch was under-
taken using eird points such that a maximum of 1 percent would be
saturated in any tail.

3Because Africa spans the equator, seasonal terms (winter, sum-
mer, etc.) for the northern hemisphere have been arbitrarily adopted
throughout this article,
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Figure 2. Time series profile of monthly NDV for.a repre-
sentative site in the sahel affected by the positive anomaly
in Component 3, January 1986 to December 1988.
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Figure 3. Time series profiles of monthly NDVI for sites in
the central Sahara Desert and Lake Victoria, January 1986
to December 1988.
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pear to increase in these areas. Component 5 has thus de-
tected a known and sicnificant false trend in the NDvl
data. r

In addition to the svstematic trend in Component 5,
the loadings also show i somewhat irregular se'mi-annual
cycle such as that found in Component 4. Examination of
the time profiles in Figure 3, however, clearly illustrate
that the loading pattern is a composite of the cycles associ-
ated with an annual cycle in the Sahara and the semi-an-
nual cycle associated with the precipitation maximum of
the Iakes of equatorial Africa. Component 6 would also ap-
pear to relate to this sensor effect. As indicated by Tateishi
(personal communication, 1992) this progressive drift in
the NDVI output has the effect of decreasing the range of
NDVI in forested regions. This is i l lustrated by the decreas-
ing amplitude of the cyclic pattern of loadings on Compo-
nent 6. The semi-annual cycle is typical of that associated
with the double precipitation maximum of equatorial forest
areas (such as we see in Component 4), and the amplitude
is clearly decreasing. Similarly, the component image
(Plate 1) shows a strong negative anomaly in heavily for-
ested regions of the continent.

The analysis thus shows that, after the general geograph-
ical and maior seasonal effects, the next major agent of varia-
bility in the NDvI data over the three-year period was system-
related variability in the output of the AVHRR-derived index
itself. It should be noted that, once a change component has
been created, the effects of that component are then held
constant as subsequent components are calculated (fohnston,
1980, pp. 139-141). To the extent that Components 5 and 6
are able to describe these sensor system effects, later compo-
nents would thus be free of their influence.

Components 7 and B (Plate 1 and Figure 1) are also of
considerable interest. Both would appear to relate to EI-Nifro/
Southern Oscillation (rNSo) events spanning the 1986-88 pe-

riod. Late 1986 and 19Bz experienced a pronounced ENSo
warm phase, followed in 1988 by a sharp transition to an
nNSo Cold phase (WMO, 19Bg). ENso warm phases are typi-
cally associated with drought in southern Africa and en-
hanced precipitation in equatorial East Africa (WMO, 1984;
1987; 1989). The southern Africa ENSO pattern is clearly visi-
ble in the images of Components 7 and B in Plate 1' Simi-
Iarly, the loading charts for these components show-positive
corielations with 1987 and negative correlations with 1986
and 1988. It would appear that the two components show
the spatial progression of the drought. For example, in Com-
ponent 7, with a peak correlation in early 1987, the area
most strongly affected in southern Africa is Botswana, How-
ever, in Component B, with a peak correlation in late 1987,
the area most strongly affected has moved towards the east
coast. As noted in WMO (1gSgJ, the pattern for equatorial
east Africa did not show a typical ENso pattern during this
particular ENSO episode. We see this in the more typical
moist pattern for east Africa in Component 7 , giving way to a
drier pattern in Component 8.

The procedure developed for this analysis is capable of
producing as many component images as there are original
bands in the data. However, examination of Components 9
through 12 did not show any significant regional effects,
Rather, more localized changes appear to be brought out, As
a result, the analysis was stopped after the eighth compo-
nent. It is worth noting, howevet, that no clear guidelines ex-
ist for when to stop an analysis, In PcA, the strength of a
component (as reflected both in the eigenvalue and in the
range of loadings on that component) will be determined by
both the magnitude of the variability it explains and the area
over which that variability occurs. Thus, change elements in
time series analysis will be area weighted. Small magnitude
changes may come out in early components if they affect
large areas, Conversely, large effects may come out in later
components if they occupy only a small portion of the area
analyzed. Thus, it would not be unreasonable to examine mi-
nor components (such as those beyond component B in this
analysis) if very Iocalized effects were of interest.

Conclusions
It would appear from the above illustration that the ability of
Standardized Principal Components to uncover significant
change events over long time series is very strong, The ENso-
related precipitation patterns represent the most significant
anomalies to take place over Africa during the 1986-88 pe-
riod. Not surprisingly, these were lower in magnitude than
the effects attributable to seasonal changes. It is also interest-
ing that the procedure picked up significant anomalies in the
output of the sensor system itself, and that these were also
seen to be of greater magnitude than the ENSO events. How-
ever, as noted above, components are effectively area
weighted. The sensor drift effect is in fact quite small but af-
fects broad areas of the image (particularly the Sahara). The
EtrtSO effects occupy substantially less area but have a dra-
matic effect on natural ecosystems.

Standardized Principal Components Analysis would
thus appear to be a remarkably comprehensive tool for the
analysis of anomalies and trends in long time series data. It
is clearly very effective in isolating periodic seasonal effects.
However, it is equally effective in isolating trends in value
and variability (as with the sensor drift problem) and iso-
lated anomalous events. Given our general lack of techniques
for the abstraction of significant change events in long time
series image data, the technique should prove to be a major
tool in the areas of remote sensinq and cts.

alt is interesting to note the drop at the end of the sequence back
to approximately the zero correlation level. The majority of the No-
vember 1988 data and all of the December 1988 data were actually
derived from ruOae-rr, not NOAA-9.
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