
An lmproved Skidmoreflurner Classifier 

Abstract 
A new decision rule significantly improves the classification 
accuracy of the nonparametric spectral classifier described 
by Skidmore and Turner (1988). The new rule normalizes 
class histograms with the mean frequency, rather than with 
the number of training pixels in a class, and gives a classi- 
fier which consistently outperforms the maximum-likelihood 
classifier. Another type of classifier, which combines a two- 
dimensional and a one-dimensional SkidmorelTurner (SIT) 
classifier, has higher classification accuracies than the SIT 
classifier with the improved decision rule, in two of four 
study areas. Tree species were classified for two study areas 
and land-cover classes for the other two. 

Introduction 
Foresters are reluctant to embrace remote sensing for opera- 
tional use because of low classification accuracies (Skidmore 
et al.,  1987). This is also true for other resource management 
sectors. Work is progressing on improving accuracies with 
knowledge-based techniques (Srinivasan and Richards, 1990; 
Goldberg et al., 1985) and textural classifiers (Franklin and 
Peddle, 1990; Haralick, 1979); however, Skidmore and 
Turner (1988) have shown that there is still room for im- 
provement in ordinary spectral classifiers. 

Parametric classifiers, such as maximum-likelihood 
(Richards, 1986), make implicit assumptions about the shape 
of data distributions (Skidmore and Turner, 1988). These as- 
sumptions permit parametric classifiers to be trained on a 
small training dataset, but limit the classification accuracy. 
Skidmore and Turner (1988) described a nonparametric clas- 
sifier, the SIT classifier, which was more accurate than a 
maximum-likelihood classifier for determining pine tree age. 
The SIT classifier requires substantially sized training data- 
sets and is effectively limited to three or fewer spectral 
bands; with more than three spectral bands, there is rarely 
enough training data to adequately define the four, or more, 
dimensional histograms. 

This paper describes two significant improvements to 
the SIT classifier. The first is an improved decision rule. The 
resulting classifier is referred to in this paper as the "im- 
proved" SIT classifier. The second improvement is an updat- 
ing procedure which enables a two-dimensional SIT classifier 
to be combined with a one-dimensional SIT classifier. Three 
spectral bands may be considered while avoiding the diffi- 
culties associated with three-dimensional feature spaces. 
This classifier is referred to as the "updating" SIT classifier. 
The "improved" SIT classifier and the "updating" SIT classi- 
fier are compared to the standard S/T classifier and the maxi- 
mum-likelihood classifier in four different study areas. Tree 
species are classified in two of the study areas and land- 
cover classes in the others. 
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SkidmorelTurner Classifier 
The S/T classifier uses a supervised nonparametric method. 
For each class (wc c = I, n) a three-dimensional histogram 
(Hc(i,jlk) i,j,k = 0,255) is calculated from training data. A 
value of Hc(ilj,k) gives the number of training pixels in class 
o, that occur with brightness values, in the first spectral 
band,, in the second, and in the third spectral band. Each 
histogram is normalized by the number of training pixels in 
its class: i.e., 

For each brightness vector (i,j,k) in a three-dimensional 
feature space, the class histogram with the greatest normal- 
ized frequency is found and that class (i.e., the most likely) 
is assigned to that position in feature space. (If all class his- 
tograms have a zero normalized frequency at that brightness 
vector, then the feature is set to "undefined," that is, zero). 
Feature space can then be used as a lookup table to rapidly 
classify the original bands. 

In addition to the procedure outlined by Skidmore and 
Turner (1988), the following steps proved useful: 

Smoothing of the three-dimensional histograms with a 3 by 3 
by 3 averaging box filter (McDonnell, 1981) helped create bet- 
ter defined histograms with fewer occurrences of singleton 
frequencies (i.e., H.(i,j,k) = 1). 

r Filling small holes of "undefined" regions in the three-di- 
mensional feature space (caused by the sparse three-dimen- 
sional histograms) helped reduce the proportion of the image 
classified as "undefined." The holes were filled by using a 3 
by 3 by 3 modal filter which returns the most commonly oc- 
curring non-zero class in the box. Only if all classes in the 
box are zero (i.e., "undefined) is a zero returned. 

These steps also proved useful with the "improved" SIT classi- 
fier. 

lmproved Skidmorenurner Classifier 
The standard s/T classifier normalizes each class histogram 
by dividing by the number of training pixels in the class. An 
alternative is to normalize by dividing by the mean fre- 
quency, excluding zero frequencies in the mean: i.e., 

255 255 255 

hk(i,j,k) = H,(i,j,k) l ( Hdr,s,t)lNJ 
r - 0  8 - 0  t - o  

where Nc is the number of non-zero values of Hc(i,j,k). 
Assuming we have one spectral dimension, then multi- 

plying by Nc is effectively the same as multiplying by the 
standard deviation of the histogram, because Nc is propor- 
tional to it. It can be seen that the decision rule using this 
normalization is analogous to a Mahalanobis type classifier 
(Richards, 1986) where the class with the smallest z statistic 
(the deviation from the mean divided by the standard devia- 
tion) is chosen. The resulting decision boundaries will there- 

John R, Dymond 
Landcare Research New Zealand, Ltd, Private Bag 11052, 

Palmerston North, New Zealand 



fore give approximately equal class proportions of 
misclassified pixels. 

The S/T classifier with this new decision rule is referred 
to as the "improved S/T classifier. Table 1 gives a one-di- 
mensional numerical example of how the normalization is 
done for the case of two classes. 

Updating Skidmoreflurner Classifier 
The weakness of the S/T classifier is that in three dimen- 
sions, or more, the histograms become sparsely populated 
and a high proportion of histogram frequencies occur as sin- 
gleton frequencies. In two dimensions this sparcity is very 
much reduced. An "updating" classifier is therefore pro- 
posed in which a two-dimensional "improved S/T classifier 
is updated by a one-dimensional "improved s/T classifier 
defined on the third spectral band. 

The "updating" S/T classifier records the three most 
likely classes from the two-dimensional histograms, and their 
associated normalized frequencies (as normalized in the "im- 
proved" S/T classifier), for each pixel in the spatial domain. 
The three normalized frequencies (h:(i,j] c = a, P, y)  are re- 
garded as empirical probabilities and are updated (i.e., multi- 
plied) by the normalized frequency If,(k) c = a, P, y] from 
the one-dimensional histogram of the same class. The deci- 
sion rule chooses the class out of wc c = a, p, y with maxi- 
mum h',(i.j).f,fi). This classifier loses some of the structure 
in the co-joint three-dimensional histograms, but reduces the 
problem of data sparcity in feature space. 

Data 
Images from four separate study areas were chosen to test the 
different classifiers under a range of radiance conditions. 

Wanganui Hill Country 
The Wanganui image is a color infrared aerial photograph 
scanned by a large flatbed scanner through blue, green, and 
red filters. The photograph was taken with a large format 
camera at an altitude of 7600 m, with a lens of focal length 
152 mm, to give a film scale of 1:50,000. Elevation of the sun 
was 46 degrees. The scanning aperture of 100 pm gave a 
ground pixel size of 5 m which was subsequently re-sampled 
to 20 m. This gave an image of size 512 by 512 pixels. 

The image contains mainly pastoral hill country with 
some production forestry. Surface elevations range from 10 
to 336 m and 20 percent of slopes exceed 30 degrees. The 
main land-cover classes are pasture, pine forest, scrublregen- 
erating native forest, burnt vegetation, and water. 

The training and test ground datasets for land-cover 
class were created by a combination of photointerpretation 

TABLE 1. EXAMPLE OF HOW TO NORMALIZE HISTOGRAMS FOR THE "IMPROVED" 
!3/l CLASSIFIER. THERE ARE TWO POSSIBLE CLASSES. 

Class 1 
brightness 13 14 15 16 17 18 N ,  = 6 
HI 1 3 3 3 1 1  X:I",,(s) = 12 
h ,  = H1/12 1/12 3/12 3/12 3/12 1/12 1/12 
h', = 6.h,  112 312 312 312 112 112 

Class 2 
brightness 17 18 19 N ,  = 3 
Hz 4 6 5 X ~ ~ ~ H , ( s )  = 15 
h,  = HJ15 4/15 6/15 5/15 
h', = 3.h,  415 615 515 

decision 1 1 1 1 2 2 2 

and fieldwork. The ease of creating ground datasets, due to 
the presence of large homogeneous areas of land cover, per- 
mitted the luxury of having a very large test dataset: 70 poly- 
gons of average size 1400 pixels. However, the size of the 
training dataset was kept to a more normal size: 34 polygons 
of average size 150 pixels. 

Saltwater Ecological Area 
The Saltwater image is a 730 by 730 pixel extract from a 
SPOT multispectral scene. Elevation of the sun was 23 de- 
grees. 

The image contains native forest, a saltwater lagoon, and 
some swamps. There are three forestry types of interest: ka- 
hikatea (Dacrycarpus dacrydioides)-dominated forest, kamahi 
(Weinmannia racemosa)-dominated forest, and rimu (Dacry- 
dium cupressinum)-dominated forest. Surface elevations gen- 
erally increase away from the coast to a maximum of 200 m. 

Ground data for the three forestry types came from a 
generalized vegetation map published by Norton and Leath- 
wick (1990). These data were visually checked against the 
SPOT image. It was difficult obtaining enough reliable data 
this way, so all ground data were amalgamated to create a 
combined training and test dataset - 19 polygons of average 
size 1100 pixels. This procedure is not generally recom- 
mended because assessed classification accuracies can be 
biased (Thomas and Allcock, 1984). However, the accuracies 
can be reasonably used to compare the relative performance 
of classifiers to classify the training data. 

Kaingaroa Forest 
The Kaingaroa image is a 749- by 796-pixel extract of a SPOT 
multispectral scene. Elevation of the sun was 28 degrees. 

The image contains several hundred production forestry 
woodlots, primarily of Pinus radiata and Douglas fir (Pseu- 
dotsuga menziesii) trees. Tree age varies between zero and 
65 years. The terrain is mainly flat with drainage channels 
dissecting the area. 

Ground data for the two tree types were extracted from a 
comprehensive set of woodland maps and forest inventories 
supplied by New Zealand Timberlands. Only trees over ten 
years old were included in the training and test datasets in 
order to avoid areas with incomplete canopy closure. The 
training dataset consisted of 17 polygons of average size 700 
pixels while the test dataset consisted of 14 polygons of av- 
erage size 750 pixels. 

Foxton Coast 
The Foxton coast image is a 1024- by 512-pixel extract of a 
SPOT multispectral scene. Elevation of the sun was 53 de- 
grees. 

The image shows a sandy coast which exhibits an inland 
gradation into protection and production forestry, and finally 
into pastoral farming. The main land-cover classes are sand, 
trees, lakes, poor pasture, good pasture, sea, and urban. The 
terrain is flat. 

A combination of photointerpretation and field work 
created the training and test ground datasets. The training 
dataset consisted of 89 polygons of average size 200 pixels, 
and the test dataset consisted of 256 polygons of average size 
140 pixels. 

Assessment of Classification Accuracy 
The confusion matrix is the standard summary of classifica- 
tion accuracy (Hay, 1979). However, when comparing the 
performance of different classifiers, it is convenient to sum- 
marize a confusion matrix with one parameter. The overall 
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classification accuracy is often used, but it does not really 
take into account the classification accuracy of classes which 
occupy small proportions of the image area. It is therefore 
convenient to define a "summary" classification accuracy to 
be the average of the overall classification accuracy, the aver- 
age true class accuracy, and the average map class accuracy. 
The overall classification accuracy is the sum of diagonal 
terms in the confusion matrix (Hay, 1979). The true class ac- 
curacy is the class average of the percentage correct given a 
true class; and similarly for the average map class accuracy. 
These parameters derive from confusion matrices which have 
been adjusted for differential sampling rates of test data 
within classes (Card, 1982). Table 2 gives an example of how 
the "summary" classification accuracy is calculated. 

Results 
Figure 1 shows the "summary" classification accuracies for 
the three types of SIT classifier, and for a maximum-likeli- 
hood classifier. (For completeness the other classification ac- 
curacy parameters are given in Table 3.) All classified images 
have had a 3 by 3 modal filter (Booth and Oldfield, 1989) 
passed over them before determination of classification accu- 
racy. This consistently improved accuracies. The three-di- 
mensional S/r classifiers used 3 by 3 by 3 boxes for 
histogram smoothing and hole filling, while the two-dimen- 
sional SIT classifiers used 3 by 3 boxes. 

In all four images the "improved" S F  classifier per- 
formed much better than the standard SIT classifier. The "up- 
dating" S/r classifier performed better than the "improved 
s/T classifier in the Wanganui and Kaingaroa images, but not 
in the Saltwater and Foxton images. In all images the maxi- 
mum-likelihood was outperformed by either the "improved" 
or "updating" ~ / r  classifier. 

The maximum-likelihood performed much better than 
the s/T classifier in all images. This result contradicts that of 
Skidmore and Turner (1988) where the SF classifier outper- 
formed the maximum-likelihood in classifying pine tree age. 
An explanation could be that pine tree age is a special case 
where the S/T classifier is particularly suitable. The perform- 
ance of classifiers on pine tree age could not be tested on the 
Kaingaroa image because spectral signatures are affected by 
regular pruning. 

Discussion 
The reason for the relatively poor performance of the "updat- 
ing" S~T classifier on the Saltwater image is uncertain. This 
highlights the fact that the perfomance of any classifier, rela- 
tive to others, depends on the statistical nature of the train- 

TAEE 2. EXAMPLE OF HOW TO CALCULATE "SUMMARY" Cwss~nc~noN 
ACCURACY FROM A CONNSION MAlRIX. OVERALL CLASSIFICAT~ON ACCURACY 
= 0.118 + 0.340 + 0.315 = 0.77. AVERAGE TRUE CLASS ACCURACY 
= (0.88 + 0.72 + 0.80)/3 = 0.80. AVERAGE MAP CLASS ACCURACY 

= (0.64 + 0.94 + 0.69)/3 = 0.75. "SUMMARY" CLASSIFICAT~ON ACCURACY 
= (0.77 + 0.80 + 0.75)/3 = 0.77. 

probability 
correct 

MAP CLASS given true 
kahikatea karnahi rimu class 

TRUE kahikatea 0.118 0.000 0.016 0.88 
CLASS kamahi 0.012 0.340 0.123 0.72 

rimu 0.055 0.021 0.315 0.80 

probability correct 0.64 0.94 0.69 
given map class 
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Figure 1. "Summary" classification accuracies for the 
three types of sn classifier and a maximum-likelihood clas- 
sifier. 

ing and test data. Therefore, a selection of different 
classifiers should be tried in order to optimize classification 
accuracy. 

The "updating" s/r classifier is potentially a good classi- 
fier for more than-&ree spectral d&nsions. Rather than up- 
dating with one-dimensional frequencies, the updating couid 
be done with two-dimensional frequencies. Further updating 
could be done to increase dimensions beyond four if neces- 
sary. In this way a many dimensional nonparametric classi- 
fier could be generated. Another useful feature of the 
"updating" classifier is that because it only uses two-dimen- 
sional co-joint histograms, it does not need as much training 
data as the standard three-dimensional SIT classifier. 

Despite the reasonably high "summary" classification 
accuracies of the Wanganui and Saltwater classified images 
(i.e., in the high eighties), they are still far from satisfactory. 
The classified Wanganui image underestimates scrub in the 
bottom-left, top-left, and bottom-right corners; overestimates 

TABU 3. CLASSIFICATION ACCURACY PARAMETERS OF DIFFERENT CLASSIFIERS 

Overall Average Average 
classification true class map class 
accuracy /%) accuracy (%) accuracy [%] 

WANGANUI IMAGE 
maximum-likelihood 82 70 73 

s/T 70 61 65 
improved SIT 82 72 83 
updating SIT 88 80 80 

SALTWATER IMAGE 
maximum-likelihood 79 81 85 

SIT 62 65 56 
improved SIT 84 84 84 
updating SIT 78 78 81 

KAINGAROA IMAGE 
maximum-likelihood 79 8 5 53 

SIT 77 50 38 
improved S/T 82 81 8 1 
updating S/T 87 85 86 

FOXTON IMAGE 
maximum-likelihood 95 90 98 

SIT 95 74 74 
improved S/T 9 7 94 93 
updating S/T 95 93 93 



forest on shaded slopes; and assigns parts of the river chan- 
nel to burnt vegetation. These problems are caused by a hot- 
spot (Hugli and Frei, 1983) to the bottom-left of the image, 
lens fall off, and topographic effects (Holben and Justice, 
1980). The Saltwater image overestimates Kahikatea-domi- 
nated forest on shaded slopes. The high "summary" classifi- 
cation accuracies of these unsatisfactory classifications 
suggests that classification accuracies in the high nineties, 
like that of the Foxton image, are required. Also suggested is 
the need to consider the spatial distribution of classification 
errors in addition to the purely statistical summary of the 
confusion matrix. It is humbling to note that the high classi- 
fication accuracy of the Foxton image was achieved only un- 
der ideal conditions of high sun elevation, flat land, and very 
generalized land-cover classes (Anderson et al., 1976). 
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