
A Gomparison of Second-Order Glassifiers
for SAR Sea lce Discrimination

Abstract
In this paper we present results of an analysis of the relative
utility of stafistical, structural, and frequency based second-
order terture methods for discrimination of sea ice types in
synthetic aperture radar (SAR) data. Ngorithms were truined
using a calibration data set and robustness of the methods
were assessed by directly computing ice classes within a val-
idation data set.

Classification using a first-otder approach (avercge grey
level) produced Kappa classification accuracies of 5l.O and
33.0 percent for the calibration and validation data. The
first-order approach is provided primarily as a reference
ftom which to compare the second-order approaches becouse
the test conditions were selected to be specifically dfficult
(i.e., dffirent incidence angle ranges between calibration
and validation images) for any approach using image tone
or the relative scattering cross section.

Results from the second-order approaches indicate that
the two spatial domain statistical approaches, Grcy lnvel
Co-Occurrence Matrix (GLCM) and the Neighboring Grey
lcvel Dependence Matrix (NGIDM) provided higlt classifica-
tion accuracies under the dilficult test conditions examined
here. The Gr.CM rcsults achieved a Kappa Coefficient of S .0
and 81.O percent for the calibration and validation sets. The
NGTDM achieved a Kappa Cofficient of 53.0 and 76.0 per-
cent for the calibrction and validstion data sets. These rc-
sults are statistically equivalent between the calibration and
validation data sets and between the GLCM and Nctnu
schemes. The SpatiallSpatial Frcquency (Slsr) approach ap-
pearc to be sensitive to the training conditions generated
from the calibration data set and therefore do not provide
statistically reproducible resu/ts between the calibration (87
percent) and validation (18 percentJ test conditions. Ilesulfs
from the Primitive Terturc Value (rw) method sugest poor
operutional capabilities both due to low calibration (65 per-
cent) and validation (58 percent) accuracies.

Introduction
There now is a substantial awareness of the economic and
environmental significance of the polar regions. Industrial,
ecological, and environmental interests have fueled an in-
crease in a variety of polar research disciplines. A major re-
quirement of these activities is timely information on the
distribution and dynamics of sea ice. Operational personnel,
such as off-shore engineers and icebreaker captains, require
knowledge of the location and distribution of sea-ice hazards
for route selection and activity scheduling. Ice motion mode-
lers, climatologists, and marine ecologists require knowledge
of type, distribution, and seasonal evolution of the sea-ice
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cover to illuminate processes occurring through the Atmo-
sphere-Cryosphere-Hydrosphere interface.

Monitoring the polar regions on a routine basis at a vari-
ety of electromagnetic frequencies is now possible. Current
sensors operate at various spatial and temporal resolutions,
using enerry from microwave, optical, and infrared wave-
lengths. Active microwave sensing, specifically s5mthetic ap-
erture radar (san), provides the capability for all-weather,
day or night monitoring. With the recent launch of the Soviet
Almaz, European rRS-r, Japanese IERS-1, and with the im-
pending launch of at least two other san satellites (RADAR-
SAT [Canada] and nns-z [Europe]),the 1990s are certainly the
decade of orbital radar remote sensing.

A critical issue in radar remote sensing science is conceiv-
ing a method by which the high data volumes of san can be
reduced into geophysically meaningful information. In order to
process these large volumes of data, there will be a rcquire-
ment for automated or, at the very least, semi-automated
processing. To date, a wide variety of methods have been in-
vestigated for machine-assisted classification of san data. tn
general, two approaches to geophysical data exhaction ane cur-
rently being pursued: (1) modeled forward and inverse scatter-
ing and (2) statistical classification or retrieval methods. In this
work we will deal with the latter approach. Specifically, we
will consider two fundamental approaches to statistical classifi-
cation of sAR images of sea ice. These two approaches are re-
ferred to as first- and second-order methods.

First-order approaches make use of image tone, which is
a grey-level representation of the relative scattering cross sec-
tion (o'). Statistical separation of sea-ice classes is performed
using maximum-likelihood or discriminant clustering types
of classification (for example, see Kwok ef aI. (1992) and
Nystuen and Garcia (1992)). Second-order approaches also
make use of the greyJevel or relative scattering cross sec-
tions of a particular SAR resolution cell. The salient differ-
ence (relative to first-order approaches) is that a second-order
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approech utilizes a measure of the spatial information which
arises from the statistical relationship between each SAR res-
olution cell and its neighbors. The second-order nature of
these statistics means that there is less reliance on the abso-
lute calibration of the image data (i.e., relative rather than
absolute calibration is important). A second-order approach
will be more sensitive to the spatial variation in the relative
scattering cross section as a function of scale.

Research Obieclives
One of the major drawbacks of previous statistical classifica-
tion studies is that validation results were often limited to
the data from which the algorithms were calibrated, often a
single-SRn scene. Comparative analyses are required to assess
the robustness of various algorithml within a particular SAn
scattering season. Our primary objective in this paper is to
evaluate four second-order approaches to image teiture rep-
resentation within a standardized experimental design. Our
working hypothesis is that, by evaluiting the accuraiy and
robustness of these texture measures within the winter S,qn
scattering season (Livingstone et al.,7SB7l, we will be in a
position to choose one for implementation within a more
compreh-ensive, operational sea-ice classification system.
This evaluation is but a single step in developmeni of an op-
erational sea-ice classification algorithm. Tone, structural in-
formation (floe size, shape, morpholory, etc.), and data hom
sequential images are undoubtedly of additional value. The rel-
ative importance of these factors will vary but we contend that
texture will frequently be useful. We have selected sran-r im-
agery because these data have been extensively validated and
because data from a similar system (sTAR-2) piovides the ma-
jority of sea-ice data for the lce Centre, Envirbnment Canada.

In what follows we review the current status of auto-
mated algorithm development, describe the mechanics of the
four approaches being contrasted, and conduct a statistical
comparison of the relative utility of each for separation of
sea-ice. tJpes in X-band (9.2b GHz) nn polorized SAR images
of sea ice.

Textml Discdmination ol SAR Seatce Types
The most common methods of texture analvsis involve the
use of second-order approaches. Statistical, structural, and
frequency based second-order texture methods are used in
these analyses and are reviewed here.
. Statistical approaches make use of grey-level probability

dens-ity functions (pDF). The por is usuallycomputed as the
conditional joint probability of pairs of pixel grey levels in a
Iocal area of the image. The Grey Level Co-Occurence Matrix
(cI"cu; Haralick et aL, L9z3), Grey Level Run Lengths (Gallo-
way, 7975), and the Neighboring Grey Level Dependence Ma-
trix (NGLDM; Sun and Wee, 1982) are examplesbf statistical
approaches to texture analysis. Structural approaches exploit
the.notion of a texture primitive, or the basic building bl'ocks
of the structural natursof the texture (Gonzalez and fuintz,
1987). These approaches generally consist of finding a tex-
ture primitive, extracting a set of features that charaiterize
this primitive, and then defining a placement rule for these
primitives within the texture field of the image fConners and
Harlow, 1980b; Shokr and Barber, 1990). Frequency domain
analysis is based on the Fourier transform. analvsii is con-
ducted ir-r the frequency domain on the power spectra of the
iTuF".This approach is often called psrra (powei Spectrum
Method; Conners and Harlow, 1980aJ. A variety ofmethods
have been developed to separate different textures based on
their power spectra (Roan and Aggarwal, 1987; D'Astous and
/ernigan, 1984; Matsuyama et al., tgBS).
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The GLCM has met with some success in a varietv of re-
mote sensing gp-plicatio-ns (Weszka et a1.,7976; Shanhugan
et a1.,7987; Ulaby ef oI., 1986; pultz and Brown, 1987; Bar-
ber and LeDrew, 1991; Nystuen and Garcia, TggZ). Hoimes et
o1. (1984) found that point statistics from the cr,cM could
provide discrimination of first-year, first-year ridged, multi-
year, and multi-year rough sea ice. Classilication-accuracies,
however, were on the order of 50 to 60 percent; lower than
what could be considered operationally useful. Shokr (1990)
conducted a preliminary investigation into the applicaiion of
five texture statistics from clcui. He found that^tirese tex-
ture statistics were more robust to changes in tone between
image dates and sensor frequencies whe-n compared with
simple tone. Barber et o/. (1991) evaluated the robustness of
tonal versus cLcM textural classifications of sea ice using
data from two coincident images of Mould Bay, N.W.T. ihis
analysis showed that tone wal not as robust as texture to
variations in grey level created by differences in the look di-
rection of the sAR when imaging the same ice surface.

Recently, researchers have attempted to determine the
optimal combination of crcu parameiers for texture compu-
tation as well as the optimal texture features or metrics for
class separation. Barber and LeDrew (1991) determined that
an interpixel sampling distance of one produced significantly
better discrimination between ice classes than largel dis-
tances of five and nine, and a set of three textureitatistics
considered simultaneously provided the best discrimination.
Shokr (1ggU used multi-frequency (L-, C-, and X-band) san
data to make a first assessment ofusing universal texture/ice
type relationships which hold for all combinations of radar
parameters. Five GICM texture measures were found to be
highly correlated and did not vary significantly with the
computational variables used in generating the co-occurrence
matrices. Combining tone with texture improved the classifi-
cations r-rotice-ably. Rauste (1990), attempting to improve the
separability of thick ice and water or nilis, used 1d measures
computed from the cLcM to identify the best feature combi-
nation. An increase of 15 percent in classification precision
over the original SAR data was observed usins the ihree best
texture features. Similar to Barber and LeDre* (1991), no sig-
nificant improvement in classification precision was bb-
served over the original distance of one pixel. Skriver (1991)
used a stepwise discriminant analysis on second-order tex-
ture-measures_computed using the Spatial Grey Level De-
pendence Method to determine the optimum feature vector
from a variety-of possible parameters for separating multi-
year, smooth first-year, rafted first-year, rough 6td.year,
mixed types, and_open water. An improvem-ent of io percent
was obtained for larger area samples (6a by 64 pixelsi when
texture measures were included as compared to average in-
tensity alone. Classification of a sub-imige using optimum
pa.rameters resulted in 16 percent misclassificati,on.

Wackerman (1991) developed a method for optimal lin-
ear combination of a given set of image features to achieve
maximal separation of classes. Although not designed as a
classjfication-algorithm, the method wls intendeJ to provide
benchmarks for existing algorithms and a means of ranking
ditlerent sets of feature vectors, Two sets of features-four-
first-order and six crcM texture measures-were applied to
two different SAR data sets of sea ice. It was found that the
texture measure ratios provided the best overall discrimina_
tory capabilities for both data sets.

Other researchers have used a variety of model-based
methods to examine texture analysis of SAR sea-ice signa-
tures. fha and |ernigan (1990) used Markov random fields to
model the texture of image regions in SAR images of sea ice.
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The model parameters are estimated in the frequency domain
by matching the parametric form of the model spectrum to a
nonparametric spectrum calculated from the observed data.
In addition, speckle was modeled and treated as both a
source of noise and information in the segmentation process.
Qualitative separation of multi-year, first-year, and new ice
was achieved but no quantitative results were given.

A number of previous texture segmentation studies have
used linear spatiaVspatial frequency (s/sr) representations
(Wilson and Spann, 19BB; Unser and Eden, 1989; Bovik,
1991) and bilinear representations (Reed and Weschler,
1990). A texture segmentation based on localized spatial fil-
tering formulated in terms of the two-dimensional Gabor
function were used by Du (1990) to analyze SAR images of
oceans and ice. The functions were chosen to appropriately
match the spatial frequency and directional bandwidth of
each kind of texture involved. Segmentation was achieved by
assigning each pixel to the texture whose filter generated the
strongest response at that position. A qualitative comparison
of classification results, to those obtained using the GLCM ap-
proach, revealed that the co-occurrence method preserved
finer texture detail but the Gabor method correctly portrayed
the overall locational distributions of ice types/textures and
was computationally faster.

Methods
To simplify the classification and thereby exert more control
over our experimental condition, we chose firstryear smooth
(rvs), first-year rough (FYn), and multi-year ice (uvt) as our
classification features. Figure 1 depicts examples of the san
image textures for each of the three ice types extracted from
X-band, HH polarization, srAR-1 (Sea Ice and Terrain Assess-
ment Radar-l; Nichols ef d1., 1986) sAR imagery of Mould
Bay, N.W.T. Fifty texture subareas of 625 pixels per sample
were extracted for each of the ice types from two SAR scenes
(Figure 2a and 2b). All subareas were randomly extracted
from 6-m seven-look imagery. The "Calibration" scene was
imaged flying north, looking west (Figure 2a; note that the
images are minored across the east-west vector) and the
"Validation" scene was imaged flying west and looking to
the south (Figure 2b). Each scene was imaged within 1.5
hours of the other. Grey-tone histograms of the texture sub-
areas are shown in Figure 3.

In the following analysis, robustness is defined as the
replicability of a classification when each algorithm is cali-
brated in a scene with minimal range-dependent tonal varia-
tion (calibration image), then directly applied to a second
scene (validation image) which incorporates a larger range-
dependent variation. The validation image is of the same ice
field but imaged at a g0o angle to the calibration image (Fig-
ure 2, calibration and validation images). If we assume that
each of the texture algorithms is insensitive to monotonic
transformations and rotationally invariant, the classification
results between calibration and validation images should be
statistically equivalent. Note that we have not constrained
the classification scheme, only the algorithm used to gener-
ate the texture features. The following have been selected for
comparative analyses.

Average Gruy level (first oder apprcach)
Average grey-tone signatures from the calibration sets were
used in a supervised maximum-likelihood classification
scheme based on the maximum a posteriori probability rule.
All calibration samples for a particular ice class (50 by 625
pixels) were used in developing a first-order classification
signature. The coefficients from the calibration set were then
directly applied to the validation samples.
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Figure 1. sAR image texture examples: first-year smooth,
first-year rough, and multiyear ice. These textures were
randomly selected from the 50 calibration samples usecl in
these analyses. Close examination shows the large varia-
bility among the three FYR classes, and the relative homo-
geneity of the FYs and MYt samples.

t{eighbodng Grey-leuel Dependence tlatrh (llctlril)
The Neighboring Grey-Level Dependence Matrix (NGLDM)
was proposed by Sun and Wee (1982) as a means to summa-
rize image texture. It is similar to the GLCM but entries have
no directional dependence and there are fewer columns in
the matrix. The NGLDM, also referred to as the Q matrix, sum-
marizes the similarity of a neighboring pixel, within a homo-
geneous class. The relevant neighborhood is defined as an n
x n region centered on the pixel with typical values for n of
3, 4, or 5. A pixel in the neighborhood is defined as similar
to the center pixel if its grey level is within a range + ct Srey
Ievels of that of the center pixel. The value of Q(k,s), an ele-
ment of Q, is the number of pixels with grey level ,k that
have s similar neighbors. Q has dimensions N", the number
of grey levels, and S, the maximum number of similar neigh-
bours. S is equal to nr.

The Q matrix can be viewed as a two-dimensional exten-
sion of the image histogram for a class. When a is very high,
all entries in the matrix will be zero except in the n, column,
which will be the class histogram. As a decreases, these
counts will be distributed among the other columns.

Various statistics of Q summarize the texture of a class
and provide features for a classification procedure. Small
number emphasis (srue), given by Equation 1, is

N s s

,* = -)*J= o,o'',r" 
(1)

p ) ctt''t
provides a measure of roughness. For a rough texture, the en-
tries in the NGLDM will be primarily in the leftmost column,
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Ftgure 2. (a) Calibration sAR image. (b) Validation sAR image. Data were acquired with the Sea lce and Tenain Assessment
Radar (srAR-1) over Mould Bay, N.W.T. The images are oriented with north at the top.

and the magnitude of these terms will be emphasized by di-
viding by s'z. Therefore, larger values of sNE are associated
with rougher texture.

Conversely, large number emphasis (INE), given by Equa-
tion 2. is

N 8 s

) ) Q(ts)s'
UVE : t=-1-l=:--

-} ) ctt't
provides a measure of smoothness. As a result, smoother im-
age texture produces larger LNE.

Number non uniformity (mru), second moment (sur),
and entropy (Ehrr), given by Equations 3, 4, and 5, provide
measures of homogeneity. That is,

t4(xt

s  f N r  
1 2

) I ) ett''t
s = 1  L t - r  J

N-Nri : ---E 
s

) ) qtr,')
N 8 s

) ) Q(t'')'
sMr : E-+-

) ) e&'t
N a s

) ) qtt"t loe(Q(ft,s))

(3)

(4)

(5)

(2)

The calibration data were used to select the parameter c and
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Figure 3. Grey-tone distributions for both calibration and
validation data set samples.

. r {

I  l . i t t

f i
i /

L

to examine the effectiveness of texture statistics of various
features and feature pairs for discrimination of the training
samples. Alternatives were compared using the results of a
leave-one-out, seven-nearest-neighbor classification scheme.
This non-parametric approach requires no assumptions re-
garding the probability distributions or the covariance struc-
tures of the features. All single-feature and two-feature
combinations were tested with c ranging from 0 to 50 grey
levels (the 90 percent grey-level range of the data is 70). A 3
by 3 neighborhood was used based on the experience of
McKillop ef o/. (1990) with the same imagery. The set of fea-
tures for the calibration data set that generated the best
Kappa score over a wide range of a was used to classify the
validation data, also using a seven-nearest-neighbor scheme.

Prinilive Texturc Vahns (PIV)
The primitive texture value (rrv) method is based on a con-
cept for texture quantification introduced by Haralick (1979).
The concept entails that texture be defined in terms of two
aspects: a primitive element which is described by a tonal
value, and the spatial distribution of the primitive tonal val-
ues within a neighborhood.

The primitive element is defined as a square of four con-
nected pixels. Hence, six possible pixel-pair combinations
are available. The absolute difference between gley tones of
pixels in each pair combination is calculated. This is de-
noted by D;, where i : 7,2,..., n; in this case, n : 6. Let r
denote the upper limit of D, which is 255 in this application.
A numeric string T can then be defined as the set of D, val-
ues, arranged in descending order: i.e.,

T :  {D/D,- ,  < Di i  i  =  7,2, . . . ,  n}  (6)

w h e r e 0  4 D i < r .
It can be seen that both D, and Tare invariant as a result

of adding an offset to the grey tone, but they vary as a result
of multiplying the grey tone by a constant. A mapping
scheme, S, is then used to map T into a single integer value,
called the Primitive Texture Value (pT v): i.e.,

S : T - - + p w ;  1 < p ' I v < L  ( 7 )

The scheme is based on a model of placing r objects ran-
domly and distinguishably into n cells, with replacement.
The rationale is explained by analogy. Suppose that there are
r distinct objects, each of which represents, and are labeled
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with, one possible value of D'. Also, suppose that there are n
cells, each of which can accourmodate only one obiect. The
construction of Tcan therefore be envisioned as a process of
placing one of the r objects into each cell, until all the cells
are filled. To account for the fact that the order of D1 in T is
insignificant, only distinguishable placements have to be
considered. To account for the fact that within T, a certain D1
value may be repeated, the placement process has to be per-
formed "with replacement." The upper limit of the PIv, de-
fined as L in the above equation, represents the total number
of all possible distinguishable combinations of D, in T.
Therefore, it can be obtained using the following combinato-
rial expression (Feller, 1968):

t : ( n + r - 1 ) c ( r - 1 )  ( 8 )

This expression was used to devise the PTv mapping scheme.
The idea is to assign an integer value to each individual
component D' in T, and then add all those integers to form
the prv. The integer assignment is based on the above combi-
natorial expression, where r and n are replaced by Di and (n
- i + 1), respectively. The mapping equation can therefore
be written as

The PIv measure is an indicator of the grey-tone contrast
within a primitive element. Texture-rich regions of an image
will typically have large PTVs and vice versa. It is insensitive
to the order of grey tone within the primitive (see Equation
6), and therefore cannot be used to resolve grey-tone direc-
tionality. The assumption implied in this technique is that
the primitive, as an atomic element, retains no information
on texture directionality. The latter can be addressed when
examining the spatial distribution of the prv. In order to re-
duce the computation time, the number of components in T
was reduced hom six to three. This was performed at three
stages (k : \, 2, and 3) using the following recurrence rela-
tion:

DI: (4-, + Dl;,1)12 for 1 < k < n. (10)

For each sample, the pT v was calculated at each pixel using
a 2 by 2 primitive element as described above. The element
was selected such that the reference pixel is at the upper-left
corner. The average of the prvs over the sample size (25 by
25 pixels) was then computed and assigned to the sample.
Samples were represented in two-dimensional feature space
encompassing the rT v and the gtey tone to perform the clas-
sification. Further details are available in Shokr and Barber
(1ee0).

SpadsYSpatd Frcquemy (S/SFI
This method uses a linear SpatiaVSpatial Frequency (s/sr)
representation, generated by Gabor filters, for texture dis-
crimination. Wright (1988) showed that a suitably parameter-
ized basis of two-dimensional Gabor functions can be
weighted to create images that are visually indiscriminable
from certain Btodatz textures. Gabor filters have maximally
smooth windows in the frequency domain. This property
prevents irregular distortions of frequency components.
These points suggest that a family of Gabor filters may offer a
useful characterization of the s/SF energy in an image.

A Gabor filter is specified in the frequency domain as

r  f ( r - r o ) ' .  ( t -A ) , 1
G(r,0) : .,r.,s'/zn"*ol-=:. 

--f 
I 

(11)

Prv = 1 + ) {n * D, - 7)c(4 - 7) (9)
i : 7

1.1{rt



where

r = radial frequency in cycles per degree (cpd),
ro = radial center frequency in cpd,
o, = radial bandwidth in octaves,
0 = orientation in radians,
do = c€nter orientation in radians, and
o0 = orientation bandwidth in radians.
Wright's parameterization makes use of 42 filters at

seven orientations:

^  lzn 5n 3n ,E -3n -5rr l
0 : l - .  - l r a d i a n s

L 7 4 '  7 4 '  7 4 ' 1 4 '  7 4  7 4  J

with o6 = r | 74; and six radial frequencies

y :  17.7,2.8,4.3,7.1,10.3,13.01 cpd

with corresponding o,'s:

The 13.0 cpd filters were discarded due to insufficient reso-
lution. The field of view for a 32 by 32 pixel mask was set at
1.5534 degrees, so that the Nyquist frequency was exactly
10.3 cpd-the highest center frequency of the filters used.
This setting gives almost no aliasing from the 10.3 cpd filters
when their energy outputs are halved. Finally, the energy
from each filter is normalized by its area within spatial fre-
quencies 0 and 10.3 cpd.

Each sample was DC normalized and the magnitude of
its two-dimensional rm was computed. The resulting spec-
trograms were scaled by each Gabor mask and the output
summed to give the 35 Gabor energy measurements (Er, ...,
E u). D'Astous (19S3) describes a number of s/sr features
which may be useful for texture discrimination. These fea-
tures, adapted to make use of the Gabor filters, are entropy of
the vector of Gabor energies, the eigenvalues of the spread of
Gabor energy, the sum of energy output from all filters at a
given ro, and the ro of the Gabor filter with highest energy
output. The features from samples of both data sets were
normalized by the maximum absolute value across all sam-
ples in the training set. This prevented the occunence of nu-
merical errors during classification due to disparate ranges in
inter-features magnitudes.

Features with inter- to intra-class scatter ratios more
than two orders of magnitude below the largest scatter ratio
were discarded. Feature pairs with Pearson correlation coef-
ficients greater than 0.9, within class, were grouped together.
The features in each group were replaced with the feature
with the greatest scatter ratio within the group. This resulted
in the two features, F1 and F2:

Fl, the largest eigenvalue of the spectral spread matrix;
the spread matrix is defined as

2" = 
[;:: :::]

o,? = - uolilv - voltG(u,vh (16)

and nz, the sum of energy output from 10.3 cpd filters.
The Wilk W-statistic (Shapiro and Gross, 1981) was used

to test the hypothesis that each feature class-conditional dis-
tributions were Gaussian, Gaussian maximum-likelihood
classification (Mtc) was performed with both features and
then with only one feature in the event that the features were

v|/'.2

not bivariate normal. A pairwise optimal linear discriminant
classifier (oID) was also designed for non-parametric classifi-
cation using both features (Fukunaga, 1990). The calibration
data were classified using the leave-one-out method for
mrs. All other classifications were done with a classifier de-
signed using all calibration samples.

Grcy-lml Go.(hturence il*il (GtCill
A Grey-Level Co-Occurrence Matrix (cLcM) provides the con-
ditional joint probabilities of aII pairwise combinations of
pixels within a computation window (W"-). The co-occur-

(72) rence of grey levels represents the probability of any two
pairs of grey levels occurring, conditional on the interpixel
sampling distance (E) and orientation (a) used for computa-
tion. Algebraically, this can be expressed as Equation 17

{131 where Cu is defined in Equation 18 following Haralick ef oJ.
(1973): that is,

P(x) : {C,/D,cr} and

, , , : *
2 P,,

i j : 1

where P is the frequency of occurrence of grey levels i and7.
Summation over n refers to the total number of pixel pairs,
which is dependent on the parameter d and the subscripts n
and m from W"-.

The texture statistics represent a single measure of the
image texture from which the cIcM is computed. Each tex-
ture statistic is considered to be a point estimate because it
provides a single measure of the total information content of
the clc Matrix. Three texture statistics used in this research
are given by Equations 19 to 27.

Uniformity (UNF)

(1e)

(15)

When C,rs are large, Uniformity is large. The joint probabili-
ties will be larger when there is less local variation in the
texture. This measure is sensitive to the level of homogeneity
within the texture field.

Entropy (ENT)

Z; c,,rogc,, (zo)

Entropy is a measure of the classical information theory ap-
proach developed by Claude Shannon (Thomas, 19S1). En-
tropy can be rationalized as a measure of disorder. As the
pattern in the input image approaches a truly random state,
the entropy measure approaches maximum. For homoge-
neous or sirnple patterned data, entropy is very small.

Dissimilarity (DIS)

- i l |

The more dissimilar the grey levels are at 6 and cr, the larger
this statistic will be. This measure is sensitive to both grey-
level spatial variability and tone of the input image.

GLCM texture statistics were evaluated for two- and
three-variable cases at three values of c (0", 45o, and 90") and
6 (1, 3, and 5). Probability plots of the individual crcu sta-

(14)
(77)

(18)
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tistics, within each ice type, were computed. Each was found
to be unimodal and statistically indistinguishable from a
Gaussian distributed variable. Uniformity, Entropy, and Dis-
similarity are pairwise correlated to differing degrees over
the various combinations of feature and ice class variables.
Minimum pairwise Pearson correlation coefficients were ob-
served at 0.88 to a maximum of 0.96. Results from the best
pairwise and three-variable case are provided here. Consis-
tent with previous analysis (Barber et al.,7gg7; Barber and
LeDrew, 1991) results indicated that 6 of 1 and an cr parallel
to the look direction of the radar optimized precision of the
classification features. Classifications were computed using
Linear Discriminant Analysis (LDA). Rationale and details of
the approach are given in Barber and LeDrew (1991).

Results and Discussion
Classification results are presented as contingency tables for
each method. The Kappa Coefficient (Cohen, 1960; Rosen-
field and Fitzpatrick-Lins, 1986; Story and Congalton, 1986;
Congalton, 1991) is used as the statistical metric for inter-
comparison of algorithms across the calibration and valida-
tion data sets.

Average Grcy Lovel (Fittt ffic Apprcach)
As expected, the classification results from the first-order ap-
proach were poor. Kappa classification accuracies were 51
and 33 percent for the calibration and validation data sets,
respectively (Tables 1 and 2). The difference between cali-
bration and validation sets is statistically significant at the 95
percent level against a Type I error. Errors in classification
are caused mainly by the large variability of tonal signatures
of the first-year rough class (Figure 3). For example, (1) sur-
face roughness from compressional forces acting on the first-
year ice create high scattering returns, very similar in magni-
tude to those arising from the volume scattering within hum-
mocks of multiyear ice, and (2) smooth portions, within the
rough first-year ice classes, overlap substantially with the
first-year smooth case.

ileigft bodng Grcy-lovel llependence Matft (llctDil]
The classification statistics of the calibration data set were
comparable for all single-feature and two-feature cases for
wide ranges of ct, the similarity range. The best classification
accuracies for each combination varied from 87 to 90 per-
cent. The large number emphasis (rxe) showed the strongest
relationship between calibration and validation results, pos-
sibly because smoothness is a class characteristic that is least
affected by changes in the dynamic range between the two
data sets.

Ltrts had the best precision for ct equal to seven grey lev-
els, which is 10 percent of the 90 percent grey-level range of
the calibration data. The classification precision for the cali-
bration and validation data sets were 83.0 and 76.0 percent,
respectively. The validation results were within the 95 per-
cent confidence intervals for the calibration results. Histo-
grams of ws for the two sets of data are shown in Figures 4
and 5. Contingency table results are shown in Tables 3 and
4 .

Primitive Texbrc Values (PlYl

A supervised classification algorithm based on the Maxi-
mum o posteriofi Probability rule (Duda and Hart, 1973) was
applied to classify a given sample. Statistical signatures
(mean, standard deviation, and correlation matrix) of both
grey tone and pTv were derived from the calibration data for
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Figure 4. Frequency diagrams for the Neighboring Grey-
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(u,re) for the calibration data set.
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TrsLE 3. Cor.rrrrueerucv TreLE ron NGLDM LARGE NUMBER Erupxrsrs (LNE):
CnusRAfloN Dera.

of ice classes. Each individual sample was assigned to the
class associated with the maximum a posteriori p.ob"Uitity.

Results show that classification accura"y based on prvs
was generally low for the calibration set (65 percent) and
even lower for the validation set (58 percbnt). Tablei 5 and 6
show the contingency table resulis f.,i Uif, in" calibration
and validation data sets. Misclassifications were high both
between rys and ryR aad between Mn ila rm. Ay"f". tn"
larger of the two was the separation of the two filt_y;;i;"
types (Fys and r.vnl.
- -F go." 6 illustrates the probability histopams of the rrv
fo-r the three ice classes. tni nistogram, -"ii derived from
all pixel data in both the calibratioln and validation,;;i;;.
Compared to grey tone (Figure 3), the rrv produced
smoother histograms for all classes, with nbticeable smooth_
ing in the ryS ice histogram. The w ice rrv tristogr;had
a high variance and the rvs ice histograrn had a somewhat
lower"variance..Histo.grams are skewe"d towards the ufper 

-

end ot each distribution (particularly the r"m distribuiibn).
This suggests that the yry is more sensitive to texture varia_
tion at the high (rough) end of the texture scale. This ex_
plalns the relatively small variance of the ryS ice data
9o-Tpared to the Nm data. The pTV is therefore more success_
ful in distinguishing FyS ice from the other iwo types (Table
5J. I'he larger variance-of the other two types, howevei, dete_
riorates the overall performance of the pni algorithm.

SpafiaUSpdial Frcquency (S/SFI
The tvcc gave optimal results using only the Fz texture fea_
!lT: 

4.r""_t!"r plot of calibration dlta in the Ft_F2 space is
slg*l in Figure 7. It suggests that the class conditibnal dis_
uibutions a_re not bivariate normal. This may explain why
the MLC was more precise with only F2. Th; or.n first as_
srgned.samples to MyI because this class had the largest aver_
age pairwise scatter ratjo. The remaining samples wJre
assigned to FyR or FyS.

_, Tables 7 to_to give contingency tables which describe
tne results tor the single feature MLC and the Ot o. The Ot O
y9 qgrg precise tha-n the MLc in classifying calibration
oara. r nts rs due to the non_parametric nature of Om and its
use of re-substitution. Both classifiers were significantltie;
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each class..Assuming that the a prioi probabilities of indi_
vrdual sea-ice c.lasses are equal, and that the probability den-
sity function for the prrr conditioned on an icL chss is"
Gaussian, then the a posteriori probabilities can be calcu_
Iated according to Bayes Rule using the statistical signatures
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precise when classifying validation data in comparison to
calibration data.

Tests of the hypotheses that the means and variances of
the F2 class-conditional distributions were equal between
calibration and validation were rejected at gteater than 95
percent significance levels in all but one instance (a result of
ihe."ng" dependence of these data). This indicates that the
drop in precision between calibration and validation data
sets waJprobably due to changes in feature values and not
artifacts of the classification methods.

The drop in precision, observed in these results, may be
explained by coniidering a calibration sampleconsisting of
oniy a sine wave grating. This grating will undergo a non-
linear stretch along the look direction in the validation im-
age. This changes the s/sF content of the sample. It may be
tfiat the features used herc are sensitive enough to respond to
these changes in S/sF energy. Feature Fz indicated that the
high frequJncy energy of the ice type samples increases from
the rvs tb rvn to MYI classes. This is evident in the radar
image of Figure 2b. The stretching induced in the validation
imale will ieduce the high frequency energy in all samp-les.
ThiJ may explain the increase in pm misclassifications for
validation data.

The variance of class-conditional distributions for both
features was more than three times larger in the validation
data. Figure 8 indicates that the variance of the FYs class was
much ldwer than that of rvR and w. This may explain the
tendency of both classifiers to misclassify rvs validation
samples. Finally, an increase in incidence angle range within
a sample increases Fz because it is an energy spread mea-
su.e. 'i'hir may explain the jump in Rvs validation sample
misclassificati,on fiom the uLC to the oLD classification
schemes.

Grey-t ml CoOccunence i|attu (Gt0tlll
The classification statistics of the calibration and validation
data were comparable for all pairwise and three-way f-eature
sets tested. The classification accuracies for each combina-
tion varied from B0 to 90 percent. Kappa Coefficients of Uni-
formity and Entropy provided the largest pairwise
classification score-for both calibration and validation sets
(84 and 81 percent, respectively). A three-way discrimination
provided marginally poorer results with a calibration preci-
sion of 84 perient and a validation Kappa coefficient of 74
percent. this is in contrast to previous w-ork, conducted
using only a single SAR scene (Barber and LeDrew, 1991)'
where a three-variable set provided better discrimination.
Misclassifications were generally larger between FYR and FYS
in the two-feature space discrimination. Both FYR versus FYS
and uYt versus FYR were areas of significant misclassifica-
tions in the three variable discrimination. In general, the
larger the calibration precision, the smaller the correspond-
ine validation result.- 

A classification plot, showing the 90 percent confidence
ellipses of the bivariate distributions of Uniformity a3d !n-
tropy, illustrates the separation of each ice class in this fea-
turl-space (Figure 9). The elliptical shape of the bivariate
confidence iniervals also reflects the pairwise correlation
structure of these variables. Contingency tables for the two-
feature and three-feature calibration and validation results
are shown in Tables L1 to 14'

Comparatin Amlysis
A comparison of the Kappa Coefficients and their associated
confidence intervals show that the two spatial domain statis-
tical texture approaches-the Grey-Level Co-Occurrence Ma-

vm
FYS
FYR
VIYI

50
50
50

150

2
2

50
54

38
2
0

40

1 0
46

0
56

50
50
50

150

1 5
2

28
45

19
36
7 7

66

1 6
7 2
1 1

39

50
50
50

150

0
0

50
50

J

42
0

47

45
I
0

53

50
50
50

150

2 7
2

18
4 7

1 1
3 2
18

6 1

NIYI

FYS
FYR
Nim
Total

FYS
FYR
NIYI
Total

TneLE 10. Covnreerucv TaB[r FoR rHE OLD Cusslnen: Veuoanol Dara.

FYS FYR Total

Total

FYS
FYR
NIYI

1 8
1 6
L4

48

MYI -
FYR -.-.

FYS . .

1

6

)

3

a

t

-0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FcaNE El

Figure 8. Calibration data class-conditional probability den-
sity tunctions (pd0.

1405



1.t

.F o.r

E o.z

0.3

0.1 03 05 0.7 0.9 1,1 1.3 1.5
Entropy

Figure 9. Bivariate classification plots with
90 percent confidence ellipses showing the
position and shape of the two-dimensional
discrimination space.

TABLE 11, Cor.rnreelrcv TrBrE FoR rHE GLCM UNtFoRMry nto ErvrRopr:
ClueRATtoN Dnrl,

FYS FYR

TABLE 12. Corunncetcy TIBLE FoR rHE GLCM Unrronurry rulo Evrnopy:
VAUDAIoN DATA.

F"rs FYR

TISLE 13. Covnreerc.r TABLE FoR rne GLCM UHrronunv-EurRopr-
Drssrurulnrry: CAUBRAIoN DATA.

FYS F"TR tum Total

trix (cLcM) and Neighboring Grey-Level Dependence Matrix
(NGLDM) -provided the best results within the constraints
imposed by this analysis. The GI,CM achieved a Kappa Coeffi-
cient of B4 and 81 percent for the calibration and validation
data sets, respectively. Based on an assumed Gaussian distri-
bution of the Kappa point estimate, these two results are sta-
tistically equivalent at the 95 percent level against a Type I
error (Table 15). Note that the confidence intervals are com-
puted for the validation, as opposed to the calibration, data.
The NGLDU results achieved a Kappa Coefficient of 83 and
76 percent for the calibration and validation sets, respec-
tively. These results are statistically equivalent over the cali-
bration and validation sets within the ttCmu comparison
data. They are also statistically equivalent to the Crcu re-
sults (Table 15).

The SpatiaVSpatial Frequency (S/SF) results achieved
good calibration data set results-84 and BZ percent for the
Fz and oLD results-but fared poorly when these algorithms
were applied to the validation data set (i.e., 30 andlB per-
cent for Fz and ou) results with the validation data; Table
15). The Primitive Texture Value (pTV) results were generally
low for the calibration (65 percent) and validation sets (SA
percent). Features F2 and OLn from the S/sF algorithm were
statistically different between calibration and validation data.
The pfv results were not statistically separable between cali-
bration and validation sets.

In the particular conditions of this test, we have mini-
mized the range of information available for "training" the
various algorithms used here. The validation set contains a
significantly greater range and variability of both first, and
second-order statistical distributions. All three classes were
tested for the hypothesis that the variance of the calibration
and validation sets were equal. This hypothesis was rejected
at the 99 percent significance level, for all three classes,
using a likelihood ratio test suggested by Srivastava (1983). A
subsequent test for the hypothesis that the means of each
class were identical for training and validation sets was also
canied out (Srivastava, 19S3). The means for each of the Fys,
FyR, and uryr violated this hypothesis at the g0 percent level.

Conclusions and Recommendations
These results indicate that the two spatial domain statistical
methods, the Grey-Level Co-Occurrence Matrix (crcu) and
the Neighboring Grey-Level Dependence Matrix (NGulM),
provided universally high classification accuracies under the
test conditions examined here. The crcM scores of 84 and 81
percent and the NGLDM scores of 83 and 76 percent were sta-
tistically indistinguishable across algorithm and data set fac-
tors.

- The empirical probability density functions generated
with the two spatial domain statistical approachCs appear to
be reasonably robust to the conditions tested here. I[ iJ inter-
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esting to note that both cLcM and NGLnU approaches re-
sulted in very similar calibration and validation results. This
indicates that both algorithms are relatively invariant to
monotonic transformations. We also speculate that either
these approaches are insensitive to changes in the second-or-
der statistics of the texture fields, or that there simply was
no change in the spatial statistics of the image texture.

The SpatiaVSpatial Frequency (S/Sn) approach appears to
be sensitive to the training conditions generated from the
calibration data set and therefore does not provide statisti-
cally reproducible results between the calibration (87 per-
cent) and validation (18 percent) test conditions. The
Primitive Texture Value (PTV) appears to be sensitive to spec-
ification of either the texture primitive or the spatial arrange-
ment of this variable within the ice class of interest. Results
from the Pry suggest poor operational capabilities due both
to low calibration (65 percent) and to validation [58 percent)
results.

These results indicate that spatial statistical methods
hold promise as a machine directed or machine assisted
method for discrimination of ice types in SAR images of sea
ice. Our intention here has been to establish the ordination
of these four techniques by standardizing a test scenario and
focusing on a simple subset of the classification problem,
thereby allowing a meaningful statistical evaluation. We have
not considered the complexities of the seasonal evolution of
SAR signatures, the calibration of aerial and orbital radar data
(both absolute and relative), or the extension of the classifi-
cation problem beyond simple, World Meteorological Organi-
zation (wvto) ice-type discrimination schemes.

From our experiences gained through visual interpreta-
tion of SAR sea-ice images, automated classification research,
and ln situ validation of scattering signatures, it has become
apparent that a multi-level classification scheme is required.
We feel an optimal solution for an operational ice classifica-
tion algorithm from SAR data should consist of a hybrid sys-
tem (for example, see Wells and Haygen (1991)). An
automated, semi-automated, and expert system or knowl-
edge-based classification scheme would provide the three
levels required to meet the complexities of the perceived
classification problem. The results presented here are a con-
tribution to the automated component of such a system.
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The oremier forum dedicaled l0 lhe use 0f
com0utels in

. Facilities Managemenl. Forestry. Geodesy

. Geography. Land Surueying-Mapping

. Phologrammelry. Remote Sensing

. Spalial Analysis r Ulilities Mappin0

Confelence Tooics

. Dala Capture, Field Methods, and GPS
o Data Ma*eting, Sales and Cosl Becovery
. Database and System Design
. l{etworfi and Transp0rtation Syslems
. Proiect Planning and Managemenl
. Education and Training
. Visualization and multimcdia
. Urban AppliGations
. Enyironment and ilalural Besources
. Emeroency Management and

Disaster Preparedness
o Data Slandards
. Emerging Tlends

Soonsored by

the American Congress on Surveying and Mapping
(ACSM), lhe American Socioty for Phologtammetry
and Remote Sensing (ASPRS), AM/FM
Iniernational, the Association ol American
Geographerc (MG), and the Urban and Regional
Intormation Syslems Associalion (URISA).

r '1

I
I
I

19 93

For more inlormalaon, c0mplele and letuln this

form lo: GIS/LIS'93, 5410 Grosvenor [ane, Sle.

100, Befhesda, MD 20814-2122. You may call

301-493-0200. 01 send a fax lo 301-493-8245.

Address:

lnnual Conlenence and Expo$ltlon

October 31-November 4, 1993
Minneapolis, Minnesota

State: Zip:-

Country:_

Include membership inlomation for:

!AAG !ACSM NASPRS

! AM/FM lnternational n URISA
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