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Assessing Classification Probabilities for 
Thematic Maps 

Abstract 
In this paper we discuss the methods for estimating the 
probability that a pixel is actually in category i given that it 
was classified into category j, and methods for calculating 
the probability that a pixel is classified into category j, given 
that it is actually in category i. We show that the proper 
method for calculating these probabilities depends upon 
how the sample pixels are selected. I f  they are selected from 
the entire map, without regard to classification, then both of 
the above probabilities can be computed using standard 
multinomial formulae. However, if separate random samples 
are taken from the pixels classified into each category, then 
the former probability can be estimated using multinomial 
formulae, while the latter should be estimated employing 
Bayes theorem. We show how to do this, present an estimate 
of the variance of the estimated probability, and conclude 
with two example applications; one with m data from New 
Jersey, and one with simulated data. 

Introduction 
Remotely sensed data have been used extensively to generate 
land-cover information for a variety of purposes using a wide 
range of classification approaches (Airola et al., 1992). In this 
paper we discuss methods for estimating map accuracy. Al- 
though our methods are not exclusive to thematic maps con- 
structed from remotely sensed data, we will focus on this 
case. We define a thematic map to be one in which all the 
areas on the map are categorized into one and only one of a 
discrete number of categories. A familiar example is a map 
which portrays land-cover type (e.g., agricultural, forested, 
water, residential, etc.). Accuracy testing is normally accom- 
plished by comparing the classification of pixels on the map 
with reference data obtained from aerial photographs or 
ground checks. We will show that the appropriate method 
depends upon how the sample(s) are selected. For simplicity, 
we will consider two cases: (1) sample locations drawn ran- 
domly from the population of pixels on the map, without re- 
gard to the classification of the pixel or the category to 
which the pixel truly belongs, and (2) separate simple ran- 
dom samples of pixels drawn from each category on the map 
(here, the sample for category j is drawn from the population 
of pixels classified into category j). 

Before proceeding further, it is important to distinguish 
two different types of errors. First, we may err in developing 
the map by wrongly classifying a pixel into category i when 
it is actually in category j. Let us denote the probability of 
such an error as Prob(C1assified category = ilActua1 category 
= 13 = paw Secondly, once the map is constructed, it may 
be in error inasmuch as it may depict a certain pixel to be in 
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category i whereas the pixel is actually in category j. Let us 
denote the probability of this type of error as Prob(Actua1 
category = jlclassified category = i) = p, , .  Aronoff (1985) 
and Story and Congalton (1986). among others, have dis- 
cussed these two types of errors, and have termed the risk of 
the first type producer risk, and the risk of the second con- 
sumer risk. 

Methods 
Suppose we have a map in which, as usual, all pixels are 
classified into one and only one category. Further, suppose 
we are concerned with four categories: forest, agriculture, 
residential, and water. Now suppose a simple random sam- 
ple of pixels is chosen from the map without regard to the 
classification of the pixels. These pixels are checked, and the 
result is an error matrix like that in Table 1. The reference 
data are the data representing truth, i.e., the data obtained 
from aerial photographs or ground checks. The classified 
data are the data obtained from the map, after it has been 
constructed. 

Let nij = the number of pixels classified into category i 
and found to actually be in category j, n., = the total number 
of pixels actually in category j, n,. = the total number of 
sample pixels in category i, n.. = the total number of pixels 
in the sample, and m = the number of categories on the 
map. Mathematically, 

m m m m 

n.1 = i- 2 1 nut  n,. = I- 1 nu, n.. = 2 2 nil 
1-1 1-1 

In this case it is usual and proper to estimate p, and p4,, 
as multinomial probabilities. When we are consi#ering p 
then we are concerned with the rows of the error matrix%& 
a given classification, the number of pixels actually in cate- 

TABU 1. ERROR MATRIX FOR H Y P O T H ~ C A L  THEMATIC MAP WITH FOUR 
CATEGORIES: FOREST (n, AGRICULTURE (A), RESIDENTIAL (R), AND WATER 0. 

Reference Data 
F A R W Total 

F 20 2 3 0 25 
Classified A 1 21 2 1 25 
Data R 7 8 10 0 25 

W 0 2 0 23 25 

TOTAL 28 33 15 24 100 
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gory j is a multinomial random variable, i.e., nijlCi - multi- 
nomial(n,., pA,lcl, php, ..., php), where the first term in the 
parentheses denotes sample slze and the remaining terms are 
the multinomial probabilities. From standard statistical the- 
ory (e.g., see Bickel and Doksum (1977)), we know that the 
maximum-likelihood estimate for p,,, is 

and the maximum-likelihood estimate for the variance of fi4,, 
is 

The usual 95 percent confidence interval (justified by the 
Central Limit Theorem; e.g., see Mendenhall and Scheaffer 
(1973)) for PA,~CI is 

Note that as a consequence of the definition of PA, , , ,  we have - ." ,-. 
%(PA cI) = 1' 

decause there was no restriction on the randomization, 
i.e., the sample was randomly drawn from the entire popula- 
tion of pixels on the map, pclk is also a multinomial proba- 
bility, and can be estimated in the same way as p41cI, making 
obvious changes. 

Now let us consider the case where separate random 
samples are drawn from the pixels classified into each cate- 
gory. One common manifestation of this is stratified random 
sampling (e.g., see Cochran (1977)). When we look at the 
rows of the error matrix, we are looking at the data condi- 
tioned on (or given) the classification. Because stratified ran- 
dom sampling amounts to selecting a simple random sample 
in each stratum, it is clear that we have a multinomial ran- 
dom variable in each row, and that the sum of the row prob- 
abilities must be one. Hence, the above estimates for p,,, 
and ~ ( p , ~ ~ ~ )  are still valid. However, when we look at the 
columns, we are conditioning on the actual category. But in 
stratified sampling, the randomization is only applied within 
classified categories. Hence, there is no randomization 
within actual categories and the above multinomial method 
is invalid for pclw However, a valid estimate of pcik is avail- 
able by an application of Bayes' theorem. 

The celebrated Bayes' Theorem states simply that if X 
and Yare two events, then P(4Y) = P(llX)P(X)P(Y) (see, 
among others, Box and Tiao (1973)). The theorem is a sim- 
ple, undisputable consequence of standard probability ax- 
ioms and is not controversial. However, when used as the 
basis for an inference system, the theorem has been the 
source of much disagreement among statisticians (see, e.g., 
Berger (1985)). It is important to note that the latter is not 
what we propose here. We use Bayes theorem simply to ob- 
tain one conditional probability from another. This is in 
keeping with the traditional use of the theorem in classical 
statistics. 

In the present notation, we write pC,,,/ = pA,ICl(pCJPA,l. AS 
mentioned above, we can use the usual estimator for p,IU. In 

TABLE 2. ESTIMATES OF Pyla FOR DATA IN APPLICATION 1, USING MULTINOMIAL 
FORMULA. 

addition, there is an obvious method to compute pcl. The lat- 
ter would simply be the percentage of all pixels in the map 
classified into category, (note that we may then regard pcl as 
known, and not as an estimate subject to error). 

All that remains is to determine a method for estimating 
p,. Assume the samples within each category are indepen- 
dent, i.e., separate random samples are selected in each. 
Then, because the categories are mutually exclusive, we can 
estimate p,, with 

Hence, we have 

It is clear from the definition of pcf that Ci[pcI) = 1, and, be- 
cause p,Icf is an estimate of a multinomial probability, 
Z,(P,,lc,) = 1. It can be shown that, as one would expect, 
Xi(& ) = 1 and 2,[@ 1 = 1. 

f i e  variance of L is derived in the Appendix. There 
we show that a reasonable estimate for the variance of pcM is 

where ak = pCk and wk = pck(niJni.). 
An approximate 95 percent confidence interval for pcik 

may then be obtained as 

PClW 2 mzg 
Application 1 
We use the artificial data in Table 1 for illustration purposes. 
Here, m = 4. First, we compute li,, cl and gw, using 
the multinomial formulae described above. The results are 
presented in Tables 2 and 3. 

Now, suppose the data were obtained from four simple 
random samples (one in each classified category). Further, 
suppose that, over the entire map, 25, 35, 35, and 5 percent 
of the pixels were classified as forest, agriculture, residential, 
and water, respectively. Hence, pc = 0.25, pc2 = 0.35, pc3 
= 0.35, and pc, = 0.05. Then, ouj estimates of Ocfk and 

TABLE 3. ESTIMATES OF FOR DATA IN APPLICATION 1, USING 
MULTINOMIAL FORMULA (VALUES SHOWN ARE l o3  x ACTUAL VALUE). 

Reference Data 
F A R W 

Reference Data 
F A R W 

- -- 

F 0.80 0.08 0.12 0.00 
Classified A 0.04 0.84 0.08 0.04 
Data R 0.28 0.32 0.40 0.00 

W 0.00 0.08 0.00 0.92 

F 80 54 65 0 
Classified A 39 73 54 3 9 
Data R 90 93 98 0 

W 0 54 0 54 



- P E E R - R E V I E W E D  A R T I C L E  I 

TABU 4. ESTIMATES OF Pyla FOR DATA IN APPLICATION 1, USING BAMS 
THEOREM. 

Reference Data 
F A R W 

F 0.64 0.05 0.15 0.00 
Classified A 0.05 0.68 0.14 0.23 
Data R 0.31 0.26 0.71 0.00 

W 0.00 0.01 0.00 0.77 

q ' ) '  should be obtained with Equations 1 and 2. These 
results are given in Tables 4 and 5. 

Finally, suppose we fail to recognize the fact that, due to 
the randomization within classified categories, we do not 
have random samples from the classified categories within 
actual categories, and we mistakenly compute &,, using the 
usual multinomial formula. Then we obtain the results given 
in Table 6. 

Evidently, one could get very misleading answers if the 
randomization structure is not recognized and taken into ac- 
count. For instance, the probability of a pixel being classified 
into category 4 given that it actually is in category 4 is 0.77. 
However, if we naively use multinomial formulae to com- 
pute PCw we would estimate the same probability as 0.96. 

Application 2 
In New Jersey, the use of Landsat Thematic Mapper (TM) 
data for land-cover classification has been evaluated for im- 
proving the accuracy of the estimates derived as part of the 
mandated Soil Conservation Service National Resource In- 
ventory (NRI) process (Airola and Vogel, 1988). The initial 
work, undertaken as part of the 1987 NRI, focused on a quad- 
rangle sized study site. The data used in the present study 
were the result of a land-cover classification that was devel- 
oped for the entire state of New Jersey as part of the ongoing 
1992 NRI. This work has been funded through a cooperative 
agreement designating both the New Jersey sCS and the Cook 
College Remote Sensing Center as one of four Inventory De- 
velopment Field Sites , charged with evaluating technologies 
designed to streamline the process. 

Current land-cover information for the state of New Jer- 
sey was derived from TM digital data. Three relatively cloud- 
free TM digital data sets providing coverage of the entire state 
were acquired from EOSAT for 17 March 1991. Analysis of 
the data was accomplished using the ERDAS image processing 
software package running on both SUN workstations and PCS 
using a local area network for data storage and file transfer. 

Following receipt of the digital image data from EosAT 
(path 14, rows 31, 32, and 331, the data were preprocessed, 
merged, and subdivided to include only coverage of the 
state. In order to facilitate processing and to differentiate be- 
tween the physiographic provinces of the state, the image 
data set was further subdivided to approximate the boundary 
between the southern coastal plain and the northern (pied- 

TABLE 6. ESTIMATES OF Pow FOR DATA IN APPLICATION 1. USING MULTINOMW. 
FORMULA. 

Reference Data 
F A R W 

F 0.71 0.06 0.20 0.00 
Classified A 0.04 0.64 0.13 0.04 
Data R 0.25 0.24 0.67 0.00 

W 0.00 0.06 0.00 0.96 

mont, highlands, and ridge and valley) provinces. As a con- 
sequence of the early spring date on which the data were 
acquired, a significant area in the northern portion of the 
state was obscured by snow from artificial snow-making at a 
number of recreational facilities. Using a masking procedure. 
cloud-free TM imagery from 15 August 1988 was merged into 
the data set to eliminate those areas that were snow covered 
at the later date. 

Land-cover data were then generated for the masked 
area, the northern, and the southern regions of the state 
using a hybrid unsupervised-supervised classification ap- 
proach. Each of the data sets was initially cIassified using an 
unsupervised clustering approach to generate between 50 
and 100 clusters. The results were then used as input to a 
maximum-likelihood classification algorithm. Visual inter- 
pretation of the image data, color infrared aerial photogra- 
phy, and existing USGS quadrangle maps and orthophotos 
were used to collapse the resulting land-cover categories into 
six possible land-cover types: forest, nonforest vegetation, 
built-up/developed, bare or barren, water, and cloud. In order 
to reduce noise in the classified data sets, a 3 by 3 majority 
smoothing filter was used prior to evaluating the results. 

The results of the classification procedure for the entire 
state are presented in Table 7. The majority of the state was 
classified as being either forest or in the non-forest vegeta- 
tion class (which includes agricultural land cover categories). 
Built-up land was estimated to include approximately 11 
percent of the state, while water surfaces, including coastal 
embayrnents, accounted for approximately 16 percent. Both 
cloud and barren categories accounted for less than 1 per- 
cent. 

In order to assess the accuracy of the results, an WAS 
subroutine was used to select 100 random points from each 
of the three classified sub-images (southern provinces, north- 
ern provinces, and masked areas). The strata were the land- 
cover classes, and the sample points were distributed among 
the strata using proportional allocation (i.e.. if 40 percent of 
the pixels in a sub-image were classified as forest, then 40 
percent of the sample would consist of pixels classified as 
forest). Each point was then displayed over selected bands of 
the raw image data and the land cover class determined by 
an interpreter using the image data and the available ancil- 
lary land cover information. The results of the interpretation 
were then combined and the error matrix in Table 8 was pro- 
duced. Using the multinomial formulae described earlier, we 

TAEILE 5. ESTIMATES OF DATA IN APPLICATION 1. USING ESTIMATOR TAEILE 7. RESULTS OF THE CLA~SI~CATION PROCEDURE 
DERNU) IN APPENDIX I (VALUES SHOWN ARE 10J x ACTUAL VALUE) 

Land cover Class Percentage 
nence uara 

P Forest 37.62 
Nonforest 34.36 - 

F 74 30 76 0 Built-up 11.41 
Classified 
Data 

176 Barren 
0 Water 

176 Cloud 
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TABU 8. ERROR MATRIX FOR THEMATIC MAP OF LAND COVER IN NEW JERSEY, 
WITH SIX CATEGORIES: FOREST (fl, NONFOREST (N), BUILT-UPDEVELOPED (Dl, 

BAREBARREN (B), WATER 0, AND CLOUD (C). 

Reference Data 
F N D B W C TOTAL 

F 129 11 6 0 6 0 146 
N 8 7 1  9 0  0 0  88 

Classified D 5 2 2 5 0  0 0  32 
Data B 0 0 0 1  0 0  1 

W 0 0 0 0 3 2 0  32 
C 0 0 0 0  0 1  1 

Total 142 84 40 1 32 1 300 

compute j341Cl and q i ;  these values are shown in Ta- 
bles 9 and 10. 

Our estimates of pCIw and t/-I; obtained with Equa- 
tions 1 and 2 (using the above percentages of the state classi- 
fied into each cover class for pcJ are presented in Tables 11 
and 12. 

Again, suppose we fail to recognize the fact that, due to 
the randomization within classified categories, we do not 
have random samples within actual categories, and we mis- 
takenly compute pCh using the usual multinomial formulae. 
Then we obtain the results presented in Table 13. 

While the differences between the estimates of pch ob- 
tained using Equation 1 and those obtained by incorrectly 
using the multinomial formulae are not as great as in Appli- 
cation 1, it is clear that the two methods yield different esti- 
mates. For example, the correct estimate (obtained using 
Equation 1) of the probability that a pixel which is truly for- 
ested will be classified as such is 0.87. If we mistakenly use 
the multinomial formulae, we arrive at an estimate of 0.91. 

Conclusions 
We have seen that it is necessary to recognize any restric- 
tions on the randomization when pixels are selected to check 
a mapping classification. If one random sample is drawn, 
without regard to the map classification, then it is appropri- 
ate to use the usual multinomial formulae for both pcl 
pAllc1. If, however, separate random samples are drawn ?rand om 
the populations of pixels classified into each category, then 
it is necessary to use Bayes' theorem to recover estimates of 
pcl from estimates of p . We have shown how to do this, 
a n t  presented a method%$ approximating the variance of 
the resulting estimates. In the latter case, multinomial formu- 
lae are still appropriate for p41c 

Finally, if somehow one seikcted separate random sam- 
ples from each category in the reference data, then the above 
procedure would be reversed. Multinomial formulae would 
be used to estimate P , ,~  and Bayes theorem would be used 
to estimate p4,cl. 

TABU 9. ESTIMATES OF Pm FOR DATA IN APPUCATION 2, USING MULTINOMIAL 
FORMULA. 

Reference Data 
F N D B W C 

F 0.88 0.08 0.04 0 0 0 
N 0.09 0.81 0.10 0 0 0 

Classified D 0.16 0.06 0.78 0 0 0 
Data B 0 0 0 1.00 0 0 

W 0 0 0 0 1.00 0 
C 0 0 0 0 0 1.00 

TABU 10. ESTIMATES OF FOR DATA IN APPLICATION 2, USING 
MULTINOMW FORMULA (VALUES SHOWN ARE l o4  X ACTUAL VALUE). 

Classified 
Data 

C 

Reference Data 
F N D B W C  
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Appendi 
Here we derive an approximate variance for DClk when this 
probability is obtained by means of Bayes theorem. From 

TABU 11. ESTIMATES OF Pw FOR DATA IN APPLICATION 2, USING BAYES 
THEOREM. 

Reference Data 
F N D B W C 

F 0.87 0.09 0.11 0 0 0 
N 0.08 0.89 0.25 0 0 0 

Classified D 0.05 0.02 0.64 0 0 0 
Data B 0 0 0 1.00 0 0 

W 0 0 0 0 1.00 0 
C 0 0 0 0 0 1.00 
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Reference Data 

F N D B W C  

F 295 243 408 0 0 0 
N 255 276 623 0 0 0 
D 184 153 619 0 0 0 
B 0 0 0 0 0 0 
W 0 0 0 0 0 0 
C 0 0 0 0 0 0 

Classified 
Data 

TABLE 13. ESTIMATES OF Pm FOR DATA IN APPUCATION 2, USING MULTINOMIAL 
FORMUM. 

Reference Data 
F N D B W C 

F 0.91 0.13 0.15 0 0 0 
N 0.06 0.85 0.23 0 0 0 

Classified D 0.03 0.02 0.62 0 0 0 
Data B 0 0 0 1.00 0 0 

W 0 0 0 0 1.00 0 
C 0 0 0 0 0 1.00 

Equation 1 in the text we have 

As mentioned in the text, we may regard p,, as known. For 
notational convenience, we shall write a j  = p,,. Thus, we 

have 

Now, we estimate the variance of by a Taylor Series 
expansion about n ,  (see, e.g., Lehmann (19831, Theorem 5.1, 
p 106; or Bickel and Doksum (1977), p. 31): 

Taking derivatives, evaluating at letting ak = pck 
and wk = pCtnjdn,.), and rearranging terms, we have 

Note that this is a large sample approximation. Caution 
is advised for applications where n.. is small, say n.. < 30. 
Furthermore, note that this approximation is based on the 
normal approximation to a multinomial probability. The lat- 
ter is justified by the Central Limit Theorem, and should be a 
close approximation for moderate sample sizes, say ni.215, 
W. 
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