
Classification of Land Cover Using 
Optimized Neural Nets on SPOT Data 

Abstract 
Often papers, which compare the performance of neural net 
classifiers with traditional classifiers, tend to de-emphasize 
the importance of the network configuration. This paper pre- 
sents the results of experiments with the use of neural nets 
for land-cover classification in a SPOT satellite image. Seg- 
ments in the image are described by textural features calcu- 
lated from gray-level difference statistics. The segments are 
found using an algorithm based on iterative use of adaptive 
noise filtering and region growing. An artificial neural net, a 
backpropagation net with two hidden layers (often referred 
to as a three-layer perceptron), is used to classify the seg- 
ments. A variety of segment sizes are generated by the region 
growing procedure, and some of these are obviously too 
small for a textural description. Therefore, three nets are cre- 
ated to process different sets of features describing segments 
in accordance with the segment size. To improve the classi- 
ficafion, the networks are optimized with respect to the size 
of the hidden layers, by removing the least significant neu- 
rons. Furthermore, least significant input neurons are re- 
moved as a means of feature selection. 

Introduction 
In recent years a number of papers have been published in- 
troducing the use of artificial neural nets for classification of 
remotely sensed images. In many cases, however, only a lim- 
ited part of the power of the neural nets is actually being uti- 
lized, Standard backpropagation networks (Rummelhart and 
McClelland, 1986) are used as handy alternatives to tradi- 
tional Gaussian classifiers. In some cases the nets are plainly 
used to process pixelwise, multispectral data. Textural fea- 
tures as described by Van Goo1 et al. (1985) have been used 
in a number of studies (see, for example, Msller-Jensen 
(1990)), but the choice of textural features seems somewhat 
arbitrary. Finally, the optimal size of the layers in the net- 
work are in most cases found by comparing the classification 
results obtained with a number of discrete configurations. 

This paper introduces an optimized neural net, process- 
ing spectral signatures and a number of textural features 
based on the gray-level difference statistics (Weszka et al., 
1976), to classify land cover on a multispectral SPOT image. 
The aim of the classification is to assign each pixel in the 
image to one of nine land-cover types listed in Table 1. For 
evaluation, the nine classes were merged into four major 
clusters (water, artificiallurban, fields, and forest). 

The optimization algorithm proposed by Mozer and 
Smolensky (1989) is used to determine the size of the input 
layer, that is, which of the input variables to use, as well as 
the size of the hidden layer in the neural net. The textural 
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features are calculated in segments generated by region grow- 
ing in an image which has been processed iteratively witb an 
edge enhancing adaptive filter. 

The raw satellite image used as the test scene is shown 
in Figure 1. The image (500 by 500 pixels) was obtained dur- 
ing spring and covers a 10- by 10-km region just south of an 
urban center. It contains a mixture of both densely built-up 
areas, suburbs, rural land, and waterbodies. 

Segmentation 
The literature is comprised of an immense amount of studies 
on image segmentation. A survey of the major techniques is 
found in Haralick and Shapiro (1985). The method presented 
here is basically a single linkage region growing, in which 
the similarity criteria is the Euclidian distance, A, between 
the spectral signatures. This is obviously a very simple 
method to use for the segmentation of an image as complex 
as a satellite image. The reason for applying this simple 
method is that, prior to the region growing procedure, the 
image has been filtered to reduce the "noise" level in the im- 
age, in order to avoid occasional merging of adjacent, distinct 
segments. Noise in this context may be present both due to 
the detector and, more important, due to pixels covering sev- 
eral types of land cover. In this study the noise is reduced 
through iterative use of an adaptive, edge preserving, con- 
trast enhancing filter (Dreyer, 1991). The filter is basically a 
modified K-Nearest Connected Neighbor Mean (Lsnnestad, 
1988) where K, the number of pixels used to calculate the 
mean, is variable. Iterative use of the filter generates images, 
which appear segmented, without loss of fine structure. Be- 
sides, as seen in Figure 2, iterative use of the filter leads to 
relaxation; the effect of the filter becomes negligible after a 
limited number of iterations. 

The aspect of processing time was not an essential issue 
in this study, so few efforts were spent on improving the ef- 
fiency of the algorithms. In its present form each iteration of 
multispectral filtering in three bands takes approximately 15 
minutes and the region growing is then done within a few 
minutes on a PC 486. 

The average size of the segments generated by the 
method depends on the choice of A, as can be seen in Figure 
3. The actual size of A needs some consideration. On the one 
hand, if the number is small the segments will be small, con- 
taining too few pixels to calculate textural features with sta- 
tistical significance. On the other hand, if A is large, the 
possibility of accidental merging of two distinct types of 
landcover into one segment becomes high. 

The actually used value, A2 = 30, was chosen from vis- 
ual inspection of the segmentation results for a number of 
different values. For values larger than the chosen, visual in- 
spection reveals segments which cover areas of several types 
of landcover. 

Peter Dreyer 
Operations Research Group, Jutland Telephone, Sletvej 30, 

DK-8310 Tranbjerg-Aarhus, Denmark 



Landcover Cluster 

Deep water 
Shallow water Water 
Densely built-up 
Loosely built-up Artificial cover 
Roads 
Railroads 
Fields (grass, permanent crops) 
Fields Fields 
Forest Forest 

Features 
Because the region growing is carried out in filtered, contrast 
enhanced images, where texture is surpressed, it is important 
to note here that the texture calculated for the generated seg- 
ments is calculated on data from the raw satellite image. Six 
features are used to describe texture. The features were se- 
lected among a multitude of measures listed by Haralick et 
al. (1973). The chosen features have been used in previous 
studies (Lee et al., 1990; Franklin and Peddle, 1989; Weszka, 
1976). These are (in italics to distinguish from ordinary sta- 
tistical measures) 

Mean 
Scatter 
Contrast 

Entropy 
Local homogeneity 
Second Angular Moment 

derived from the gray-level difference statistics as given in 
Weszka et al. (1976). For each image band, each feature is 
calculated for four displacement vectors (1,0), (0,1), (2,0), 
and (0,2). These rather small displacements were chosen in 
the light of the similarly small average size of the segments, 
From the mean of the first two, the feature for a displace- 
ment distance of 1 is derived, and from the latter two, the 
feature for a displacement distance of 2 is obtained. This is 
done in order to avoid distinguishing texture due to orienta- 
tion. 

With six texturaI features, each calculated for two dis- 
placement distances in each of three image bands, 36 tex- 
tural measures are obtained. Furthermore, the mean and 
standard deviation in spectral signature inside the segment is 
calculated, giving a total of 42 measures to describe each seg- 
ment. 

The Neural Network 
Over the last couple of years, a number of papers have ana- 
lyzed the use of neural nets for image classification. Hepner 
(19901 shows that, for land-cover classification of TM images 
based on spectral signature in a 3- by 3-pixel window [in order 
to consider texture), the performance of a neural net is superior 
to the conventional maximum-likelihood method. Lee et al. 
(1990) have published the results of cloud classification in visi- 
ble, single channel MSS images. They obtain remarkable results 

Figure 1. Test scene. 500 by 500 pixels raw IR-band of multispectral SPOT 
satellite image covering region just south of the city of Aarhus, Denmark. 
(0 SPOT Image 1988 CNES.) 
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Figure 2. The sum of the absolute change in pixel values 
over the image in all three spectral bands, caused by a 
single iteration, as a function of iteration number. 

lated or have statistical significance for all segments. Therefore, 
any further analysis of the segments must depend on the actual 
size of the segment. According to size, the segments are thus 
divided into three groups: 

A: Segment size < Nl, N, = 5 
B: N, 5 Segment size < Nz, N,  = 20 
C: Segment size 2 Nz 

The threshold sizes were selected rather arbitrarily. Segments 
in group A are classified with a neural net with only three in- 
put neurons representing mean of the spectral signature. Seg- 
ments in group B are classified using a net with an input layer 
with six neurons, representing the mean as well as the stan- 
dard deviation of the spectral signature inside the segment. Fi- 
nally, segments in group C are classified with a net with 42 
input neurons, utilizing all measures calculated in the segment. 
In each case the output layer has nine neurons, each represent- 
ing one of the land-cover classes. 

The number of hidden layers in the backpropagation net 
determines the complexity of the mapping of the input domain 
onto the output domain. As explained by Lippmann (1987), 
any kind of mapping is possible when using two hidden lay- 
ers. Because, a priori, the complexity of the mapping required 
to produce the classification was unknown, both nets with a 
single and with two hidden layers were tested. It appeared to 
be impossible to train nets with a single hidden layer to the 
same degree as nets with two hidden layers. Hence, nets with 
two hidden layers were selected for further study. 

Initially, the A and B nets had 20 neuronsthidden layer 
and the C net had 15 neurons/hidden layer. However, it is a 
well established fact, that the size of the hidden layers has a 
strong influence on the performance of the neural net. For a 
given task, this size may be optimized with respect to a tra- 
deoff between the ability of the network to generalize and 
the ability to learn the learning samples. A number of papers 
address this problem. In some cases, as in Mozer and Smo- 
lensky (1989), the optimization is done by removing hidden 
neurons, while others (Le Cun et al., 1990) suggest removal 
of interconnecting weights based on second-order terms in 
the error function. In any case, the underlying philosophy, 
also known as "Occam's Razor" is that, for a set of networks 
solving a given problem, the net with fewer neurons gives 
the best generalization (Thodberg, 1990). 

Here Mozer and Smolensky's algorithm is applied to 
simplify the neural nets. By caIculating the relevance of each 
neuron in the input and hidden layer, it is possible to find 
the least important neurons. It is now possible to remove a 
number of specific neurons and leave the rest of the network 
unchanged. By doing so, the reconfigurated net is "born" 
with the weights from the previous configuration, represent- 
ing some degree of learning. There is a risk of ending up in a 
local minimum of the error function but, as noted by Mozer 
and Smolensky, tests indicate that it is more probable that a 
network of the same size, starting with randomized weights, 
will be stuck in a local minimum. In this study, for nets with 
an optimal size obtained by iterative thining, it appeared to 
be impossible to train these nets in one step, that is, starting 

based on textural features calculated in rather large windows with random weights as opposed to weights representing 
(512 by 512 pixels). In both of the above cases, backpropaga- some degre of learning. 
tion networks were used for the classification. In Mozer and Smolensky's approach, the relevance is de- 

Also in this present study a standard backpropagation net fined as a difference between error functions. It is estimated 
with sigmoid transfer functions and momentum term is used as a first-order partial derivative of the error function. Be- 
with further emphasis on the optimization of the neural net. cause the transfer function of the neuron is highly non-lin- 

Because the method of segmentation generates segments ear, this estimate will in some cases be a very poor 
consisting of just one or a very few pixels, as well as larger approximation, in which case higher order terms from the 
segments, it is obvious that texture features can not be calcu- Taylor expansion might have to be used. The skeletonization 

MEAN SEGMENT SIZE 

16 

V1 - 
fl .- n 
c ' 0  .- 
(0 
.Y 
V) 

5 - 
0 1 0 2 0 3 0 4 0 5 0  100 

max distance 
Figure 3. Average segment size in image segmented with 
the above mentioned method, as  function of the square of 
the maximum Euclidian distance allowed by region grow- 
ing. 
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Figure 4. Number of epochs needed to retrain a re-config- 
urated net having removed the least significant hidden 
neuron (dotted line), compared to random removal of neu- 
rons. 
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Figure 5. Order of removal of least significant neurons in 
input layer, originally processing 42 input features. 

derived from Mozer and Smolensky, as compared to the ske- 
letonization resulting from the exact calculation of the rele- 
vanc., should be subject to further study. 

The question of when to remove a neuron still remains: 
How low should the relevance be to imply removal? There 
seems to be no straightforward relationship between the sig- 
nificance of a removed neuron (compared to the significance 
of the remaining neurons) and the amount of retraining 
needed to restore the level of learning. This makes it difficult 
to use the value of the significance to decide whether or not 
to remove the neuron. Instead, the algorithm used here is 
simply "give it a try." As seen in Figure 4, the number of 

epochs needed for retraining is rather low, until a certain 
point, where the number increases dramatically. Removing 
any neuron beyond this point makes retraining impossible. 

It is important to note that in the input layer the rele- 
vance has further meaning; if a neuron has little importance 
the corresponding feature has little importance and may be 
left out of the analysis. 

Results 
Using the previously described method, the net with three 
input neurons was skeletonized from 20 neurons in each of 
the hidden layers to only 13 and 12 neurons respectively. 
For the net with six input neurons, each of the hidden layers 
was thinned from 20 to eight neurons. In both cases the in- 
put layer was kept unchanged, even though the significance 
in the input layer reflected the fact that the red and green 
bands of the SPOT satellite have a high degree of correlation 
and a low dynamic range in the scene. 

For the net processing all 42 features, neurons in the in- 
put layer were removed after the optimization of the hidden 
layers (from 15 in each layer to seven in each). Figure 5 
shows the order in which the input neurons were removed. 
It is no surprise that the scatter of the gray-level statistics 
were removed at an early stage; because the means are close 
to zero, the scatter and the contrast are highly correlated. 
However, it is surprising and contrary to the results of Lee et 
al. (1990) that the means have relatively high significance. 
This may be due to the fact that string-like segments in the 
image, such as roads, often display a slow, monotonous in- 
crease or decrease in pixel values along the length of the seg- 
ment. This again occurs because roads cover only a limited 
part of the area inside a pixel. 

At this point it may be of value to give an interpretation 
of the individual measures. When looking at the definitions, 
it appears to be possible to divide the measures into two 
groups: those describing the homogeneity (or lack of] of the 
pixel values (the amplitude of the texture) and those describ- 
ing the regularity of the texture. It is, for example, possible to 
have very ordered texture as the pattern on a checkboard; 
however, the homogeneity of the segment with such a pat- 
tern depends on the contrast between the bright and the dark 
squares. To the former group belong mean, contrast, and lo- 
cal homogeneity, while scatter, entropy, and second angular 
momentum belong to the latter group. 

Based on the first thinning of the input layer, a new net 
was created in which all input neurons processing features 
describing scatter, contrast, and entropy were removed in ac- 
cordance with Figure 5. In the light of the interpretation of 
the texture measures, it is interesting that scatter and en- 
tropy, both indicators of the regularity of the texture, seems 
to have little significance. Further studies are needed to draw 
any conclusions with respect to this effect. 

Following the training procedure, the neural nets were 
finally used to classify the entire satellite image. The per- 
formance of the original and optimized nets is given in Table 

TABLE 2. C~ASS~FICAT~ON RESULTS FOR VARIOUS MEIHODS. THE VALUES ~NDICATE 
PERCENTAGE OF CORRECTLY CLASSIFIED SEGMENTS AMONG 300 TEST SEGMENTS, 

PRIOR TO AND AFTER OPTIMIZATION. (FOR THE ANALYSIS OF THE ~ R G E R  SEGMENTS, 
THE TEST SAMPLE CONSISTED OF ONLY 180 SEGMENTS.) 

Classification method Water Urban Field Forest 

1: Neural Net 3 inp 80175 93/94 71/76 95/98 
2: Neural Net 6 inp 85/90 91/93 68/73 91/93 
3: Neural net 42 inp 58/73 73/92 90193 66/88 
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2. The performance is evaluated on a number of test seg- 
ments, which were selected and classified by visual inspec- 
tion and compared with the results of the network 
classification. (It is worth noting that the visual classification 
may introduce some uncertainty in the ground truth. This is 
partly due to errors in segmentation and partly due to the 
fact that the classes tend to cluster in the spectral feature 
space.) 

Conclusion 
From Table 2 it seems that the best performance is obtained 
with a classifier which considers only spectral signature. 
Visual inspection seems to suggest that taking scatter into ac- 
count gives slightly better results. However, for some of the 
classes the classification using textural features is clearly of 
lower quality. This is in particular the case for the non-op- 
timized net (probably due to the fact that the net is so large 
that it learns the limited number of training samples "by 
heart"). In the case of forest, texture is very marked in the 
raw satellite images and filtering does not remove this 
completely. Therefore, i n  forest areas the segmentation is, 
to some extent, based on the texture. This implies that the 
original large forest segments are broken down into small 
segments, where the texture at random deviates from real, 
descriptive texture. The lack of improvement in accuracy 
from the use of texture is in good agreement with Franklin 
and Peddle (1989). Note, however, that use of textural fea- 
tures leads to a significant improvement in  detection of 
fields. Distinction between urban areas and areas with 
shallow water does not appear to be helped with the use of 
texture. 

The most striking effect in Table 2 is the improvement 
in performance following an optimization of the nets. In 
some cases the improvement is rather small, probably within 
the uncertainty of the figures, but the trend is obvious. Even 
if the improvement in accuracy is minor, optimization still 
results in highly improved efficiency. In all cases the number 
of connections is reduced by approximately a factor of 4, re- 
sulting in the same increase in computing speed. 

The results obtained at present prove the applicability 
of the described method, consisting of segmentation and 
texture based classification. The results seem to suggest 
that the choice of texture measures is important, but  also 
that texture may actually be inopportune for some classes 
of land cover. There is no comparison of the neural net 
classifier with other traditional classifiers in  this paper, 
but from looking at neural nets only, it seems obvious that 
optimization of the net configuration is important for the 

performance. Further testing might lead to some improve- 
ment due to optimization of free parameters such as simi- 
larity criteria for segmentation and the threshold segment 
sizes for the different net sizes. 
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