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P R A C T I C A L  P A P E R  

A Data Reduction Approach Using the 
Collinearity Model from Non-Metric 

Photography 

Abstract 
A new computation procedure for calculation of both the in- 
terior and exterior orientation elements from a single non- 
metric photograph based on the collinearity equation and 
"an algorifhm for least-squares estimation of nonlinear pa- 
rameters" (Marquardt, 1963) has been investigated in detail. 
In this procedure, the traditional intermediate step of trans- 
forming image coordinates from a comparator system to a 
photo-coordinate system is by-passed. An experimental veri- 
fication of the proposed technique has been carried out. The 
experimental results support the conclusion that the devel- 
oped calculation procedure offers a theoretical and practical 
alternative to the existing models for the on-the-job calibra- 
tion of non-metric cameras. 

Introduction 
In close-range and industrial applications of non-topographic 
photogrammetry, metric as well as non-metric cameras are 
used as photographic data acquisition systems. Since the 
early 1970s, concentrated research and development has re- 
sulted in the development of a number of methods for data 
reduction particularly suitable for use with photographs from 
non-metric cameras. These methods are based on highly so- 
phisticated analytical techniques which combine, in most 
cases, the calibration and evaluation phases (Karara, 1980). 
Because of the lack of fiducial marks in non-metric cameras, 
special techniques had to be devised. One such method, the 
Direct Linear Transformation (DLT), was developed at the 
University of Illinois (Abdel-Aziz and Karara, 1971, 1974; 
Karara and Abdel-Aziz, 1974, 1974). The solution establishes 
a direct linear relationship between coordinates of image 
points and the corresponding object space coordinates. This 
linear approach for the calibration of a camera does not re- 
quire fiducial marks on the photographs. In 1978, Bopp and 
Kraus developed an exact solution to the DLT basic equa- 
tions, which leads to a least-squares adjustment with linear 
fractional observation equations and non-linear constraints, 
treated as additional observation equations with zero vari- 
ances. The term "11-parameters solution" is used for this 
method. In contrast to the DLT, the "11-parameter solution" 
can also be applied to cases where the known interior orien- 
tation should be held (Bopp and Krauss, 1978). 

In contrast to the DLT and "the 11-parameter solution," 
the presented solution established a direct nonlinear rela- 
tionship between coordinates of image points and the corre- 
sponding object space coordinates. This nonlinear approach 
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for the calibration of a camera does not require fiducial 
marks or reseau points on the photographs. Based on "Algo- 
rithm for Least-Squares Estimation of Nonlinear Parameters" 
developed by D.W. Marquardt in 1963, a reliable solution for 
the orientation and calibration elements is derived, which 
performs an optimum interpolation between the Taylor series 
(Gauss-Newton) method and the gradient method. 

Theoretical Consideration 

Modified Collinearity Equations 
A perspective or central projection is one in which all points 
are projected on to the reference plane through one point 
called the perspective center. The position of the perspective 
center with respect to the image coordinate system rep- 
resents the geometric elements of interior orientation. The 
position of the reference plane is defined by the object space 
coordinates of the perspective center X,Y,Z,. The orienta- 
tion, which describes the attitude of the camera at the mo- 
ment of exposure, refers to the spatial relationship between 
the object coordinate system and the image coordinate sys- 
tem. The relationship between the image and object coordi- 
nate systems is expressed by a 3 by 3 orthogonal matrix 
(Moffitt and Mikhail, 1980). 

The perspective center, the image point, and the object 
point lie on a straight line. This fundamental relationship is 
basic to all procedures in metric and non-metric cameras. 
However, in non-metric cameras, because of the lack of fidu- 
cial marks or reseau points, establishing the photocoordinate 
system and obtaining the parameters for correcting linear 
film deformation, lens distortion, and comparator errors are 
not possible. Therefore, the solution cannot be obtained 
using the collinearty equations. However, without loss of 
generality, the photocoordinate system may be assumed par- 
allel to the comparator coordinate system (Abdel-Aziz and 
Karara, 1971, 1974; Marzan and Karara, 1975), and the coor- 
dinates of the pseudo-position of the principal point (xo,yo) 
which are in the comparator coordinate system for non-met- 
ric photography are used. The measured comparator coordi- 
nates (x, and y,) will take the following form (Miiftiiog;lu, 
1980, 1984): 

Also, the measured values in these equations contain 
systematic and random errors. 
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Thus, the intermediate step of transforming image coor- 
dinates from a comparator system to a photocoordinate sys- 
tem is by-passed and a direct nonlinear relationship between 
coordinates of image points and the corresponding object 
space coordinates is derived. Fiducial marks are not required 
on the photographs. 

When the elements of the transformation matrix are 
written in terms of the variables o, 4, K, there are nine un- 
known parameters in Equation 1. These are the exterior ori- 
entation elements Xw Yw 2, o, 4, K, and the interior 
orientation elements x, yo, and c. The interior orientation 
parameters of each photograph in the stereoscopic model are 
independent variables; thus, non-stability of the interior ori- 
entation parameters will have no effect on the accuracy of 
the solution. Therefore, a single photograph is sufficient for 
the solution of the interior orientation elements. 

as calculated by the Taylor series method. The brackets < > 
are used to distinguish predictions based upon the linearized 
model from those determined from the actual nonlinear 
model. Thus, the value of Q, predicted by Equation 5 is 

8, appears linearly in Equation 5, and can therefore be found 
by the standard least-squares method of setting ac@>/as, =O, 
for all j. Thus, 6, is found by solving 

where 

Statement of Problem 
Let the model to be fitted to the data be 

where 
gs,, = z (YOi - Ely ) - ( abj ) ECy): dependent variable predicted by the equation, 

x,: independent variables of the equation, and 
b,: parameters of the equation. 

Let the data points be denoted by 
The gradient methods, by contrast, simply step off from 

the current trial value in the direction of the negative gra- 
dient of @. Thus, 

where YO, is the vector of measured comparator coordinates 
of imaged control points. The problem is to compute those 
estimates of the parameters which will minimize 

According to Marquardt (1963), any proper method must 
result in a correction vector whose direction is within 90" of 
the negative gradient of @. Otherwise, the values of @ can be 
expected to be larger rather than smaller at points along the 
correction vector. Also, because of the severe elongation of 
the @ surface in most problems, 8, is usually almost 90" 
away from 8, (this angle, y, usually falls in the range 80" c y 
< 90"). 

The theoretical basis for the algorithm for least-squares 
estimation of nonlinear parameters is contained in several 
theorems (Marquardt, 19633. 

THEOREM 1. Let A > 0 be arbitrary and let SO satisfy the 
equation 

where Pi is the value of y predicted by Equation 2 at the ith 
data point. According to Marquardt (1963), it is well known 
that when f(x,b) is a linear function of b's, the contours of 
constant @ are ellipsoids, while if f(x,b) is nonlinear, the 
contours are distorted according to the severity of the nonli- 
nearty. Even with nonlinear models, however, the contours 
are nearly elliptical in the immediate vicinity of the mini- 
mum of @. Typically, the contour surface of @ is greatly at- 
tenuated in some directions and elongated in others so that 
the minimum lies at the bottom of a long curving trough. 

Methods in Photogrammettic Use 
Least-squares estimation of the nonlinear collinearity condi- 
tion model is based upon "An Algorithm for Least-Squares 
Estimation of Nonlinear Parameters" (Marquardt, 1963). This 
algorithm performs an optimum interpolation between the 
Gauss-Newton method and the gradient method. The inter- 
polation is based upon the maximum neighborhood in which 
the truncated Taylor series gives an adequate representation 
of the nonlinear model. The Taylor series expansion for the 
collinearty equations is 

Then 8. minimizes @ on the sphere whose radius 11811 sat- 
isfies 

THEOREM 2. Let 8(A) be the solution of Equation 12 for 
a given value of A. Then I18(A)l12 is a continuous decreas- 
ing function of A, such that as A + m,l18(A)l12 + 0. 

THEOREM 3. Let y be the angle between 8, and 8,. Then 
A is a continuous monotone decreasing function of A 
such that as A +m, y+ 0. Because 6, is independent of 
A, it follows that 8, rotates toward 8, as A +a. 
The relevant properties of the solution, st, of Equation 7 

are invariant under linear transformations of the b-space. 
However, the properties of the gradient methods are not 
scale invariant. It becomes necessary, then, to scale the b- 
space in the collinearity condition. 

Thus, there can be defined a scaled matrix A*, and a 

(p(X,, Y,Z,, b + 6,)) 
aECy11 

= f(Xi,Yi,Zi, b) + - 
1-1  ( ab, ) 

where object space coordinates of the control point X,XZ are 
independent variables at the ith data point and elements of b 
correspond to the unknown orientation parameters 
xo,yo,c,w,~,~,Xo,Y,Z,, respectively. The vector 6, contains a 
small correction to b, with the subscript t used to designate S 
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scaled vector g*: 

A* = (a?,.) = l.v&] 

At the rth iteration the equation 

is constructed. This equation is then solved for ti*@). Then 

8, = S*,l.\/Ti;; (161 
is used to obtain The new trial vector 

will lead to a new sum of squares @ ("*I. It is essential to 
select such that 

Let A('-"denote the value of from the previous iteration. Ini- 
tially let A(o) = 1 0  -'. 
Test Data 
For the calibration procedure, a three-dimensional control 
field has been prepared, as shown in Figure 1. Horizontal 
and vertical control points were placed at 25-cm intervals. 
The test field consisted of 121 target points on different spa- 
tial planes. The bars which were used as control targets were 
all circular in shape, painted black, and had diameters of 5 
and 1 0  mm. On the ends of these bars were circular, white 
targets 1 mm in diameter, painted white with a black dot on 
them, indicating the center of targets (Muftuojjlu, 1980). A 
similar control field was used by Wong and Ho (1986). Pre- 
cise theodolite surveys were carried out to determine the ob- 
ject space coordinates of the control points. The mean 
standard error of X,XZ coordinates was 0.096 mm. Thus, co- 
ordinates of these fixed target points were assumed to be 
without error. This fact allows one to use these coordinate 
values as independent variables without error in the solu- 
tion. 

Figure 1. General Layout of the Test Field. 

Digital image data were generated using a Hasselblad 
500 C/M non-metric camera equipped with an 80-mmfl2.8 
lens. The photographic materials were OR WO NP 20 nega- 
tive film and Kodak Microdol-X developing. The photogra- 
phy was taken with an exposure time of 1/60 sec at fl5.6 by 
using a special system developed by Miiftiio$jlu (1986). 

This system is designed to take photographs in the nor- 
mal case of terrestrial photogrammetry, that is, capable at 
sliding on two steel bars ranging from 1 mm to 400  mm. 
Also, it overcomes the problems related to camera position, 
camera-object distance, and the orientation of the non-metric 
camera image plane. The resulting photographs were taken 
with a 400-mm base length and the camera was focused at 
8.0 m. 

Measurements of comparator coordinates for images of 
target points were performed while viewing the pair of nega- 
tive films stereoscopically on a Zeiss PSKZ stereocomparator. 
Then, comparator coordinates were separately obtained for 
the left and right negatives, but only one of these was used 
as dependent variables in the proposed solution procedure. 
The measured comparator coordinates of the target points 
contain systematic and random errors. 

In this solution procedure, the program iteratively ad- 

No. - 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
2 7 
28 
29 
30 
3 1 
32 
33 
34 
3 5 
36 
3 7 
38 
39 
40 

Comparator 
Coordinates 
x, Yo 

496.673 518.251 
503.357 518.271 
506.674 518.283 
513.774 519.396 
520.048 518.300 
530.035 518.230 
499.731 515.242 
506.695 514.944 
513.351 514.959 
520.076 514.918 
496.665 511.616 
499.977 511.562 
506.700 511.612 
523.425 511.521 
530.107 511.546 
502.076 509.314 
513.446 508.539 
520.910 509.159 
526.815 508.202 
496.673 504.907 
503.348 504.840 
510.078 504.837 
520.077 504.844 
526.736 504.869 
530.095 504.920 
493.752 501.540 
503.343 501.547 
506.923 501.165 
513.594 501.604 
523.502 501.555 
503.381 498.127 
510.073 498.141 
516.809 498.099 
520.191 498.071 
526.859 498.208 
530.205 498.153 
496.733 494.834 
513.537 494.533 
526.415 493.366 
520.195 494.859 

- 

Object Space Coordinates 
X Y z 

10616.189 14128.544 11375.714 
11115.013 14137.301 11375.581 
11363.578 14130.116 11373.795 
11878.082 13657.068 11348.848 
12362.246 14137.532 11376.443 
13114.475 14139.879 13374.401 
10874.691 13910.576 11108.136 
11364.860 14139.020 11125.336 
11861.325 14132.241 11124.782 
12363.477 14136.655 11122.639 
10616.918 14128.145 10877.547 
10863.057 14134.697 10873.498 
11365.504 14134.138 10874.441 
12615.403 14138.726 10870.868 
13114.698 14139.633 10870.867 
11124.474 13156.539 10597.228 
11860.404 13922.871 10626.087 
12336.210 13413.275 10614.300 
12867.679 14144.968 10621.030 
10618.171 14134.035 10377.530 
11115.554 14133.262 10370.930 
11615.250 14133.206 10368.738 
12363.401 14130.328 10366.801 
12864.068 14146.190 10370.815 
13112.085 14138.771 10373.606 
10606.137 13149.764 10111.347 
11113.641 14134.693 10125.977 
11430.420 13153.201 10085.140 
11862.072 13671.645 10121.621 
12614.546 14138.263 10123.373 
11116.287 14147.524 9870.220 
11615.503 14146.797 9871.195 
12115.626 14133.097 9867.268 
12365.879 14131.843 9865.313 
12866.149 14129.808 9873.245 
13115.549 14125.232 9868.723 
10619.253 14127.352 9627.042 
11865.258 13926.112 9616.636 
12642.864 13139.209 9599.158 
13114.255 14127.090 9623.583 



TABLE 3. COMPARISON TO THE DLT METHOD 

using 20 using 30 using 40 
points points points 

No. 
iterations 7 6 6 

xo 

Yo 

C 

4 

0 

K 

XO 

yo 

zo 

Standard 
Error of 
Estimate 

justs the interior and exterior orientation elements to mini- 
mize the function (Equation 6). The new comparator 
coordinates of the target points, minimized with respect to 
the function (Equation 6) and containing random and sys- 
tematic errors, will be calculated in the next or final phase of 
iteration. 

Results and Discussions 
The nonlinear least-squares estimation routine contained in 
the program was written in FORTRAN N language (elements 
and Schnelle, 1969). This program has been adapted to per- 
sonal computers by using standard FORTRAN language. 

Real data obtained from the test field are given in Table 
1. The interior and exterior orinetation elements calculated 
by the suggested computation procedure are presented in Ta- 
ble 2 usinn different numbers of control uoints. Note that 20 
control p$nts are good enough to estimGe the orientation 
elements, when the standard errors of estimated parameters 
are compared. 

In order to compare the presented procedure to the well 
known DLT method, an example prepared using the data of 
Marzan and Karara (1975) and the results of this simulation 
are given on Table 3. The comparison of the two methods for 
the interior orinetation elements is shown on Table 3. Be- 
cause the exterior orientation elements were not presented in 
the Marzan and Karara (1975) studies, no comparison is pos- 
sible for these elements. 

Conclusion 
In this paper, a computation procedure for calculation of 
both the interior and exterior orientation elements from a 
single photograph, through the use of the collinearity condi- 
tion equations and a three-dimensional test field, is pre- 
sented. This model can work very well for non-metric 
cameras for the following reasons: 

The fiducial marks are not required on the photographs. 
The computation time for the algorithm is short, and the val- 
ues of the parameters converge to their true values in a few 

- 

Suggested calibration 
Parameters procedure DLT Method 

xo 1.06425 1.0337 
7 0.07097 

Yo 0.98251 1.0125 
7 0.04922 

c 100.49292 100.5368 
T0.07596 

4 0.03555882 
Q - 0.03468423 
K - 0.00001737 
& 9304.245 
yo 8095.382 
ZO 15001.101 
Standard 
Error of 0.00451 
Estimate 

iterations, provided that suitable initial estimates are utilized. 
However, the use of very close estimates is not necessary for 
the convergence of the algorithm. 
Although the procedure has been developed for non-metric 
cameras, it can be applied to metric cameras for checking the 
interior orientation elements. 

In architectural photogrammetry, interior and exterior orine- 
tation elements calculated for the photographs by using this 
procedure can be used in preliminary studies for restoration 
and improvement, in inventory work, and in the study of the 
history of art. 
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