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Shallow SeamFloor Reflectance and 
Water Depth Derived by Unmixing 

Multispectral Imagery* 

Abstract 
A major problem for mapping shallow water zones by the 
analysis of remotely sensed data is that contrast effects due 
to water depth obscure and distort the special nature of the 
substrate. This paper outlines a new method which unmixes 
the exponential influence of depth in each pkel by employ- 
ing a mathematical constraint. This leaves a multispectral 
residual which represents relative substrate reflectance. In- 
put to the process are the raw multispectral data and water 
attenuation coefficients derived by the co-analysis of known 
bathymetry and remotely sensed data. Oufputs are substrafe- 
reflectance images corresponding to the input bands and a 
greyscale depth image. The method has been applied in the 
analysis of Landstat TM data at Hamelin Pool in Shark Bay, 
Western Australia. Algorithm derived substrate reflectance 
images for Landsat bands 1 ,  2, and 3 combined in color 
represent the optimum enhancement for mapping or classi- 
fying substrate types. As a result, this color image success- 
fully delineated features, which were obscured in the raw 
data, such as the distributions of sea-grasses, microbial 
mats, and sandy area. 

Introduction 
Multispectral scanners, mounted on aircraft and satellites, 
are valuable tools for mapping the Earth's surface. Passive 
sensors such as the Lansat Thematic Mapper (TM) measure 
reflected radiation from visible and infrared ranges of the so- 
lar spectrum. Many investigators have shown the value of 
applying satellite scanner data to mapping the shallow water 
environment, particularly utilizing the visible wavelengths 
which penetrate to greater water depths (Smith and Baker, 
1981). 

A common mapping technique is to perform a classifica- 
tion on the multispectral data to show substrate types. The 
major problem with classification of raw digital numbers 
(DNS) is that variations in water depth may alter the spectral 
characteristics of the substrate. The aim of this paper is to 
outline all the effects which contribute to the raw satellite 
DN value and, with this understanding, derive an algorithm 
which allows the mapping of the spectral characteristics of 
substrate materials free from the confusing influence of 
depth. 

The situation is complex because radiation must pass 
through two media-atmosphere and water-before interacting 
with the substrate and again traversing the same media (see 
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Figure 1). Also, atmospheric back-scatter and background 
water surface reflectance may add to the signal. Assuming 
that it is possible to look at only the signal emerging from 
the water mass, we must deal with a complex optical inter- 
action of parameters which include. 

substrate reflectance, 
water depth, and 
material in the water column [e.g., organic matter, suspended 
sediments, and dissolved substances (JerIov, 1976; Jupp, 
1988]] 

The material in the water column influences the amount of 
absorption and scattering of radiation. This effect, which var- 
ies with wavelength, is represented by the coefficient of 
water attenuation (KJ and this property is important when 
considering the effect of depth on the amount of radiation re- 
turning to the sensor. 

In general, previous workers have attempted to process 
the data for individual parameters without incorporating 
other effects in the model. Numerous studies, for example, 
attempt to individually measure suspended sediment con- 
centration (sSC) (Amos and Alfoldi (1979) and various stud- 
ies summarized in Curran and Novo (1988)), salinity 
(Khorram, 1982), and chlorophyll concentration (Gordon et 
al., 1980; Stumpf and Tyler, 1988). These studies derive em- 
pirical relationships between concentration remotely sensed 
radiance by obtaining simultaneolls field measurements. 
These derived relationships, which exlude the effects of 
other materials, water depth, and substrate reflectance, are 
scene specific and, impractically, require ground calibration 
at the time of overpass. 

Substrate enhancement algorithms are generally rare. A 
useful method is that of Lyzenga (1981) which produces a 
single index value of substrate reflectance for each pixel 
based on the ratio of the logarithm of radiances (xh) in two 
bands. If x, is plotted against x,: pixels of the same substrate 
type should plot on a straight lmne. If the substrate reflec- 
tance changes, the data points will fall on a parallel line. By 
simple geometry, it is possible to derive an index for sub- 
strate spectral variability. The problem is that the single im- 
age produced from two bands, while indicating change in 
bottom type, does not indicate the bottom spectral character- 
istics. Neither does it derive depth information. 

Methods for deriving bathymetry from multispectral data 
generally incur problems when the substrate reflectance var- 
ies appreciably (Nordman et al., 1990; Jupp, 1988). The mul- 
tiple band method of Nordman et al. (1990) requires the 
regression of known depth points against the logarithm of 
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Landsat TM radiance values to determine scene coefficients. 
This requires available bathymetric data for each scene to be 
processed. Although coefficients and water depths are deter- 
mined separately for various pre determined categories of 
substrate, misclassifications and substrate variations within 
these zones will induce depth errors. The depth of penetra- 
tion (DOP) algorithm of Jupp (1988) is a step determination of 
depth zones based on a depth of penetration threshold for 
each band. Threshold values are determined from the maxi- 
mum deep-water radiances, and for Landsat TM only six 
water depth zones or depth values can be derived. Although 
in some areas dark substrates such as sea-grasses may be 
misinterpreted as deep water, the technique is probably the 
most reliable for use in navigation. Jupp (1988) discusses 
ways of interpolating depth and broadly classifying substrate 
types within zones, although the variation of both of these 
factors may confuse the result. 

In this paper, we take a different approach by deriving 
both substrate reflectance and depth from the same algo- 
rithm. The aim is to derive substrate reflectance factors in 
each band processed and, as a by-product, produce a contin- 
uous grey-scale depth image. At this stage of our research, 
we assume relatively clear water and only minor variations 
in the concentration of water column materials. 

Theory 
Light entering a water column is subjected to absorption and 
scattering from both the water-body and the substrate (Figure 
I). The attenuation of light energy, increasing with depth, 
due to light absorption by water molecules, dissolved sub- 
stances or particles (both organic and inorganic) and due to 
scattering from suspended particles, may be described by 
Equation 1 below. 

T, = e-w (1) 

Here T, is the fraction of the radiant flux at a depth z com- 
pared to the incident radiant flux, and cr is the volume atten- 
uation constant assuming a homogeneous medium (Jerlov, 
1976). Jupp (1988) has given a more generalized version of 
this formula shown by Equation 2, to allow for the effects of 
the substrate reflectance. 

Here LE is the radiance emerging from the water mass, Lb is 
the radiance of (wet) substrate material for no water cover 
(i.e., for z = O), L, is the radiance of deep water, and k is 
the effective attenuation coefficient for the water-body. 

It is preferable to look at reflectance properties rather 
than radiance because reflectance, of substrate and water col- 
umn materials, is a measurable quantity independant of illu- 
mination conditions. Because reflectance is the ratio of 
emergent radiance relative to the total irradiance, it follows 
that reflectance is proportional to radiance. This means that 
the water radiance equation of Jupp (1988) (Equation 2) can 
be normalized to reflectance; i.e., 

Method 
In what follows, it will be assumed that the water column 
reflectance, R,, due principally to suspended sediments and 
organic matter, remains constant over the scene. Before at- 
tempting to unmix substrate reflectance and depth parame- 
ters, the raw sensor count values or digital numbers (DNS) 
need to be converted to a term which estimates reflectance. 

Conversion of Sensor DN to Reflectance Estimates 
In practice, many other effects influence the amount of radia- 
tion recorded at the satellite or aircraft sensor (Figure l). 

This figure shows that light emerging from the water mass is 
also influenced by the atmosphere. The radiance transmitted 
by the atmosphere can be given by 

Here L, is the radiance from the water surface and all 
other symbols are defined below Figure 1. The total solar ir- 
radiance, I,  just above the water surface is described by 
Equation 5 (see Richards, 1986); i.e., 

Here To is the transmittance of the solar irradiance, E, 
and the case term arises because we are interested in the ver- 
tical component of the incident light energy. These factors 
determine the amount of direct solar irradiance which is 
added to the diffuse sky irradiance before being reflected. 
The radiance received at the sensor, L ,  is the sum of the ra- 
diance directly transmitted from the target, L, and the radi- 
ance due to atmospheric back-scatter, 4. Pixel radiance can 
be related to the count value, C(i.e.,DN), by Equation 6 below. 

Here G is the instrument gain and L,  is the instrument 

, ___ - - - -  
. . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  

. . . . . . . .  . . . . . . . . . . . . . .  

. . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . .  . . . . . .  . . . . . . . . . . . . . . . .  

reaching a sensor over a water mass. 
E, solar illumination at the top of the atmosphere 
T+,T, atmospheric transmittance 
ED diffuse sky irradiance 
R, reflectance from the water surface 
R, reflectance from molecules and particles in the 

water column 
R, substrate reflectance 
RE effective reflectance of the water body (not including 

e from the target transmitted by the atmo- 
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offset. Combining Equation 4 and 6 creates Equation 7 which 
relates C to the reflectance, RE, the standard quantity that we 
wish to examine more closely for substrate effects. 

Summing Equation 1 2  over N bands gives and equation 
for the water depth: 

Generally, the factors can be split into additive and mul- 
tiplicative influences on the water mass reflectance to make 
up the recorded signal. Raw Landsat pixel DN values are cor- 
rected to estimate the true reflectance in two stages by suc- 
cessively removing these additive and multiplicative effects. 

First, minimum value statistics for each band are col- 
lected for the scene. It is assumed that the lowest count 
value for a pixel is located where the water is relatively clear 
and deep, i.e., where L, is approximately equal to L. The 
radiance emerging from the water mass will be small, and 
the lowest value will represent all the additive components 
if we assume that the path radiance L, and T+ (measuring at- 
mospheric absorption) remain constant for a particular band 
over the scene. Therefore, C = C,,, and 

The aim is to unmix or solve for the substrate reflec- 
tances or a factor representing a, which is invariant with 
changes in water depth. This can be achieved by setting the 
constraint: 

where M is an arbitrary constant which standardizes the geo- 
metric mean of substrate reflectance for every pixel. Because 
reflectance is between 0 and 1, the value of M will, in a true 
sense, be positive and tend toward zero at 100 percent reflec- 
tance (i.e., Rb,= 1). We choose to set M =  0 for reasons of con- 
venience as explained later. 

Combining Equations 13 and 14 provides an estimate (Z) 
of the true depth (z): 

Substracting C,,, from every raw pixel DN gives 

Second, values for the instrument gain, G, and average 
solar irradiances, I ,  for the Landsat 5 sensor are found from 
the Landsat technical notes (Markham and Barker, 1986) and 
are used to further correct the data by means of Equation 10; 
i.e., 

Substituting this value into Equation 11 gives a solution 
for substrate reflectance: 

where RBI is the derived estimate of true substrate reflectance 
(Rbl). The values for Z and R,, are algorithm outputs which 
can be displayed as images by scaling the numbers into the 

The corrected pixel value C, estimates the reflectance 
term. Variations from true reflectance will mainly be due to 
atmospheric absorption and will increase toward the shorter 
wavelengths in a Rayleigh-type atmosphere (Forster, 1984). It 
should be noted here that the second stage correction for 
multiplicative effects is not absolutely necessary for deriving 
substrate parameters, although there are certain advantages. 
This will be discussed later. 

For the situation where the estimate for C,,, is valid, the 
effect of the subtraction in Equation 9 is to remove the major 
additive component (i.e., atmospheric back-scatter, Lp) and 
all but eliminate the effects of deep water radiance, L, (see 
Equation 3). 

byte (0 to 255) range. 
By setting M =  0, the geometric mean of substrate reflec- 

tance is forced to equal one, which effectively brightens the 
substrate over aII bands. The effect of the constraint may be 
viewed as inducing an error, Az, in the depth (i.e., 
Az =Z- z) which, conveniently if M =  0, will always be pos- 
itive. From Equation 16 it can be seen that 

and the estimate substrate reflectance (RBI) can be rep- 
resented in terms of the true reflectance (&) by 

There is a problem here because variations in Az will al- 
ter the intra-band (spectral) relationship or hue, as a conse- 
quence of differing values of kl. This means that the colors of 
the imaged substrate reflectance may change with variations 
in depth or substrate albedo. However, this may be overcome 
by using the quantity RBi(llzk~) SO that 

RBi(1/2kl) = Rbl(llzkl)eAz, (19) 

UnmWng Substrate Reflectance and Depth Parameters 
From Equation 3, the reflectance equation becomes 

The subscript i specifies the wavelength (band) for each 
equation and N is the number of such bands. Ri represents 
the reflectance-corrected Landsat data. Equation 11 is a con- 
venient base from which a to describe our method for un- 
mixing the effects of substrate reflectance, Rbl, from those of 
depth, z. 

Taking the logarithm of both sides of Equation 11 gives 

The true reflectance properties will then be scaled by the 
same constant for each band which varies between pixels. 
This means that the spectral hue of the substrate will be pre- 
served regardless of depth variations. This then represents 
the substrate enhancement that we set out to achieve. 

Application of the Method 
The approach has been tested using data from Hamelin 

Pool, Shark Bay, Western Australia (Figure 2). The area was 
selected because (1) it is characterized by shallow, clear 
waters of oceanic derivation; (2) detailed bathymetric data 
are available; (3) there are contrasting bottom types within 
each depth range; and (4) considerable research has been un- 
dertaken on the benthic ecology and sediment types (Logan 

In this set of equations where the depth is unknown and 
constant, the substrate reflectances %, are also unknown and 
vary. Assuming that the corrected sensor values approximate 
the water mass reflectances, Rl and that the water attenuation 
coefficients, k ,  can be derived, there are still N equations with 
N +  1 unknowns. Therefore, it is not possible to obtain a 
unique solution, yet a strategy is needed to map the multis- 
pectral features of the substrate independent of depth effects. 



and Cebulski, 1970; Hagan and Logan, 1974; Burne and 
Hunt, 1990). 

The data-sets used were a Landsat 5 TM multispectral 
image WRS 115-076 captured on 30 August 1986 (30-m pixel 
resolution) and precise bathymetric data acquired in the form 
of well located and closely spaced hydrographic soundings 
by the Australian Survey Office, restored to Australian 
Height datum and gridded as a raster image with a 50-m 
pixel resolution. 

As the water attenuation, k,, increases with longer wave- 
lengths, the signal (R,) becomes very small and immersed in 
sensor noise for deeper waters. Therefore, it was decided to 
use only the first three bands of the Landsat TM in which 
reasonable water penetration can be achieved (see Table 1). 

A certain amount of processing of the data was required 
before analysis. 

First, to enable direct comparison between the bathyme- 
tric information derived from analysis of the satellite data 
and that produced by the hydrographic survey, the Landsat 
TM data were registered (image to image) to the bathymetry 
(registered to AMG) and resampled to 50 m using billinear in- 
terpolation and a second-order polynominal (Richards, 1986). 
Plate l a  shows the resampled TM bands 1, 2, and 3 as red, 
green, and blue, respectively, and Figure 3 shows the grid- 
ded grey-scale bathymetry. Comparison of these figures re- 
veals several dark features in Plate l a  which do not 

Figure 2. Location map for test area. 

correspond to deeper water areas in Figure 3. Notable exam- 
ples are the dark area in the southern part of Hamelin Pool 
which corresponds to an area of benthic organic ooze that is 
mainly composed of diatoms (Burne and Hunt, 1990) and the 
bluish area in the northeast corner of the image which corre- 
sponds to the southern part of the Wooramel Sea-grass Bank 
(Logan and Cebulski, 1970; Davis, 1970). It is important to 
note that, apart from this area of sea grass, substrate colors 
are subdued in the raw data due to the dominating contrast 
effects of water depth variations. It is precisely this effect 
that this analysis is designed to remove. 

Second, Lansat TM bands 1, 2, and 3 were converted to 
estimate reflectance by the two calibration stages described 
earlier. 

Finally, it was necessary to determine reasonable values 
for water attenuation and coefficients (k) to Landsat TM 
bands 1, 2, and 3. For clear water of the type found in Hame- 
lin Pool, values for k should increase for longer wavelengths 
in the range recorded by Landsat TM (Jerlov, 1976). The co- 
registered bathymetry and Landsat data were used together 
with Equation 1 2  to derive these values. Sub-areas were cho- 
sen where substrate type remained relatively constant but 
depth varied. If these conditions are true, scattergrams of the 
logarithm of pixel reflectance (Rt, derived from Landsat) ver- 
sus depth (z, drived from bathymetry) should show a cloud 
of data with a well-defined axis (see Figure 4). Figure 4 
shows that the sub-area chosen is adequate in that substrate 
reflectance remains relatively constant for each band because 
the data cloud is strongly elongated. The slope of the regres- 
sion line through the data represents the quantity, - 2k,, (see 
Equation 12) and the ks determined were kt= 0.100, 
k,=0.130 and k3=0.194 m-I. 

Values of k are specific to the unit of depth (metres in 
this case) and are independent of atmospheric absorption or 
scaling effects on Rt (see Equation 12). This means that the 
values of k can be used for other Landsat TM scenes assum- 
ing that water column conditions are similar. Given that the 
Shark Bay waters are hypersaline (salinity just north of Ha- 
melin Pool is about 4g0/00 and increased to 65'/00 at the 
southern end of the Pool) the determined ks may not be ap- 
propriate for other scenes. In this case, consideration should 
be given to alternate approximation methods for water atten- 
uation derivation (e.g., Lyzenga, 1981). 

Having found suitable values fork, in each band, these 
values, together with the corrected Landsat pixel values, 
were inserted into Equation 16 to estimate bottom reflectance 
(Plate lb). Reflectance values were scaled for display so that 
0 and the maximum RBI equaled 0 and 255, respectively. In 
this image colors are independent of depth. Sea grasses and 
microbial mats show as cyan to blue whereas sandy areas 
show as red to yellow. 

Because chlorophyll absorbs strongly in band 1 (Gordon 
et al., 1980). the ratios of substrate reflectance RbZIRbl and 
Rb3/Rbi are effective enhancements for the presence of chloro- 
phyll. We present the latter ratio (see Figure 5) which ap- 
pears to give slightly better definition. Sea-grass areas show 
brightly in the northeast and are partly associated with tidal 
channels. Also, microbial mats are bright around the edges of 

Band Wavelength (nm) - 
1 450-520 
2 520-600 
3 630-690 



. (a) (b) (c) I 
Plate 1. (a) Landsat TM bands 1, 2, and 3 shown in red, green, and blue, respectively. Land is blacked out. (b) Algorithm derived substrate 
reflectance bands 1, 2, and 3 shown in red, green, and blue, respectively. This is a residual image after the removal of depth. (c) Satellite derived 
substrate reflectance and depth combined using the HSI procedure. The hillshaded depth image is substituted for the intensity of the substrate image 
(image b). 
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Figure 3. Hydrographic survey bathy- 
metry for Hamelin Pool. Depth 
soundings were scaled so that 11 
metres equaled a display DN of 255. 

Harnelin pool. Some chlorophyll is also detected in the area 
of organic ooze (bottom center of pool). 

Figure 6 shows the depth image (compare with Figure 3) 
derived from the TM data using Equation 15. The satellite-de- 
rived depth image (Figure 6) shows errors at the bottom of 
the image due to a dark substrate (as previously discussed) 
associated with the area of organic ooze. Depth may also be 
exaggerated in the main tidal channel due to the presence of 
sea grass. Problem areas such as these can be identified in 
the bottom-reflectance image (Plate Ib) as having a signifi- 
cant relative blue component. 

Pixel values for hydrographic bathymetry (shown in fig- 
ure 3) (true) were plotted against co-registered algorithm-de- 
rived Landsat 'I'M water depths (derived) (see Figure 7). As a 
summary of statistical correlation between the data-sets, a 
regression analysis was performed and the results are shown 
in Table 2. 

The linear correlation coefficient shows a reasonable lin- 
ear correlation between "true" hydrographic bathymetric 
soundings and estimated water depth derived from Landsat 
TM data. The intercept indicates the average error in depth 
estimation, Az, at very shallow depths and may show the in- 
fluence of band gain factors which were not completely re- 
moved in the initial correction of raw DNS to reflectance. The 
slope value is small compared with a slope of unity for a 
perfect correlation. The most likely explanation for this is 
that the water attenuation coefficient, k,, decreased in deeper 
water. This is consistent with earlier observations (Jerlov, 
1976) of variable Ks with depth due to the gradation of de- 
caying organic matter to lower concentrations at depth. 

I HYDROGRAPHIC BATHYMETRY (metres) I 

1. 

0 

-1 

-2. 

-3 . 

Figure 4. Attenuation coefficient determinations from sub- 
scene scattergrams for Landsat TM bands 1, 2, and 3 plot- 
ting the logarithm of pixel reflectance versus depth. 

Detailed structure can be viewed in the depth image 
(Figure 6) by applying artificial illumination. Figure 8 was 
derived using a hillshade algorithm with an illumination 
source at 100" azimuth and 30" elevation. An intricate pat- 
tern of tidal channels and ridges can be seen on the Faur6 
Barrier Bank toward the top of the image (see Figures 35, 36, 
and 3 7 of Hagan and Logan (1974)). 

0 5 0 5 0 5 

TM BAND 1 

kl rOlO 

::is;#.+ . .. "*&.. 
-3- 
'f 

Figure 5. Chlorophyll enhancement. 
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Figure 6. Estimated water depth de- 
rived from Equation 15 and Landsat 
TM bands 1, 2, and 3. 

A useful way of combining the substrate-reflectance and 
depth images is to transform the substrate-reflectance data to 
hue, H, saturation, S, and intensity, I (Gillespie et al., 1986). 
The intensity is then replaced by hillshaded depth and the 
data transformed from HSI back to RGB color space (Plate lc). 

- 
! ! .  
B - 

V1 -- -- --  ..- 

B z -z 
cl - .  

5 10 metres 

HYDKOGRP.PHIC BATHYMETRY 

Figure 7. Scattergram plotting hydro- 
graphic bathymetry versus Landsat TM 
derived water depth. 

TABLE 2. REGRESSION ANALYSIS STATISTICS RELATINO TO FIGURE 7 

N (number of samples) 480047 
Linear correlation coefficient 0.7849555 
Multiple R - Square 0.6149 
Intercept 4.5785 (std. err. = 0.0033) 
Slope 0.4482 (std. err. = 0.0005) 

Colors of the substrate-reflectance are preserved, but the in- 
tensity shows the structure of the depth image. 

The estimate of water depth and substrate composition 
also allows three-dimensional viewing of the sea floor. By in- 
verting depth to give elevation data, 3D perspectives are ob- 
tainable (Bierwirth et al., 1992). Steroscope viewing is also 
effective using stereo pairs generated from the inverted depth 
and substrate reflectance images. 

Discussion 
The modeling described here represents a new method for 

processing multispectral data to derive substrate color, struc- 
ture, and depth information. The method was successfully 
tested in the Hamelin Pool area of Shark Bay, Western Aus- 
tralia. Although most effective in areas of clear water such as 
this, it should also be readily applicable to other coastal re- 
gions. As such, the process represents a valuable tool for the 
analysis and management of coastal zones. 

It is important to note that, in applying the constraint 
which standardizes the sum of the logarithms of band sub- 
strate reflectances, we introduce errors in depth determina- 

Figure 8. Hill-shaded satellite derived 
depth. Illumination source at 100" 
azimuth and 30" elevation. 
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tions. These errors are greatest for dark substrates which will 
resolve as deeper than true. 

As mentioned previously, the corrections for illumina- 
tion, sensor, and atmospheric gains are not essential when 
only relative substrate reflectances are required. It can be 
demonstrated that the effect of signal multiplying influences 
will result in a band-constant scaling of substrate reflec- 
tance~, and this effect is removed when scaling values for 
display purposes. If, however, standard values of substrate 
reflectance or depth are required for multidate scene compar- 
isons, gain corrections may be necessary. This is because es- 
timated depths will contain a constant additive factor and 
substrate reflectances will be multiplied by a factor, both re- 
lated to the gains. 

The advantage of the method described by this paper is 
the derivation of substrate-reflectance parameters, for each 
band, which define standard properties of bottom materials 
over the scene, free from the confusing effects of depth varia- 
tion. In Harnelin Pool, features obscured by the depth effect 
in the raw data, such as sea-grasses in dark tidal channels 
and microbial mats in the highly reflective sub-littoral zone, 
were clearly distinguished in the substrate enhancement (see 
Plate lb). Substrate reflectance images derived by the method 
therefore represent the optimum enhancement which can be 
used as a basis for substrate classification. 

In this study, water attenuation coefficients were deter- 
mined by regressing known bathymetric data against Landsat 
radiances. Because bathymetric data are not commonly avail- 
able in many areas, it is proposed that the coefficients de- 
rived for the Shark Bay area be tested in the processing of 
other scenes. However, considering that the waters of Hame- 
lin Pool are unusual in that they are free of suspended sedi- 
ment, low in nutrients and phytoplankton, and are 
hypersaline, this proposal may not be valid. More work 
needs to be done, therefore, both in measuring water atten- 
tuation coefficients for various waters and in developing al- 
ternative methods for deriving k, from the data. 

Water attenuation may vary also within a scene due to 
changing concentrations of water column materials. In this 
work, water column conditions were assumed to be constant 
over the scene. Although this may be a reasonable assump- 
tion in the relatively clear waters of Shark Bay, it is unlikely 
to be true in many other coastal regions where variations in 
suspended sediment (SSC), for example, is an important fac- 
tor. In future work, the effects of water column parameters 
need to be incorporated within the context of a global mode. 
This might be achieved by utilizing multispectral scanners 
with high spectral resolution where visible and near-infrared 
bands could be used to separate substrate and water-column 
parameters. 

In conclusion, the method presented here is new and 
represents a significant development for substrate mapping 
using multispectral data. The important aspect is that the 
confusing effect of water depth variation is removed, leaving, 
as a residual, the spectral nature of the substrate. This facili- 
tates improved accuracy in the remote mapping and monitor- 
ing of the aquatic environment. 
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