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Predictive Model Development and 
Evaluation with Unknown Spatial Units 

Abstract 
Existing spatial modeling techniques assume that geographic 
units of interest can be defined a priori. While this may be 
valid in human geography, in the case of naturally occurring 
phenomena, it is often not possible to identi& the spatial 
units of interest at the beginning of a study. This paper de- 
scribes how an ecological system may be sampled and mod- 
eled and how the model can be evaluated. The sample is a 
grid-based approach in which the local density of the grid is 
related to the categories of the dependent variable. Because 
of its ability to handle k-categories of the dependent varia- 
ble, discriminant function analysis is used to develop the 
model. Model evaluation involves an assessment of areal 
and locational accuracy, and examination of spatial auto- 
correlation among model residuals. Alternative methods for 
defining residuals are also explained. 

Introduction 
In the development of geographic models to quantify, ana- 
lyze, or project spatial phenomenon, one implicit assumption 
is that spatial units of interest can be defined a priori. For 
example, one may wish to develop a model which will "ex- 
plain" or "predict" the amount of cattle present in the coun- 
ties of a particular region. Therefore, all subsequent analyses 
must employ "county" as the smallest indivisible geographic 
unit. Thus, one will collect information for independent pre- 
dictor variables - e.g., amount of pasture land, distance 
from a slaughterhouse - based on the county boundaries. 
This means that, if the model developed is used subse- 
quently to estimate the amount of cattle present in an "area" 
for which these data are not available, that "area" must be a 
county. 

While such a framework is widely used and accepted, it 
suffers from a number of limitations. If counties are irregu- 
larly shaped, measures of distances from a point feature such 
as a slaughterhouse may not be meaningful. More important 
is that counties may have "a lot" of pasture land but, be- 
cause of its spatial distribution within a county, the number 
of cattle present in that county is relatively low. Similarly. 
the subdivision of the area into counties may be inappro- 
priate for this analysis; cattle presence may be related most 
strongly to "prime pasture soil type" which is unlikely to be 
related to county boundaries. 

This discussion is presented as a means of introducing 
the problems of applying such techniques to naturally occur- 
ring phenomena in general, and .an ecological system in par- 
ticular. In this study, archival aerial photographs (1939 to 
1982) were available for a wildlife refuge area in central Mis- 
souri which had remained relatively undisturbed since 1939. 
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It was desired to produce a statistical mode1 which would 
describe the amount and location of change in the vegetative 
cover types of the area over time. Thus, the cover types 
Open, Cedar, and Forest had to be projected from 1939 for- 
ward to 1982. These represent the initial conditions, middle 
transition period, and climax stages of ecological succession, 
respectively, in the study region (Drew, 1942). The rate at 
which one vegetative type converts to another is thought to 
be dependent upon soil type, topographic exposure, and the 
distance from a Forest seed source (Huber, 1971). 

If one were to follow conventional geographical model- 
ing techniques, a priori o'ne would identify vegetative type 
polygons present in 1939 as the spatial units of interest. In 
doing so, one imposes a number of limits on the analysis. 
First, one must quantify all independent variables relative to 
these polygons. In reality, the topographic aspect, for exam- 
ple, will change within each polygon. Even allowing the 
specification of the amount of each aspect for a given poly- 
gon will not be satisfactory as, for large polygons, it is the 
spatial distribution - not the amount - of each aspect that 
is relevant. Second, and more importantly, any model devel- 
oped will not accommodate the sub-division of 1939 vegeta- 
tive type polygons. Thus, as ecological succession occurs, 
instead of seeing a gradual encroachment of Cedar into Open 
areas, one will experience an "all at once" conversion. 

Thus, it is desired to develop modeling approaches for 
natural systems which avoid these limitations. The purpose 
of this paper is to present and discuss a modeling methodol- 
ogy which may be more appropriate for natural systems than 
a more conventional methodology which demands that spa- 
tial units of interest be identified a prion'. Specifically, the 
paper will present and discuss 

a spatial sampling scheme for predictive model development; 
techniques for the development and evaluation of predictive 
models, including accuracy assessments and evaluation of 
spatial autocorrelation among residuals; and 
the effect of spatial unit definition on the measurement of 
spatial autocorrelation. 

Background 
The following description of the study area, data, and nature 
of ecological succession is discussed in more detail in Low- 
ell (1991); a synopsis of these items is presented here. 

Study Area 
The study area is a 932-ha wildlife refuge area - the 
Thomas W. Baskett Wildlife Research and Education Center 
(BWRGC) - located in central Missouri in the United States. 
Until 1937, this area comprised a number of separately 
owned farms devoted primarily to row crops and pasture; a 
minor portion had remained forest. In 1937, the entire area 
was procured by the University of Missouri for the study of 
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wildlife and its associated habitat. Only two types of distur- 
bances have occurred on the area since that time. A number 
of grazing leases signed by individual farmers before 1937 
were honored; the last of these expired in 1962. Disturbances 
related to forestry and wildlife research have also occurred, 
including the establishment of pine plantations as well as 
burning and clearcutting to improve ,and' study wildlife habi- 
tat. Cartographic records of the areas affected have been 
maintained. 

Data 
Aerial photographs of the BWREC were available for a number 
of dates between 1939 and 1982 (Table 1); a U.S. Soil Con- 
servation Service soils map was obtained; a U.S. Geological 
Survey Topographic map was acquired; and a map showing 
the distance to a Forest boundary in 1939 was produced 
using the 1939 vegetation base map and the buffering capa- 
bilities of a GIs. Each of the maps was treated as described in 
Table 1 for incorporation into a raster data model (11-m by 
11-m cell size) registered to the Universal Transverse Merca- 
tor (UTM) projection. Topographic aspect was recoded into 
three classes: Cool (north, northeast, east), Warm (west, 
southwest, south), and Neutral (northwest, southeast, flat). 

During subsequent analysis, the soils information was 
found to be spatially redundant with land cover in 1939. 
Further examination of this phenomenon showed that the 
soils map had been produced primarily from the 1939 aerial 
photographs also used in this study to map 1939 land cover. 
Thus, their redundancy is not surprising; the soils informa- 
tion was dropped from further consideration. 

Ecological Succession 
In Missouri, in the absence of disturbance, agricultural and 
pasture land will be invaded by eastern redcedar Uuniperus 
virginiana L.) and converted to this type after 15 to 20 years 
(Henning. 1937). This vegetative type will in turn be re- 
placed by the climax oak-hickory forest type (Eyre, 1980). 
Three vegetative types representing these three stages of 

succession appeared on each land-cover map: Open. Cedar, 
and Forest. A fourth cover type - Disturbed - was also in- 
cluded, representing those areas which had been disturbed 
for grazing or research purposes at any time between 1939 
and 1982. Thus, to project the 1939 cover type forward, it 
was necessary to model succession on four cover types based 
upon knowledge of how ecological succession could be ex- 
pected to proceed over time on each. 

By definition, Disturbed would remain Disturbed. Forest 
was expected to remain Forest but, because of minor pho- 
tointerpretation differences and map registration and digitiz- 
ing errors, it could not be dxpected that 100 percent of the 
areas mapped as Forest in 1939 would also be mapped as 
forest in 1982 and all years in between. It is known that Ce- 
dar can compete most successfully on limestone ridges and 
dry areas. Thus, the speed at which Open areas succeeded to 
Cedar was expected to be related to the underlying soil type 
and topographic aspect. The speed at which the pioneering 
Cedar yielded to the climax Forest was also expected to de- 
pend upon both soil and aspect, but also to the distance a 
given area was from a Forest seed source. This latter is true 
because the Forest type is comprised principally of oaks 
(Quercus spp.) and hickories (Calya spp.) which have rela- 
tively heavy seeds. These are dispersed only short distances 
by small mammals such as squirrels. Distance from a seed 
source was not considered a factor in the conversion of Open 
to Cedar as eastern redcedar is dispersed by being eaten by 
birds, remaining viable through the digestive tract, and being 
defecated when the bird is flying. This must be considered a 
spatially random process. 

Sampling Scheme 
A number of underlying assumptions must be made in em- 
ploying the proposed sampling scheme. It is assumed that 
there are underlying polygons which are meaningful relative 
to the dependent variable (cover type in a given year) and 
which can be defined by combinations of the dependent and 
independent variables. These polygons are not definable a 

Processing required to 
GIs layer Base map source Scale of map produce GIs layer 

Land cover for 1939, Archival B + W stereo lead-off aerial photo- 1:10,000 Photo-interpretation and transfer to base 
1950, 1956, 1962, 1970 graphs map; digitizing; overlay with 1:10,000-scale 

map of Disturbed areas. 
Soils U.S. Soil Conservation 1:31,680 Digitizing. 

Forest boundary 

U.S. Geological Survey 7.5-minute quaa 
sheet 

1939 GIs land-cover map 

1:24,000 Digitizing one elevation point per 0.0081 ha; 
distance-weighted elevation interpolation; 
aspect extrapolation. 

11-m GIs cells Screen-digitizing of forestlnon-forest bound- 
aries: neneration of buffer zones. 

TABLE 2. COVER TYPE AND SAMPUNG SCHEME D E S C R I ~ O N  

1939 
Cover 
Type Variance ha % No. % per ha 
Forest Low 502 54 223 19 0.4 
Cedar Moderate 7 1 46 4 6.3 
Open High 282 30 782 69 2.8 
Disturbed 0 (Zero) - 141 15 - 90 - 8 - 0.6 

932 100 1141 100 Totals 
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priori as it is impossible to determine exactly which inde- 
pendent variables and which categories of these will be re- 
lated to the dependent variable. That is, if topographic aspect 
is related to ecological succession, perhaps only south-facing 
slopes affect ecological succession. Or it may be that north- 
and northeast-facing slopes are different from each other 
with respect to ecological succession and the rest are uni- 
form. 

Nonetheless, different polygons defined by the same var- 
iablelcategory combination can be expected to be similar to 
each other with respect to ecological succession. Further- 
more, one of the dependent variables may be identifiable as a 
"dominant" or "controlling" variable. In this case, it seems 
fairly obvious that the cover type that one finds at a given 
location will be dependent on its cover type at the start of 
succession (1939). It makes sense, therefore, to start with 
such a dominant variable and describe the expected behavior 
of each of its categories relative to the dependent and inde- 
pendent variables. One then has a better chance of drawing a 
sample from each category of the dominant variable which is 
dense enough to have a good chance of representing all poly- 
gon combinations and their variability. This may necessitate 
a stratified sampling density, with the density in any given 
area being based on the categories of one or more variables. 

The sampling scheme employed here is a regular grid 
whose spacing is dependent on the cover type in 1939 (Table 
2); thus, it is a stratified sample with the stratification being 
based on the cover type in 1939. The sampling densities for 
each type were chosen primarily by intuitive means such as 
a rule-of-thumb of a minimum of 30 samples per cover type. 
Furthermore, in a raster GIs one cannot sample at a density 
higher than the grid size itself (11 m in this case). Note that. 
if the model to be fitted subsequently is likely to be cover 
type specific because of the use of dummy variables (see also 
Model Development section, Table 3), an oversampling of a 
given type will not affect the model description of succes- 
sion on other types.' 

The sampling intensity of those types having low ex- 
pected ecological succession variance - Forest and Dis- 
turbed - is relatively low. These types covered a combined 
69 percent of the BWREC in 1939, yet only 27 percent of the 
sample points resided on these types (Table 2). In absolute 
terms, there are a large number of points - 223 and 90 - to 
represent Forest and Disturbed, respectively. While this sam- 
ple size does not ensure adequate representation of these 
types, given their low expected successional variability, it 
should be sufficient. Open was the most variable type with 
respect to ecological succession and also covered a relatively 
large percentage of the BWREC in 1939 (30 percent). Thus. the 
sample density for Open was moderately high (2.8 points per 
ha), and produced the greatest number of sample points - 
782 - of any type. Cedar was the type that was the least- 
present in 1939. However, because Cedar had a moderate ex- 
pected successional variability, it was sampled the most in- 
tensely at 6.3 points per ha (Table 2). Nonetheless, this 

'The stratified svstematic s a m ~ l i n ~  scheme was emdoved whose 
density varied with the land &veipresent at the y ~ a r  considered to 
be the beginning of ecological succession. It would also have been 
possible to make the grid density vary with additional variables by 
overlaying these and specifying a sample density for each variable 
combination. Moreover, it is not necessary that a systematic grid be 
employed for sampling; a random sample of a specified density 
could be extracted instead. This might be considered preferable be- 
cause parametric statistical techniques assume a random sample. 
However, in order to ensure coverage of the entire territory, a grid- 
based sample was employed herein. 

yielded the least number of sample points for any type - 
46 - because of the small amount of Cedar present in 193g2. 

Note that, while the sample drawn appears to "make 
sense" intuitively, no statistical constraints have been placed 
on it. Recall, however, that a basic premise of this sampling 
scheme is that there are underlying, yet undefinable, poly- 
gons in the system which require representation. Thus, the 
initial goal of the sample was to represent the possible com- 
binations of 

1939 cover type with four classes, 
topographic aspect with three classes, 
soils with four classes, and 
distance from Forest as a continuous variable. 

Given (4 by 3 by 4) 48 possible variable combinations plus 
one continuous variable, a total sample size of 1141 points 
(Table 2) is likely to be adequate. It is acknowledged, how- 
ever, that if 48 types are possible, ten or so will probably 
comprise around 90 percent of the area meaning that the mi- 
nor types will probably be undersampled regardless of the 
sampling scheme. If the undersampled types are critical to a 
phenomenon being studied, users are well-advised to exam- 
ine further the distribution of samples within variable com- 
binations and possibly adjust it accordingly. 

At each of the 1141 sample points, the values for each of 
the seven measurement years, and the variables aspect, soil 
type, and distance from Forest in 1939 were recorded. These 
were exported into an aspatial ASCU file for subsequent 
model development. The sample points were split into two 
data sets. The calibration data set contained approximately 
80 percent of the samples and was used for model develop- 
ment; the remaining 20 percent was reserved for model vali- 
dation. 

Model Development 
Because the dependent variable - cover type at a given 
year - is categorical, and because there are more than two 
categories of the dependent variable, discriminant function 
analysis (DFA) was employed to produce the predictive 
model. DFA produces a set of equations - one equation for 
each category of the dependent variable - which are linear 
combinations of the independent variables. 

Stepwise DFA was employed to fit two models (Table 3) 
using the calibration data set. The first, which will subse- 
quently be referred to as the "Full Model," estimated cover 
type at any given year using four independent variables and 
selected interactions thereof: 1939 cover type, aspect recoded 
into Warm, Cool, and Neutral slopes; distance from Forest in 
1939; and the number of years elapsed since 1939. The sec- 
ond DFA model, which will subsequently be called the "Re- 

ZThe Cedar type produced the fewest samples (i.e., 46) of any type. 
If this number had been judged inadequate for model development, 
this could have been increased in two ways. First, the sampling in- 
tensity could have been increased. Instead of taking 6.3 points per 
ha (Table 1) or one point per 0.16 ha, one could have sampled more 
with the functional limit being only the cell size (0.0121 ha). How- 
ever, such a move possibly would have caused so much spatial auto- 
correlation among sample points that results for the type would have 
been spurious. A second alternative might be preferable. The first 
year following 1939 for which a land cover map was available (1950) 
could have been used as a "base year." The Cedar areas present in 
1950 which had not been present in 1939 could have been sampled. 
The same could also have been done for the following years. While 
this would have produced measurements for only (1982 - 1950 =) 
32 years instead of the (1982 - 1939 =) 43 years of the life of the 
study, it would nonetheless have provided additional data for Cedar 
for certain time periods. 
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duced Model," estimated cover type at any given year as a 
function of 1939 cover and the number of years since 1939 
only. 

To estimate the cover type for an unknown GIS cell using 
either DFA model, one notes the value for each of the inde- 
pendent variables and calculates the discriminant score for 
each of the cover types using the equation calibrated for that 
type. The cell is then assigned to the cover type whose equa- 
tion produces the largest discriminant score. This procedure 
was followed for each raster cell and each model to produce 
maps of estimated land cover for each of the years for which 
land cover was known (Table 1). The predictive ability of 
each DFA model was then evaluated using these Estimated 
maps. 

Model Evaluation 
To simplify the explanation of model evaluation procedures, 
results will be uresented for 1982 onlv, because this is the 
final year of th;! study and because results for 1982 were 
fairly representative of results which occurred throughout 
the duration of the study. 

Locational and Areal Accuracy 
One way to evaluate predictive models which have been de- 
veloped from, and applied to, a spatial system is through an 
error or confusion matrix (Congalton and Mead, 1983). That 
is, one uses a model to estimate land cover at some point 
when the actual land cover is known, the two maps are over- 
layed, and the areas on each cross-tabulated. An evaluative 
statistic such as the kappa coefficient k may then be calcu- 
lated (Foody, 1992). 

Such an approach is concerned principally with loca- 
tional accuracy: are land-cover types predicted to be in the 
right place? Another concern in model evaluation, however, 
is whether or not a model estimates the amount of each 
cover type correctly. One may desire to know the amount of 
pasture land in a township and not be overly concerned with 
its distribution within the township. Thus, areal accuracy 
may be important: is the total amount of each cover type es- 
timated "well?'To assess areal accuracy, one can determine 
how much of each cover type is present on the Estimated 
and Actual maps. These amounts can then be compared for 
all cover types using the Student's t statistic. 

Note that an assessment of areal accuracy without an ex- 
amination of locational accuracy can be extremely mislead- 
ing. Clearly, if the locational accuracy is zero (i.e., nothing 
located correctly) but areal accuracy is 100 percent (i.e., the 
total amount of each type is exactly correct), one's model is 
performing extremely poorly because it does not appear to be 
using the underlying information available. Thus, while one 
would like the estimate to have high areal accuracy, it 
should not be considered to be as useful as locational accu- 
racy for assessing model performance. 

In this study, areal and locational accuracies were as- 
sessed in two ways. First, because sample points were drawn 
from the GIS database, it could be argued that these sample 
points are the spatial units of interest and that model evalua- 
tion should be conducted using these points. Such a suppo- 
sition ignores the fundamental assumption that, in the 
ecological system modeled, there are underlying polygons on 
which ecological successional processes occur uniformly, yet 
which are undefinable a priori. Nonetheless, for comparative 
purposes it would be useful to examine these points. Second, 
after the development of the DFA models, the underlying poly- 
gons assumed to exist can be defined by virtue of the varia- 

TABLE 3a. THE FULL DFA MODEL AU INCLUDED VARIABLES STATISTICALLY 
SlGNlnCANT (a = 0.01). VALUES ARE COEFFICIENTS FOR A VARIABLE FOR EACH 

COVER TYPE. 

Variable' Forest Cedar Open Disturbed 

Constant 
Forest 
Cedar 
Cedar*Time 
Open*Cool 
Open*Neutral 
Open*Time 
Open*Edge 

TAEU 3b. THE REDUCED DFA MODEL. ALL INCLUDED VARIABLES STATIS~ICALLY 
SIGNIFICANT (a =0.01). 

Variable Forest Cedar Open Disturbed 

Constant -12.60 -11.99 -4.54 -2.52 
Forest 25.68 21.17 11.12 0 
Cedar 20.14 25.17 11.42 0 
Cedar*Time 0.102 -0.080 -0.006 0 
Open*Time 0.658 0.677 0.359 0 

Variables: 
Forest, Cedar, Open- 1 if Forest, Cedar, or Open in 1939; else 0. 
Time-Number of years since 1939. 
Cool-1 if aspect is north, northeast, or east; else 0. 
Neutral-1 if aspect is northwest, southeast, or flat; else 0. 
Edge-distance fiom a Forest in 1939. 

bles which entered the models. That is, in the Full model 
aspect was important but only on the Open type. Thus, as- 
pect further defines polygons within those polygons desig- 
nated as Open in 1939. Locational and areal accuracies were 
assessed for the sample points in the validation data set and 
the a posteriori polygons (area). 

In all cases, both the Full and Reduced models perform 
identically relative to areal and locational accuracies (Tables 
4 and 5). This is somewhat surprising given that the models 
are not identical, and that all variables contained in each 
were statistically significant. This suggests that for the Full 
model some spatial dependence among model residuals was 
present. That is, variables entered the Full model which 
were statistically significant but which had no practical pre- 
dictive ability. This will be examined in the following sec- 
tion. 

Note that the use of only sample points underestimates 
the Iocational accuracy (70 percent - Table 4) compared to 
using all cells in the entire area (85 percent). Kappa coeffi- 
cients [k) are also lower for the points than for the area. This 
reinforces the suggestion that, after using the data from the 
sample points to develop the DFA model(s), they are poorly 
suited for model evaluation if one is interested in the entire 
area (as is usually the case). Nonetheless, the sample point 
evaluation can be useful for identifying those cover types 
which are likely to be confused. For both points and areas, 
Forest and Cedar were often confused whereas, as expected, 
Disturbed was not confused with any other cover type. 

For areal accuracy, both the points and areas give ap- 
proximately the same results (Table 5) as the percent differ- 
ence is comparable for Cedar, Open, and Disturbed and there 
is roughly the same amount of error in the total amount of 
each of these types. The sole important difference was found 
in the Forest type for which the percent error for area (16 
percent) is considerably less than that for points (56 percent). 
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TABIE 4. LOCATIONAL ACCURACY FOR THE REDUCED AND FULL MODELS~ POINTS 
AND AREAS. 

FULL MODEL AND REDUCED MODELS (DATA POINS - VALUES ARE NUMBER OF 

POINTS) 

Actual 

Class Forest Cedar Open ~istuibed 

E 
s Forest 64 3 0 
t 
i Cedar 90 135 0 
m 
a Open 0 0 C 0 
t 
e Disturbed 0 0 0 25 
d 

K = 0.364 
Overall accuracy (diagonal) = 70% 

FULL MODEL AND REDUCED MODELS (AREA - VALUES ARE HECTARES) 

Actual 

Class Forest Cedar Open Disturbed 
- 

E 
s Forest 48 7 18 n 0 
t 
i Cedar 117 163 J 0 
m 
a Open 0 0 0 0 
t 
e Disturbed 0 0 0 141 
d 

K = 0.849 
Overall accuracy (diagonal) = 85% 

Despite the differences in the models, the locational accuracy was 
identical for points and areas. 

TABU 5. AREAL ACCURACY FOR THE FULL AND REDUCED MOOELS~ FOR POINTS 
AND AREAS. 

Class True Estimated 

Full and Reduced Model (Data points) 
Forest 154 points 67 points 
Cedar 138 points 229 points 
Open 4 points 0 points 
Disturbed 25 points 25 points 

Forest 
Cedar 
Open 
Disturbed 

Full and Reduced Model (Area) 
604 hectares 506 hectares 
181 hectares 285 hectares 
6 hectares 0 hectares 

141 hectares 141 hectares 

Difference 

No. % 

Despite the differences in the models, the areal accuracy was iden- 
tical for points and areas. 

Spatial Independence of Residuals 
One assumption of parametric statistical techniques is that 
model residuals are randomly distributed. It has already been 
suggested that this is not the case for the Full model and that 
spatial autocorrelation is present among its model residuals. 
It remains to verify this. A number of measures of spatial au- 

tocorrelation have been developed for continuous and cate- 
gorical data (Dacey, 1968; Cliff and Ord, 1973; Odland, 
1988). 

The Join-Count statistic is used when map classes are cate- 
gorical and data are nominal or ordinal. In a binary system 
such as residuals of "correct/incorrect" (i.e., "black/whiten), 
the Join-Count statistic cqmpares the actual number of 
"black-black (BB)," "white-white (WW)," and "black-white 
(BW)" links against the expected number in a random spatial 
system. The actual number of each is tested for significant 
differences from the expected number using the Student's t 
statistic. An excessive number of BB and WW links indicates 
non-random clustering or positive spatial autocorrelation. An 
excessive number of BW links indicates non-random disper- 
sion or negative spatial autocorrelation. 
Both Moran's I and Geary's Contiguity Ratio are used when 
map classes are interval or ratio data. Though based on dif- 
ferent methodology, for a spatial system both calculate a sta- 
tistic with a well-defined distribution. As with the Join-Count 
statistic, this statistic can be compared to the critical value 
one would expect if the links in the system were randomly 
distributed and can be tested for statistical significance using 
the Student's t statistic to indicate significant positive or neg- 
ative spatial autocorrelation. 

To measure spatial autocorrelation among model residuals it 
would seem to be simply a matter of developing a map of 
residuals from the Estimated and Actual maps and applying 
the appropriate test. This is not as straightforward as it ap- 
pears, however. The spatial units on which to measure spa- 
tial autocorrelation must be determined and a method for 
residual calculation must be determined. 

There are three ways that one may define the spatial 
units. First, one may consider only the sample points them- 
selves. In doing this, for the purpose of measuring spatial au- 
tocorrelation, one must still determine which points are 
adjacent. This is done by generating a Voronoi diagram com- 
posed of Thiessen polygons around each point.3 Note, how- 
ever, that it is the sample point location only which is used 
to determine the model residual, and not the entire Thiessen 
polygon associated with each point; these latter are used 
only to determine contiguity among points for the purpose of 
measuring spatial autocorrelation. Second, one may consider 
the Thiessen polygons to be the spatial units of interest 
rather than considering only the central point used to gener- 
ate each. Third, one may define polygons by using the DFA 
model(s) a posteriori. Recall that it was assumed that there 
are underlying polygons which are meaningful relative to 
ecological succession but which could not be identified with 
certainty a priori. However, by virtue of a variable having 
been included in one of the DFA models it can be said to be 
"important" - at least statistically. Thus, the polygons of in- 
terest for the Reduced model can be defined by the bounda- 
ries of the land-cover classes in 1939. For the Full model, 
they will further be defined by three topographic aspects, 
and the distance from a Forest in 1939. All three approaches 
to spatial unit identification were examined in this study. 

After definition of the spatial units, it also remains to 
determine the residual for each. For the points, the only re- 
sidual possible is binary: correct/incorrect. To obtain this in- 
formation, the land cover on the Estimated and Actual maps 
is noted for each sample point and a value of "correct" is 
assigned if they agree; otherwise, they are labeled "incor- 
rect." 

=The Thiessen polygon for any given point will be defined by the 
perpendicular bisectors between the point and its immediate neigh- 
bors. 



P E E R - R E V I E W E D  A R T I C L E  

Determining the residual for polygons is more difficult 
as it is not likely that the cover type will be uniform for each 
polygon on the Actual map. Note that each polygon on the 
Estimated map will be uniformly covered as each is uniform 
relative to the variables in a given DFA model. Thiessen poly- 
gons will also be uniform on the Estimated map as the cover 
type of the sample point is assigned to the entire polygon. 
There are three ways to determine a polygon residual; all 
three require that the polygons defined be overlayed on the 
Actual map and the true cover types for each polygon be tab- 
ulated. 

In a Plurality residual rule, if the most common land cover 
on the Actual map is the same as the cover for the polygon 
on the Estimated map, the polygon is considered "correct." 
Thus, a binary residual is produced. However, with four map 
classes, as little as 26 percent of a polygon on the Actual map 
may be covered with the Estimated cover and still be consid- 
ered "correct." 
A Majority residual rule can be employed in which at least 
50 percent of an Actual polygon must be covered with the 
Estimated type to be considered correct. Again, this produces 
a binary residual. 
Instead of using binary measures of "correctlincorrect." for 
each polygon the amount of area that is correct may be re- 
corded as the Percentage. That is, if the polygon on the Esti- 
mated map is covered by Forest and FO percent of the same 
polygon is covered by Forest on the Actual map, the residual 
would be 0.60. 

Each of these three methods of defining residuals was exam- 
ined for each of the three methods of defining spatial units, 
and spatial autocorrelation was measured for the Full and 
Reduced models using the appropriate statistic (Table 6). 

The measures of spatial autocorrelation for the Full 
model consistently show that its residuals are not spatially 
independent and have a tendency to group (positive spatial 
autocorrelation). The same is true for the Reduced model 
and/or when the sample points or Thiessen polygons gener- 
ated from the points are considered. This suggests that the 
same ecological succession which occurs at one point also 
occurs at neighboring points. This reinforces the idea that 
there are meaningful polygons relative to ecological succes- 
sion even though they were not defined a priori. The points 
being positively spatially autocorrelated implies that these 
are within such a polygon and that it is not correct to con- 
sider them to be the individual spatial units of interest. 

When considering the residuals for the DFA-defined poly- 
gons of the Full and Reduced models, it becomes evident 
that positive spatial autocorrelation is replete among the re- 
siduals of the Full model. This suggests that polygons that 
have been called different statistically are, in fact, the same 
relative to ecological succession. The apparent absence of 
spatial autocorrelation among the residuals of the Reduced 
model indicates that neither aspect nor distance from a For- 
est were necessary to describe the ecological succession on 
the BWREC. (The reader is reminded that an evaluation of Lo- 
cational and Areal accuracy suggested the same thing.) Given 
that aspect and distance from a Forest were statistically sig- 
nificant, this suggests that the positive spatial autocorrelation 
caused an underestimate of the variance of the system and 
led to spurious tests of significance. A similar phenomenon 
has also been documented in the presence of temporal auto- 
correlation in aspatial modeling (Ferguson and Leech, 1978). 

Discussion and Conclusions 
In natural systems, others have attempted to develop sam- 
pling schemes which account for spatial autocorrelation a 
priori. In particular, Pereira and Itami (1991) sought to de- 

TABU 6. SPATIAL AUTOCORRELATION AMONG RESIDUALS AS CALCULATED IN A 
VARIETY OF WAYS. SEE T m  FOR EXPLANATION OF EACH; VAUJES ARE STUDENT'S t. 

Full Reduced 
Residual calculation/measure Model Model 

DFA Polygons/Plurality 
Toin-Count Statistic: BB 14.70" 1.83 

B W  
WW 

DFA Polvgons/Maioritv 
Join-Count Statistic: BB 

B W  
WW 

DFA PolygonsPercenta~e 
Geary's Ratio 
Moran's I 

Points/(Correct/Incorrect~ 
Join-Count Statistic: BB 

Thiessen Polvgons~Plurality 
Join-Count Statistic: BB 8.56" 8.56" 

BW -11.03" - 11.03" 
WW 8.95" 8.95" 

Theissen Polv~ons/Maiority 
Join-Count Statistic: BB 10.59" 10.59" 

B W  - 15.69" -15.69" 
WW 15.44" 15.44" 

Theissen PolygonsPercentage 
Geary's Ratio 8.85" 8.85" 
Moran's I 14.78" 14.78" 

"**" indicates significantly different from zero (a = 0.01). 

velop a wildlife habitat model for red squirrel. For the inde- 
pendent variables in their study, Moran's I was calculated for 
the nearest cell (cells were square and 70.7 m on a side), 
then recalculated using the second-order neighbor cells, then 
the third, etc. Because spatial autocorrelation had dimin- 
ished sufficiently by the seventh lag (495 m) for all indepen- 
dent variables, each seventh cell was sampled. A logistic 
regression model was then developed under the assumption 
that samples were independent. While such an approach is 
useful, spatial autocorrelation of model residuals was not 
evaluated a posteriori. Conversely, in this study, spatial au- 
tocorrelation was not evaluated a priori due to the difficulty 
of identifying polygons which were uniform relative to se- 
lected variables which were also related to ecological succes- 
sion. If this could have been done, an a priori assessment of 
spatial autocorrelation may have been useful. Note that the 
results of such an assessment may vary widely as spatial au- 
tocorrelation is likely to be related to the characteristics of 
the system under study and the phenomenon being analyzed, 
and, in a raster GIS, the size of the cells. 

Discriminant function analysis was employed for model 
development because of the presence of a categorical depen- 
dent variable. Logistic regression is another technique which 
can accommodate categorical variables by producing a model 
which estimates the probability of the occurrence of a binary 
event. Despite the limitation of being applicable to binary 
dependent variables only, logistic regression has been shown 
to be more robust for analyses involving categorical and con- 
tinuous independent variables (Press and Wilson, 1978). 
Thus, if the analytical questions consider only questions of 
binary phenomena - "Forest or not forest?" rather than 
"Which of four cover types?" - then logistic regression may 
be a preferable alternative for model development. 
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