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A Note on the Analytics of Aerial 
Triangulation with GPS Aerial Control 

Abstract 
Aerial triangulation with GPS control in the aircraft, and al- 
most no ground control, is about to become operational: the 
key technology behind this is GPS kinematic positioning. The 
new "control" information is introduced as observational 
data into the photogrammetric network in a combined block 
adjustment. This paper develops some aspects of the ana- 
lytics of combined block adjustment from an operational 
point of view. This is accomplished in connection with the 
integration of GPS blocks into existing control networks for a 
twofold purpose: employing existing information and further 
exploiting GPS aerial triangulation results. 

Introduction 
The term "aerial control point" is defined here as the posi- 
tion of a point in a survey aircraft at the exposure moment of 
an image. In a more general context, aerial triangulation with 
aerial control was already undertaken in the late sixties 
when the MUSAT program, developed by A. Elassal, was used 
to process data from the Lunar Orbiter missions. According 
to Slama (1980): "This was also the first time a triangulation 
project had utilized a computer program with orbital con- 
straints to establish control for mapping." 

Compared to all the research and development reported 
in Slama (1980) - a chapter of truly delightful reading on 
satellite photogrammetry - in GPS aerial triangulation, once 
the coordinates of aerial control points have been computed 
from GPs pseudorange or phase observations, their integra- 
tion into a bundle adjustment is a minor mathematical and 
software problem, regardless of whether or not they are af- 
fected by-some systematic errors. 

Aerial control points are determined with kinematic (dif- 
ferential) GPS techniques. With the exception of small scale 
photography where pseudoranges can carry out the task, 
phase observations are used to perform precise (<lo  cm) ki- 
nematic positioning. Over the past five years many experi- 
ments have been conducted which have validated the 
concept and have shown its attainable accuracy. The experi- 
ments also had to overcome a number of difficulties related 
to state-of-the-art kinematic GPS, among others, the correct 
determination of integer ambiguities in non-static applica- 
tions. The result of these experiments and related research 
and development efforts is a well-defined procedure for the 
collection, analysis, and processing of GPS phase observa- 
tions, as well as the integration of resulting aerial control 
points into a photogrammetric block adjustment. 

According to Ackemann (1992a), GPS aerial triangula- 
tion encounters a number of problems: (a) the GPS antenna 
offset, (b) the camera time offset, (c) GPS initial phase ambi- 
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guities, (dl GPS signal interruptions, and (e) the datum prob- 
lem. 

As already mentioned, over the last five years a method- 
ology has been developed which overcomes these technical 
difficulties, especially those related to the more critical as- 
pects (c) and (dl, which is based on the a posteriori model- 
ing - in the block adjustment - of possible mismodeled 
parameters in GPS phase processing, mainly the incorrect de- 
termination of integer ambiguities (FrieB, 1990). 

Credit for the development of such an operational meth- 
odology goes mainly to the group from the Institute for Pho- 
togrammetry, University of Stuttgart (Ackermann, 1992a; 
Ackermann, 1992b; FrieD, 1990; Schade, 1992). Thanks to the 
"Stuttgart approach," practical application of ~ p s - s u ~ ~ o r t e d  
aerial triangulation did not have to await the unilateral solu- 
tion of the problems previously mentioned. The "Stuttgart 
approach is global in that GPS techniques and photogram- 
metric block adjustment techniques cooperate in solving the 
point determination and sensor orientation problem. 

The standpoint of this paper is the above approach and 
also the need to integrate GPS aerial triangulation into every- 
day photogrammetric and mapping projects; it will discuss 
the analytic aspects of GPS aerial triangulation in relation to 
problems (a) and particularly (e). (Although a question which 
should not be forgotten (Kubik, 1992). problem (b) will not 
be discussed because, with the help of a GPS-aided photo- 
grammetric navigation system, it is always possible to trigger 
the camera shutter at or close to a GPS observation epoch, 
thus practically solving the aircraft's trajectory interpolation 
problem.) 

Development of the Model 
The following notation conventions will be used throughout 
the paper: matrices and vectors will be written in bold type, 
AT will denote the transpose of A, and if A = (ail), then p A 
= (pu,,) unless otherwise stated. A list of the mathematical 
symbols used is given in Table 1. 

The integration of kinematic GPS aerial control into pho- 
togrammetric networks is often referred to as the integration 
of "directly observed camera orientation data." This designa- 
tion is correct because this type of data is so closely related 
to the camera orientation parameters that for some small 
scale applications aerial control can be regarded as actual 
orientation data. From a mathematical point of view, this 
means that the assumed functional model is 

where XI = (x l ,yJ ,~J)~  are the observed coordinates of the posi- 
tion part of the orientation elements and where X/ = 
(N,YI,D)T are the position unknowns of the j image orienta- 
tion parameters. Although the very first simulation studies 
were based on Equation 1, in practice the situation is more 

I. Colomina 
Institut Cartogrefic de Catalunya, 

Balmes, 209-211, 08006 Barcelona, Spain. 



I P E E R - R E V I E W E D  A R T I C L E  

TABU 1. LIST OF MATHEMATICAL SWBOLS. 

Symbol Description 

X I  GPS aerial control observation for image j 
XI Projection center coordinates of image j 
a Eccentricity vector of the antenna center in the j image 

reference system 
RJ Rotation matrix of the j image 
X, 1 + p, R Origin shift, scale factor and rotation matrix of a seven- 

parameter transformation 
x,, v, Constant and "velocity" terms of a linear drift parame- 

ter set 
tJ Time of exposure of image j 
t. Time origin of the s drift parameter set 
xi Ground control observation at point i 
xi Ground point i 
Af,Ax,Ay Biases of interior orientation parameters 
(I,cp,h) Geodetic coordinates 
(E,N,H) Map projection coordinates and orthometric height 
Xl(A,cp,h) j projection center geocentric coordinates parametrized 

by (A,qPb) 
MJ(A,cp) Transformation matrix of the L system whose origin is 

(A, ~ n h )  
X,(h,(p,h) i ground point geocentric coordinates parametrized by 

(A,cp*h) 
N Geoidal undulation 
VN Standard error of geoidal undulations 
AN Relative geoidal undulation 
vm Standard error of relative geoidal undulations 
GE -, HO Transformation: geodetic (A,cp,h) to local (X,Y,Z) coordi- 

nates 
GE -, PR Transformation: geodetic ( h , ~ )  to map projection (E,N) 

coordinates 
OH -, EH Transformation: orthometric (H) to ellipsoidal heights 

(h)  

complex and a number of other parameters and constants are 
to be considered. The following definitions are required: S 
will stand for the satellite reference system, for instance, 
WGS84; L for a local Cartesian reference system, for instance, 
horizon; and U for a (global) system, for instance, the na- 
tional system; where geodetic control networks and ground 
control points are assumed to be referred to; 0 will denote 
the origin of the local system. 

If X = (3, X, is the eccentricity vector of the re- 
ceiver's antenna center in the j image reference system, Rj = 
(zI$,)~ is the rotation matrix of the j image system (parame- 
trized, for instance, by the usual o, 4, and K angles), and XJ 
= (X, Y, 7,lT are the j image projection center coordinates in 
the L reference system, then the coordinates of the receiver 
antenna in the same L system are 

Assume that the satellite reference system, S, and the local 
reference system, L, are related through a general seven-pa- 
rameter transformation 

where R is the rotation matrix of the L system with respect 
to the S system, and (1 + p) is the scale factor between them 
and X, the origin shift. Then, for the observed coordinates XJ 
at the j exposure moment, the following equation holds (see 
Lucas (1987)): 

Now if, according to the results in Ackermann (1992a1, Col- 
omina (1989), Fries (1990), and Schade (1992), additional 

linear correction parameters - the so-called drift parame- 
ters - are introduced, Equation 4 becomes 

where X, = (X, Y,, Z,)T, V ,  = (VX., Vy,, VzJT constitute the 
s drift parameter set; obviously, X, and V ,  are the constant 
shift and "velocity" terms, respectively, of the drift parame- 
ter set. An image j can only be related to one drift parameter 
set. t, is the time at which the j image was taken, and it is 
reduced to a drift set time origin t,. The choice of t, is not 
critical at all, but it is usually computed as 

where the n, images s,, ldots,sk belong to the drift set s. 
If the coordinates of a number of object points in the S 

system are known, additional observation equations which 
essentially contribute to the estimation of the datum transfer 
parameters can be set based on 

where Xi = (XI, ZI)T are the coordinates of a ground ob- 
ject point in the L system and xi = (x, y, zIIT are the ob- 
served or known coordinates of the same point in the S 
system. 

In fact, Equation 5 represents elementary geometrical re- 
lationships (see Figure 1) but relates three observed values to 
22 unknowns which are highly correlated (seven datum 
transformation parameters, six image exterior orientation pa- 
rameters, three antenna eccentricity vector components, and 
six drift parameters). This correlation exists, for instance, be- 
tween datum transfer and drift parameters or between the 
antenna offset X and the orientation elements. At the very 
least, it would seem that the antenna offset should be mea- 
sured input data recorded by any hardware means at each 
exposure moment, so it can be regarded as a constant in 
Equation 5 or as an observation modeled in the usual way 
4 = w. 

Correlations also exist between all the above parameters 
and possible additional self-calibration parameters (Af, Ax, 
Ay) of the inner orientation elements, i.e., corrections to 
camera constant and principal point coordinates. It might 
well be that small inconsistencies detected in some of the 
experiments conducted so far are caused by an incorrect 
knowledge of the above elements during the flight. This fact 
is again nothing new. So far, however, systematic errors in 
the exterior orientation parameters produced by (6f, &, 6y) 
biases of the inner orientation elements were harmless be- 
cause they produced no global inconsistencies. Today this is 
no longer true because the exterior orientation elements are 
the link to the GPS aerial control. In the experiments con- 
ducted so far, it seems that the drift parameters are playing 
the role of nuisance parameters, absorbing a number of un- 
modeled effects. 

Note that Equation 5 can also be employed when an ar- 
ray of GPS antennas is used for attitude determination. For 
each exposure moment tr, there will be a set of aerial control 
observations N,...,& and the corresponding antenna offsets XJ 
.,,...,&, whereby full 3 x .-- x 3 observation covariance ma- 
trices are to be considered in the adjustment in order to ac- 
count for the inner geometric strength of the antenna array. 

The next sections deal with three key aspects related to 
the new aerial control observables: the issue of coordinate 
transformations, the role of the geoid, and the antenna eccen- 
tricity vector. 
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IMA GE SYSTEM (e) 

antenna offset: 
x: = ( x i ,  Y:, 
focal length: f 
photo-observation: (xi, $) 
observd i v g e  point: 
4 = ( 4 , d , - f ) T  

object point: 

projection center: 
Xj = ( ~ j  , yj , zj)= 

0 

Figure 1. Geometric model for aerial control observation equation. 

WGS84 and the User System 
Equation 5 is the fundamental equation for the integration of 
aerial control into bundle photogrammetric blocks, where 
point and orientation parameters are expressed in a local 
Cartesian coordinate system L. There are a number of equiva- 
lent approaches to exploit Equation 5 which will be dis- 
cussed in this section. Depending on the adopted approach, 
the aerial control observations, the ground control observa- 
tions, and the adjusted point and orientation parameters will 
have to undergo different coordinate transformations before 
and after the adjustment. 

Equation 5 itself corresponds to the case where aerial 
control observations are given in their original form, that is, 
relative or absolute coordinates in the S system. Then, the 
"correct" sequence of coordinate transformations is dis- 
played in Figure 2, where some transformation steps may be 
skipped if the block size is small. 

Figure 2 also displays the required transformations if 
GPS control has already been transformed to a local Cartesian 
reference system L; then, the equation to be used is 

xJ = Xf + R f X d  + X ,  + V,(il - t,). (7) 
A further possibility exists which avoids transformations to 
the auxiliary L system by performing the block adjustment in 
geodetic coordinates and ellipsoidal heights in the U system. 
Then, Equation 5 becomes 

where XJ (A, Q, h) is the projection center vector of geocentric 
coordinates parametrized by the geodetic coordinates (A, Q, 

h), and where the transformation matrix Mi (A, Q), 

- S i n  A - COS Sin Q COS A COS Q 

A - sin A sin Q sin A cos Q 

COS Q Sin Q 

keeps the traditional meaning of the j image orientation an- 
gles o, +, K. Of course, in this case the collinearity equations 
must be derived accordingly by introducing 1W (A, rp, h) in 
their vector formulation. Similarly, Equation 6 becomes 

where X, (A. Q, h) is the i ground object point in the U sys- 
tem. It is noticed that the meaning of the datum transfer pa- 
rameters is not the same in the above Equations 8 and 9 as in 
Equations 5 and 6: in Equations 8 and 9, (X, p, R) define a 
transformation between the S and the U systems where R is 
always close to the unit matrix. A layout of the required co- 
ordinate transformations is given in Figure 3. 

(At the Institut Cartografic de Catalunya (ICC), after hav- 
ing used Equations 5 and 7 in several test blocks, we plan on 
using Equation 8 for routine production tasks; Permanent 
GPS fiducial stations will be acting as reference stations for 
kinematic airborne GPS positioning; observations XI will be 
referred to the WGS84 system; and good approximations for 
X, p, R will be known from previous GPS terrestrial cam- 
paigns. The only transformations left for aerial triangulation 
operators will be those between coordinates (A, Q, h) and 
horizontal map projection coordinates and orthometric 
heights (E, N, If).) 

In all the above cases (Equations 5, 7, and 8), one can 
expect some problems. First, the transformation from or- 
thometic to ellipsoidal heights - denoted as OH + EH in 
Figure 2 and Figure 3 - may not be known; this will be dis- 
cussed in the next section. Second, the transformation from 
the S system to the local system L may also be unknown or 
scarcely known; if this is so, then two scenarios can be con- 
sidered for the determination of the transformation, depend- 
ing on whether the satellite system and the U system 
coincide. Afterwards, the transformation parameters can be 
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I Figure 2. Sequence of coordinate transformations 
for Equations 5 and 7 models. 

used either before the adjustment or in the adjustment, as in- 
itial approximations andlor as weighted pseudo-observations. 

If the S and the U systems coincide - having parallel 
axes and no scale difference, as happens to be the case with 
the NAD83 and WGS84 systems - then p = 0; R is either the 
unit matrix (Equation 8 model) or R = M(A, p) where (A, Q) 
are the geodetic coordinates of 0 in the U reference system 
(Equations 5 and 7 models); X can be computed as the differ- 
ence between the geocentric coordinates of 0 in the U sys- 
tem and those of the reference stationary receiver in the S 
system. 

If the S system and the U system do not coincide, the 
datum transformation parameters must be available before- 
hand or be determined in an independent survey. However, 
if the transformation parameters are to be estimated in the 
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a1 6 10 14 17 20 22 24 26 
a, 11 20 29 38 45 53 60 66 

D: distance in arc minutes 
a,: am for normal terrain 
4: am for mountainous terrain 

adjustment, the procedure described above remains valid for 
the computing of initial approximations for (X, CL, R). 

Finally, but equally important, note that linear compo- 
nents of small discrepancies resulting from local control net- 
work distortions or from other sources will be absorbed by 
the drift parameters (see next section for a related discus- 
sion). 

It goes without saying that in either of the approaches, 
the so-called "Earth curvature correction" for image observa- 
tions must not be applied. 

Ellipsoidal and Orthometric Heights 
Orthometric heights (H), the heights used in surveying and 
mapping, are referred to the geoid, an equipotential surface 
at mean sea level. Orthometric heights have a physical mean- 
ing: their differences tell us which way water flows; but they 
lack a geometric meaning. Ellipsoidal heights (h), the heights 
given by and to be used with GPS techniques, exhibit just the 
opposite properties: they are only of a geometric nature. 
Geoid undulations (N), which for practical purposes can be 
considered as the ellipsoidal heights of the geoid points, are 
instrumental in relating orthometric and ellipsoidal heights 
through the simple formula 

Correct use of any of the observation Equations 5, 6, 7, 
and 8 requires that control point heights be introduced as el- 
lipsoidal heights and that adjusted heights be transformed 
back to orthometric heights for further use. 

The whole transformation is a simple task provided that 
a geoidmodel yielding N is available. In many countries, 
high-resolution geoid models have been recently computed. 
They are usually available in gridded form together with file 
extraction and grid interpolation software. Typical accuracies 
of these high-resolution geoid models are of a few parts per 
million of the distance between points and can also be more 
accurate - in any case, much higher - than the accuracy of 
photogrammetric point determination. The introduced errors 
can, therefore, be disregarded. 

Wherever a high-resolution geoid is not available, a 
global, world-wide model can be used. A set of global deter- 
minations which has become very popular is the family of 
osu models (Department of Geodetic Science and Surveying, 
The Ohio State University; Rapp et al., 1991). An OSU model 
can be obtained directly from its author, R. H. Rapp (in terms 
of the coefficients of a spherical harmonic expansion of the 
gravitational potential, in the WGS84 system) or from some 
national geodetic agencies (sometimes in a more convenient 
gridded form and already transformed to the particular na- 
tional reference system). A welcome development in this re- 
spect is that some GPS receiver and software manufacturers 
have these models embedded in their software. 

In the context of this paper, the question is: "How much 
error is left by using a global model instead of a high-resolu- 
tion one?'The other question regarding the error committed 
by using no geoid at all maybe misleading because global 

models do exist and their use is simple. See also Schwarz 
and Sideris (1993) for a related discussion. 

Answering the above question is not easy: though the 
spatial resolution of the current geoid models is 0.5" (about 
55 km) and the average standard error a, is about 0.5 m, in 
areas with poor gravity coverage a, can build up to 2 to 3 m; 
equally, it can be reduced or enlarged by a factor of 2 to 3 in 
flat or mountainous terrain, respectively. At this point, how- 
ever, the reader with no high-resolution geoid model at hand 
should not be discouraged; there are two factors, at least, 
which will help him or her to do much better than the above 
u~ figures may seem to indicate. 

First, because precise height determination by GPS is 
performed in differential mode, in practice, instead of Equa- 
tion 10, 

will be used, where Ah and AH are ellipsoidal and orthome- 
tric height differences and where AN are geoidal undulation 
differences, respectively. Therefore, we are interested in om 
rather than in UN. Because geoid undulations between close 
points are highly correlated; urn is much smaller than UN. In 
other words, systematic errors affecting N to a large extent 
cancel out when computing undulation differences AN. In 
Table 2, empirical estimations of am are shown for several 
distances and for two terrain scenarios. They have been com- 
puted by comparing the OSU9lA model with the high-resolu- 
tion geoid model of Catalonia, which is assumed to be error- 
free. 

Second, if datum transfer parameters are estimated in 
the block adjustment, they will account for an eventual non- 
modeled local geoid slope. If datum transfer parameters are 
either non-estimable or kept fixed, but drift parameters are 
used, the latter will account for a non-modeled local slope as 
well. If drift parameters per strip are used, then there will be 
the possibility of correcting non-modeled bilinear features. 
From a theoretical point of view, it might be slightly better to 
keep an independently well-determined datum transforma- 
tion fixed and to estimate the drift parameters, because oth- 
erwise possible big errors in geoid undulations could have 
an unwanted effect on a global scale factor. In either case. 
the figures in Table 2 may be smaller by a factor of 3 or 
more. 

Note that the problems discussed in the last two sections 
are general ones affecting not only photogrammetrists but the 
whole surveying community when integrating GPs surveys 
into the existing conventional control networks (see, for in- 
stance, Leick, (1990)). 

The GPS Antenna Offset 
Under operational flight conditions, the navigator-photogra- 
pher controls the camera to keep the correct overlap between 
images. In general, the determination of the offset is not criti- 
cal. However, for photogrammetric network densification and 
for large scale mapping, the situation may change; consider, 
for instance, a low altitude flight with unfavorable wind con- 
ditions where strips are flown alternatively in opposite di- 
rections. If, as the results of recent investigations (Cannon et 
al., 1992a; Cannon et al., 1992b; Schade, 1992) seem to indi- 
cate, a single drift parameter set will suffice in the future, 
then it will be necessary to record the antenna offset, or any 
equivalent set of values, at each exposure moment. Because 
metric cameras are operated by the navigator-photographer 
through remote control systems andlor automatically, infor- 
mation about the offset does exist and can be output in digi- 
tal form. 
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In experimental airborne GPS tests at the ICC, the offset 
was measured after the flight mission because the camera 
was operated in a locked-down mode. In the future, we 
count on having some kind of information coming from the 
camera system and plan on measuring the antenna offset for 
several camera position readings. The information collected 
will constitute a 3D grid of calibrated offset vectors. Actual 
in-flight offset vectors will be interpolated from the grid. 
With this approach, the eccentricity vector & will no longer 
be an unknown, but will be auxiliary data of the observation 
xi. 

However, if the above time varying offset is not available 
and accuracy requirements are high, a set of drift parameters 
per strip will suffice in most cases. 

Software Design Considerations 
A conclusion which can be drawn from the preceding dis- 
cussion is that a software system for GPS-supported aerial 
triangulation has to incorporate a set of basic geodetic trans- 
formation modules (see Figures 2 and 3) which include the 
interpolation of geoid heights from global and high-resolu- 
tion local geoid models. 

Ideally, the block adjustment program should implement 
the models corresponding to Equations 5, 6, 7, and 8 so that, 
depending on the situation, it best fits the needs of the user. 
Programs with this capacity are available, and its implemen- 
tation in already existing software should be but a minor 
software engineering problem. An additional module which 
at the very least allows for the adjustment of small GPS ter- 
restrial networks and for the determination of datum trans- 
formation parameters between point fields is also 
recommended. In principle, a single "network adjustment 
software engine" could deal with any adjustment task so that 
advantage can be taken of the investment made both in de- 
velopment - from the point of view of the software manu- 
facturer - and in learning - from that of the user. See, for 
instance, Colomina et al. (1992) and the pioneering develop- 
ment in Elassal (1983). 

Although GPS phase processing is not the topic of this 
paper, it ought to be pointed out that a software system for 
GPS aerial triangulation should not necessarily restrict itself 
to purely photogrammetric aspects. It should either cover or 
integrate - through standardized data file or database sys- 
tems - all steps from GPS phase processing to flexible block 
adjustment through the required intermediate transforma- 
tions: after all, aerial triangulation systems are nothing more 
than point determination and sensor orientation systems. 

Concluding Remarks 
The analytics of GPS-supported aerial triangulation and par- 
ticularly the coordinate transformations involved are basic 
geodetic concepts; the goal of this paper was just to review 
them from an operational point of view in the context of 
modern aerial triangulation with GPS aerial control. Never- 
theless, there are three aspects which should be dealt with 
carefully when moving from conventional ground control to 
GPS aerial control: (1) the consistent determination of the GPS 
antenna eccentricity; (2) the datum transformation between 
the satellite reference system, S, and the systems U and L; 
and (3) the transformation between ellipsoidal and orthome- 
tric height systems. Driven by the need to test the intrinsic 
properties of GPS kinematic positioning, mast of the experi- 
ments conducted so far have bypassed the former issues by 

keeping the camera fixed and by working in test areas with 
local Cartesian coordinates determined by GPS terrestrial sur- 
veys. 

For GPS-supported aerial triangulation to become truly 
operational, the above questions have to be tackled not case 
by case but with an overall policy. Metric camera manufac- 
turers are mainly responsible for point (1) above; the infor- 
mation required certainly exists within their systems and the 
ongoing developments in stabilized mounts are a good op- 
portunity. National geodetic and mapping agencies have to 
provide datum transformation parameters, information on lo- 
cal deformations of control networks, and geoid determina- 
tions; this solves the data aspect of points (2) and (3). 
Software manufacturers have to provide integrated solutions 
running from GPS phase observation processing to photo- 
grammetric network adjustment, including all the coordinate 
transformation and map projection modules required. 
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