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Surface Circulation Estimation Using 
Image Processing and Computer Vision 
~ethods  Applied-to Sequential Satellite 

Abstract 
Two methods of automating the process of ocean feature 
tracking for estimating surface currents in coastal areas are 
outlined. These methods involve pattern recognition and 
have certain advantages over the more familiar maximum 
cross-correlation technique of Emery et al. (1 986). The first 
method requires three steps in its application-pattern selec- 
tion, pattern recognition, and geometrical calculations-to 
determine both the cross- and the along-isotherm displace- 
ments. The second method calculates cerfain su$ace motion 
parameters, including rotation and translation in Hough pa- 
rameter space. Each method is applied to sequential AVHRR 
IR satellite imagery off the U.S. east coast. Finally, some of 
the practical problems encountered in the application of 
these methods are described. 

Introduction 
Oceanographers and environmentalists need objective, rapid, 
and accurate methods to track features in satellite images in 
order to estimate surface circulation. Emery et al. (1986) 
adapted cloud motion algorithms to estimate sea surface ve- 
locity from AVHRR imagery. Their method demonstrated sta- 
tistical reproducibility, but is time consuming and cannot 
determine the along-isopycnal transport or circular (rota- 
tional) velocities. 

We have adopted pattern recognition methods to deter- 
mine sea surface velocities. This methodology can poten- 
tially provide more and accurate information in the study of 
both cross- and along-isopycnal transport and allows the es- 
timation of coherent surface velocity fields from a minimal 
set of observations. The models have been developed with 
computer vision and pattern recognition concepts, which in- 
volve artificial intelligence techniques. Briefly, a set of point 
correspondences, with shape invariance under motion, yields 
a set of parameters that carry the motion information. Several 
methods to obtain the motion of these parameters have been 
developed. Among these is the approach using Singular 
Value Decomposition, which proves to be very efficient. 
Similarly, the point or feature correspondence between im- 

ages has been extensively studied in image processing in the 
area of temporal image compression using motion compensa- 
tion. Two of these methods have been adapted to the sea sur- 
face motion framework and implemented with actual 
imagery off the U.S. east coast where eddies and other me- 
soscale ocean features often occur between the continental 
shelf and the Gulf Stream. 

Many of the surface velocity estimates using feature 
tracking have been acquired along the U.S. west coast where 
the oceanic processes and features are quite different from 
those encountered along the U.S. east coast. Our initial ef- 
forts have focused on the Slope Water region just beyond the 
New York Bight where feature tracking has not been used ex- 
tensively. We believe that the new pattern recognition meth- 
ods will significantly improve our ability to determine actual 
velocity fields - both cross- and along-isopycnal transport - 
to determine the trajectory of oil spills, to carry out more ef- 
fective search and rescue efforts, and to perform other envi- 
ronmental analyses of the surface flow in the region. The 
results of this research will also provide a better understand- 
ing of the sub-mesoscale circulation, therefore allowing us to 
obtain a better understanding of the physical processes in 
this coastal region, and improving our ability to use artificial 
intelligence techniques applied to remote sensing for coastal 
environmental studies. 

In the following discussion, we present only a brief out- 
line of these methods for automated features tracking, fol- 
lowed in each case by an example, i.e., pilot study, of their 
application, These methods will be described in greater de- 
tail in forthcoming studies. 

Methodology 
The Ordered Statistical Edge Detection Method 
The method described in this section is a three-step process: 
pattern feature selection in using Ordered Statistical Edge 
Detection, pattern recognition and selection of the feature 
most closely matching the pattern feature from objects found 
in a search area in a subsequent image, and geometric calcu- 
lations to compute cross and along frontal displacement di- 
rection and magnitude. 
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PATFERN FEATURE SELECTION 
Assuming that surface thermal patterns are well-conserved 
over the typical periods between successive satellite images 
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(- 1 2  to 24 hours) (Vastano and Reid, 1985: Wahl and Simp- 
son, 1990), it is possible to employ pattern recognition tech- 
niques to measure the displacement of features defined by 
surface temperature alone. 

Edge detection can be employed initially to help select 
suitable features for tracking. This approach reduces the 
number of points selected, with a corresponding reduction in 
the number of required calculations. Figure 1 shows a 3D 
representation of the surface temperature field for the mouth 
of the Delaware Bay area. Feature selection maps this signal, 
discriminating against land, clouds, and other unwanted fea- 
tures. The high values correspond to land temperatures for 
Cape May, New Jersey, and the coast near Lewes, Delaware. 
The very low values in the lower right corner are light cu- 
mulus clouds. The water temperature signaI varies consider- 
ably from the Delaware Bay (upper left, behind Cape May), 
to the ocean waters in the foreground. 

The method uses an Ordered Statistical Edge Detection 
Algorithm (OSEDA) for feature selection (Hardie and Gnacek, 
1990; Pitas and Venetsanopoulos, 1986; Holland and Yan, 
1991), which effectively discriminates against noisy environ- 
ments. This method is not orientation dependent, and it ac- 
curately detects ascending and descending gradients, 
identifying curved and linear features. 

The OSEDA algorithm has been modified for our pilot 
study off the east coast to allow it to discriminate between 
ocean thermal gradient patterns and undesirable features 
such as cloud and land masses. These methods are not to- 
tally effective, but they do significantly reduce feature selec- 
tion errors. 

Mask parameters are determined from surface water tem- 
peratures and are applied in the area of interest. For selec- 
tion of features away from land, masking is necessary only to 
avoid clouds. Range parameters provide a constraint for the 
maximum allowed change in apparent temperature. 

Coastal areas, by definition, usually include land masses. 
The apparent temperatures for land features vary greatly due 
to diurnal heating and cooling. Linear classifiers for range 

Cape May, New Jersey 

Thermal map: arbitrary scale. Azimuth: 315 

Figure 1. Three-dimensional thermal signal map, 1258 
hours local, 30 June 1989, Delaware Bay and coast. 
Clearly visible are the differences in signal between land, 
clouds, estuary, and coastal waters. 

and mask values allow use of coastal images, without time 
consuming preprocessing to screen unwanted features. 

The edge detection method starts by evaluating data 
from a 5 by 5 edge detection tile (Figure 2). This results in 
selected tiles that are on gradients in regions of moderate 
temperature change, free from clouds and land. Tiles not se- 
lected are rejected if the temperature in the mapped area ex- 
ceeds classification criteria. When an edge tile meets the 
modified OSEDA criteria, a pattern tile is mapped from an ex- 
panded area centered on the edge detection tile. The pixel 
values are rank ordered and compared with the mask values. 
If the high and low extreme mapped values fall within the 
mask values, the pattern tile is stored, the counter is incre- 
mented, and a variable offset is applied to allow spacing be- 
tween the selected areas. This selection process continues 
until the search area is exhausted. For this study, we used an 
11 by 11 pattern tile. 

This method, in addition to being applied to the IR can 
also be adapted to visible and near-infrared band images by 
eliminating the mask value constraints. This allows tracking 
of slicks, plankton, ice flows or any other large visible fea- 
ture of sufficient size which maintains its shape for at least 
24 hours. 

FEATURE R E C O G N ~ ~ O N  AND MATCHING IN SUBSEQUENT 
IMAGES 
Once the initial image has been processed and pattern tiles 
have been selected, the second image is used for feature 
tracking. The size of the area to be searched for each selected 
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Figure 2. OSEDA feature selection and discrimination. An 
edge detection tile (5-by-5-pixel tile shown) moves incre- 
mentally across and down the search area to find features 
which meet range and mask criteria. Acceptable features 
are remapped to a specified pattern tile size. The ex- 
panded tile is accepted if it also meets the range and 
mask criteria. 
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feature is governed essentially by the Bayes decision rille 
which involves the probabilities of finding an acceptable 
match (Fukunaga, 1990). Knowing that the selected features 
are altered over time by diffusion and rotation, and the dis- 
placement velocity varies greatly over short distances, the 
appropriate equation can be solved by limiting the area 
searched to a radius in which the feature can move during a 
sample interval. The problem then simplifies to one of linear 
mapping and classification, where subsequent pattern match- 
ing is dependent on a maximum-likelihood estimation. 

When the search area is sampled, the features it contains 
must be evaluated in a way that produces the closest match 
to the pattern feature. This sorting is accomplished using 
classifiers to discriminate between features. The criteria used 
in this work are the statistical correlation of the pattern tile - 
search tile pair, limiting the root-mean-square (RMS) tempera- 
ture variation between the search and pattern tiles, and lim- 
iting the pattern and search tile inter-temperature ranges. 
Selection of the matching feature is made by picking the fea- 
ture which best matches the pattern tile using a basic branch 
and bound forward selection process. 

Applying tile correlation in such a manner estimates the 
image spectrum in an auto-regressive fashion (Lim, 1990). 
The advantage of this method as a selection criteria is that it 
is less sensitive to background noise. In this one respect, the 
use of the correlation method to select matching features par- 
allels the maximum cross-correlation approach of Emery et 
01. (19861. 

Given intervals between images of 12 to 24 hours, it is 
almost certain that ocean thermal features rotate as well as 
translate. This is especially true in eddy flow areas. Methods 
exist (Rosenfeld, 1976) to transform the pattern tile array to 
different axis orientations. A single rotation transformation to 
allow for a left or right movement would increase computa- 
tions by a factor of three. 

When a full search tile area is mapped, it is correlated 
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z 

Figure 3. tine Projection Geometry (from Arce et a/., 
1987). 

with the full pattern tile, For the results presented here, we 
used a minimum acceptable value for the correlation coeffi- 
cient of 0.70. If the correlation criteria is met, the RMS differ- 
ence of the tiles is evaluated to insure that the mean 
temperature change of the tile does not exceed a physically 
realistic maximum. This limit typically falls within the range 
of 3 to sac. 

Error checks are required because the correlation coeffi- 
cient is affected by spatial dislocation in all three dimen- 
sions. A search tile that is an exact match for the pattern tile 
in X and Y, can also vary in Z, or the temperature dimen- 
sion, as well. A uniform change in temperature can yield a 
high correlation, but results in an erroneous selection. This 
occurs most commonly when land features or thin clouds are 
present in the search area of the subsequent image. 

Selection of the best match occurs when a search area 
has been incrementally compared to the pattern tile. The 
area with the highest correlation to the pattern tile, which 
meets the classification criteria, is used to compute the sur- 
face flow. 

One of our objectives is to reduce the number of calcula- 
tions necessary to provide acceptable results. This is accom- 
plished in part by using a reduced tile size search for pattern 
matching. A tile with dimensions equal to the edge detection 
tile will be first moved through the search area. A correlation 
between this tile and the center of the pattern tile will be 
made and compared to a threshold. The full search tile will 
be mapped only when the threshold is met or exceeded. This 
will result in a speed increase of approximately 75 percent 
when using a 5 by 5 reduced search tile and an 11 by 11 full 
search tile. 

The ability of the OsmA and constrained correlation 
methods to operate with images that contain land and clouds 
is a significant advantage. Of the more than 131 images ex- 
amined for the Delaware coastal region from 1 March to 30 
June 1989, only six pairs were sufficiently cloud-free in the 
area of interest to permit study. The OSmA method, as pres- 
ently implemented, is not adequate for screening images in 
an automated manner. Thin cloud layers can degrade the 
method, producing large numbers of false vectors. To evalu- 
ate large numbers of images for sufficiently open areas to 
permit processing, a more effective cloud screening method 
such as that of Simpson and Humphrey (1990) or Gautier et 
al. (1990) are required. 

Estimating Sea Surface Motion Parameters in the Hough Parameter 
Sps= 
Sea surface motion parameters can also be determined by the 
use of line correspondences in Hough parameter space. The 
method was extracted from Arce et al. (1987), in which the 
three-dimensional motion (rotation and translation) of a rigid 
planar patch is determined in Hough parameter space. For 
the general case of rotation and translation, the method in- 
volved solving for nine unknown parameters. Because we are 
only concerned with two-dimensional rotation and transla- 
tion of ocean features on the sea surface, the equations of 
motion as employed by Arce et al. (1987) can be greatly sim- 
plified, such that there are only three unknown parameters 
that need to be determined. 

BACKGROUND 
The geometry of the problem is shown in Figure 3, where the 
object-space coordinates are denoted by lower-case letters 
and the image-space coordinates are denoted by upper-case 
letters. We assume that we are given two perspective views 
of the sea surface at two different times, t, and t,. The coor- 
dinates at time t, are primed while the coordinates at time t ,  
are not. The equations of motion are presented in three-di- 
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mensional space to preserve the methodology of Arce et al. 
(1987). From theoretical kinematics, any three-dimensional 
motion can be represented as a rotation about an axis 
through the origin followed by a translation. The coordinates 
at time t, are therefore related to those at t, by 

where 

R = sin 0 (""," 
-sin 0 

cos 0 
0 

is the rotation matrix. 0 is the angle of rotation around the 
axis in the positive sense from t, to t,. Because we are only 
concerned with two-dimensional motion, the Sz term in the 
above equation is 0 and z = z'. Finally, the coordinates at t, 
can be related to those at t, by 

EQUATIONS OF MOTION 
A parametric representation of a line in three-dimensional 
space can be represented by (referring to Figure 3) 

where V = (v,, v,, v31T is the directional vector, K = (k,, k,, 
k3)T is the vector that translates the line, and a is a variable 
parameter. The v3 term is reduced to 0 because of the two- 
dimensional restriction in our case. From the image-object 
relationship shown in Figure 3, the image space coordinates 
(X,Y)= are related to the object-space coordinates (x, y, z)T 
by 

From the above, X = flav, + k1)/(av3 + k,), Y = F(avl + 
k,)l(av, + k,). Combining the above equations, we obtain the 
image-space line equation 

where @J is the angle between a normal to the line and the 
positive X axis, and p is the signed distance along the 
normal from the origin to the line. The terms p and @ are 
often referred to as the Hough parameters, and they uniquely 
represent a line in two dimensions. After three-dimensional 
rotation and translation, the parametric line representation 
can be expressed as 

(;) = aR (:) + R ) + ( 2 )  = aVf + k'. (6) 

The rotated and translated three-dimensional line is then 
projected onto the image-space line, resulting in an 
expression of the following from 

To simplify the results, the following relations are 
constructed: 

After the motion, these parameters are 7: and 74. Thus, we 
can express the above as 

Here 7i1 is the slope and T, is the X intercept of the image- 
space line. Therefore 7, and 7, uniquely determine an image- 
space line and can be thought of as Hough parameters. Thus, 
7, and 7, represent the Hough parameters of a line that 
represents a sea-surface temperature gradient in the first 
satellite image while 7: and 74 represent that same line in the 
second image. The equations of motion in turn can be solved 
for rotation, translation, or both rotation and translation. For 
the general case of both rotation and translation, the 
governing matrix is 

where the matrix P, is a column vector containing 
appropriate sine and cosine functions. In this particular case 
there are three unknowns and two equations. An additional 
two equations can be utilized by using two line 
correspondences. The two lines used in this method would 
have to originate from the same rigid planar patch and 
would thus have to undergo the same translation and 
rotation. 

Results 

Application to the Delaware Coastal Region 
Surface, subsurface, and bottom currents in the Delaware 
coastal region have been extensively studied (Miinchow et 
al., 1990). Figure 4 shows the locations for 2 1  moored buoys 
used during this study. From these buoys, mean current for 
depths between 5 and 10 metres were obtained. Satellite ob- 
servations acquired during this study have been correlated 
with these observations. 
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i 
Figure 4. Selected anchored buoy loca- 
tions for the Delaware coastal region, 
which were used to evaluate accuracy of 
satellite derived surface currents (from 
Miinchow eta/., 1990). 
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TABU 1. MEAN SATELLITE OBSERVATIONS FOR SELECTED COASTAL DELAWARE 110 vectors that could be matched to 17 buoys. Means for 
AND NEW JERSEY IN SlTU BUOYS. VALUES WERE DETERMINED BY MATCHING each station were computed and are listed in Table 1. These 

SATELLITE DERIVED VECTOR ORIGINS WITH BUOY POSITIONS. THE VALUES LISTED were then with the in situ data, 
ARE THE M ~ N S  OF MULTIPLE OBSERVATIONS FOR BCH LOCATION. The results obtained were compared to the mean M, 

Mean satellite - buoy observations tidal measurements of Miinchow et al. (1990). These results 

Mooring 
Axis 

degrees 
Velocity 

c d s  

Observations from March 1989 show that SSTs in, and 
beyond, the bay range from 3.25" to 7.62" C. Applying the 
OSEDA to these data, of the 31 pattern tiles selected, 16 found 
no reduced set search tiles that met the correlation criteria. 
The remaining 15 tiles resulted in 79 to 137 full tiles, but 
none produced a correlation >0.50. The low correlation sug- 
gests a very deep mixed layer due to cooling at the surface, 
which precludes features which are sufficiently persistent to 
be matched in subsequent images. The vertical diffusion con- 
dition (aT/dz << aTlax) is apparently not met here due to 
continuous vertical mixing of surface and subsurface (> 50 
meters) waters. 

Images from late May and early June 1989 produced ac- 
ceptable results once the SST reached values greater than 
12.6" C offshore by 28 May. At an sST of 12.6" C, results 
were obtained from only 49 pattern tiles. By 10 June, the SST 
offshore had reached 16.13" C, yielding results in approxi- 
mately 75 percent of the cases. 

Plate 1 shows the surface flow in the Delaware coastal 
region for 30 June 1989. Three images were available for this 
period and were processed as two pairs. Search tile matching 
was hampered by thin clouds which frequently moved into 
the offshore region. The SST was high for the bay (21.38" C), 
and 20.5" C for the offshore area. 

Verifying the displacement of surface thermal features to 
infer in situ surface currents was accomplished by compar- 
ing the OSEDA-derived vectors with in situ buoy data. Eight 
image pairs from the period 28 May - 30 June 1989 produced 

TABLE 2. COASTAL DELAWARE AND NEW JERSEY SATELLITE - BUOY DIRECTION 
AND SPEED COMPARISON. 

Mean satellite - buoy comparison 

Parameter 
Direction Correlation 
Std. Deviation (u*) 
Mean Error 

Result 
0.83 

20.45' 
- 4.38' 

Speed Correlation 
Std. Deviation (u,,) 
Mean Error 

were assumed to represent the average movement, because 
the M, tide is the dominant component of the surface flow 
field in this coastal region. 

The agreement in velocity between the satellite and buoy 
measurements is encouraging with a a, of 8 c d s  over a 
range from 9 to 112 c d s .  

Slope Water Region 
A portion of the slope water region off the U.S. east coast be- 
tween 37" N and 41" N was also examined in this study. This 
region is also an area of interest to NOAA'S Coastwatch Pro- 
gram. AvHRR satellite data are readily available for this area. 
The circulation in this region is dominated by the southwest- 
ward flow of relatively fresh water from the Labrador Cur- 
rent. Generally, the surface currents in this region are weak 
and variable but tend to flow more-or-less parallel to the 
Gulf Stream but in the opposite direction. The flow is fre- 
quently disturbed by anticyclonic warm-core eddies which 
entrain waters from the Gulf Stream and the Sargasso Sea. 

Another prominent feature in the slope water region is 
the shelflslope front which is located along the outer conti- 
nental shelf. This front typically overlies the continental 
shelf break (Mooers et al., 1978). It forms the transition be- 
tween shelf waters near the coast and the slope waters fur- 
ther offshore (Beardsley and Flagg, 1975). Breaker et al. 
(1992) used an interactive feature-tracking method to analyze 
satellite AVHRR data from 24 and 25 June 1991. Surface ve- 
locities ranged from about 4 to 33 cdsec.  Using the second 
automatic feature-tracking method involving line correspon- 
dences in Hough parameter space and the same satellite data, 
we computed a velocity field in the same region. The veloci- 
ties we compute range from 5 to 30 cmlsec. A lagrangian tra- 
jectory from a satellite-tracked drifter is shown in Figure 5. 
We have computed velocity vectors using points near this 
drift route and the results are shown in Plate 2. The mean 
direction we computed is about 239", which appears to be in 
a close quantitative agreement with those directions from 
drifter direction measurement. 

Conclusions 
Although the automatic method of satellite feature tracking 
for estimating surface currents has not been applied exten- 
sively to the east coast regions considered here, the results of 
this study do indicate that reasonable values for surface ve- 
locity (speed and direction) can be obtained . These results 
generally compare favorably with other oceanographic anal- 
yses for this region. 

The results of this study provide a starting point for de- 
veloping operational procedures to estimate time dependent 
surface currents. Surface current velocities are required over 
large coastal regions for estimating the drift and dispersion of 
oil slicks, ocean dumped wastes, and run-off into estuaries. 
Until recently such studies required cumbersome drogue and 
dye tracking techniques including ships and aircraft (Klemas, 
1980). 

The new pattern recognition methods indicated here 
may potentially improve our ability to determine the fate of 
various types of pollution, to calculate actual flow fields - 
both cross and along-isopycnal transports, to define the tra- 
jectory of oil spills, to carry out more effective search and 
rescue efforts, and to perform other environmental analyses 
of estuarine and coastal waters. These techniques may also 
provide a better understanding of sub-mesoscale circulation 
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Figure 5. Satellite-tracked drifting buoy trajectory from 18 
May 91 to 31 June 91 (Aikman, 1991).  Horizontal scale is 
in longitude. Vertical scale is in latitude. 

features, therefore potentially providing a better understand- 
ing of the physical processes in various coastal regions, and 
to improve our ability to use state-of-the-art technology, in- 
cluding artificial intelligence, pattern recognition, and  re- 
mote sensing in coastal environmental studies. 
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