
DEM Matching and Detection of
Deformation in Glose-Range

Photogrammetry without Gontrol

Abstract
A method for matching pairs of digital elevation models
(DEMI), based on surface shape and without control points,
has been evaluated in close-range photogrammetry. Results
presented for 30 DEM pairs of the human body trunk ond of
varying relief indicate that the influence of orientation enors
has been effectively rcmoved from the transformed models.
The final nus dilferences in relief are close to the RMS erws
of the elevations themselves. Introduction of gross enor de-
tection techni que s, such as " data-snooping, " simu ltaneously
allows orientation based on similar model regions and locol-
ization of deformations. The magnitude of the latter is ade-
quately estimated using the weiglt cofactor matrix of
residuals. Experiments with simulated and actual deforma-
tions illuminate the potential of this apprcach for close-
range photogrammetry.

Introduction
Traditionally, the procedure of absolute orientation in photo-
grammetry is based on control points of known position.
However, establishment of control might be costly or in some
cases not possible. Orientation based on shape and without
control points should instead be considered. For example,
for digital elevation models (DEMs) without obvious charac-
teristic points, feature point extraction from DEM elevations
based on curvature has been suggested for three-dimensional
matching (Goldgof ef a1., 1989). Rosenholm and TorlegArd
(198s), on the other hand, have used DEMs as sole informa-
tion for stereomodel orientation in a modified similarity
transformation relying on DEM slopes. Such approaches are,
in fact, suitable for several applications of close-range photo-
grammetry. In this field, digital elevation models are now in-
creasingly used while control is not always available or even
possible. Biostereometrics is the specific example considered
nere,

Photogrammetric methods for automatically identifying
points of peculiar curvatures on the human back have been
recently reported (e.g., Frobin, 1992). Nevertheless, difficul-
ties in identifying "landmarks" for establishing a reliable
body-fixed datum are generally common in medical applica-
tions. Furthermore, o priofi body positioning with position
holders yields poor accuracies as compared to the actual pre-
cision of the measurements (e.g., Wegner, 1985).

As an alternative to external and internal control, DEMs
could be mutually orientated by matching surface shape. Pil-
grim (1989) has outlined the advantages of such an approach
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for medical applications. Using moir6 topography, Roger
(1980) experimented with a two-step procedure for optimiz-
ing DEM overlay by first sliding one surface to tecover trans-
lation and, subsequently, "self-referencing" DEMS through
plane-fitting to recover two rotations. However, the final mis-
matches reported considerably exceeded the digitization er-
ror.

As a rule, a DEM pair in close-range photogrammetric ap-
plications will not consist of two identical models. The DEvts
to be matched may refer to different time epochs (as in bios-
tereometrics, for instance); or represent a surface to be con-
trolled against a standard (e.g., in the field of industrial
applications). Consequently, DEM pairs in close-range photo-
grammetry are generally to be checked for unsimilarity (i.e.,
deformation). "Orientation" in this context means in practice
both matching of similarities as well as Iocalization of defor-
mation. Thus, the introduction of a technique for gross error
detection may constitute an option indispensable for most
applications in close-range photogrammetry.

In this paper shape-matching, as applied by Rosenholm
and Torleg5rd (1988) to ground DEMs, is examined in an ex-
ample of biostereometrics. Results are presented for DEMs of
varying slope distributions. The method is subsequently ex-
tended with the introduction of the data-snooping technique,
leading to the practical detection of deformations. Experi-
mental results are reported. A procedure for improving esti-
mation of deformation size is also suggested.

Matching of Similar DEMs

ilathemalical ilodel
LeL Z = F(XD and Z' : F'(X,Y be two known n by m
DEMs of the same surface located close to each other. Eleva-
lions Z and Z' correspond to the same planimetric position
XYbut different physical points on the surface. Assume that
the two models are brought to coincidence by small transla-
tions and rotations of the second onv. Then the new coordi-
nales X',Y',2' of the points of the second model can be
linearly approximated on the basis of the commonly used
differential equations of absolute orientation. These are

X = X + A)(: X + X" - Yx + Z'9
Y =  Y + A Y : Y + Y " + X x - Z ' a  ( 1 ) ,
Z ' :  Z ' + A Z : Z ' + 2 " - X 9 + Y a

Xo, Y", Zo being here small translations and a, e, K small ro-
tations about the respective axes. These six parameters de-
scribe the relative orientation of the DF;tras. As the two
surfaces X,Y,Z and )(,Y,2' are thus assumed to be matched
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A B C

Figure 1. Typical oeus of slope classes A, B, and C.

TIaLE 1. Melru SropE AND PREcrsroN oF DEMS

X-Slope'

Digitization and
Interpolation Error

Y-Slope" nMSAZ (mm)

All differences 4 : Z, - Z', ate introduced as observa-
tional quantities into an iterative least-squares adiustment
based on Equation 3 resulting from Equations 1 and 2: i.e.,

6 : Z" - F*Xo - F"Yo + AFrY - F;{)
+ a(Y + FrZ') - 9$ + F,,Z')

The six orientation parameters are recovered after conver-
gence. A scale parameter may also be included if necessary
(Rosenholm and Torlegtrd, 19s8). As F will generally not be
continuous, approximations of the slopes over two DEM grid
unit lengths are usually used.

After each iteration the points of the second surface are
transformed into new coordinate triplets )(, Y, Z by using
in Equation 1 the updated orientation parameters. A new
DEM z : f(X,Y) is subsequently interpolated ftom X, Y, 7.
The next iteration is based on the new differences 6 : Z
- z. (For an alternative procedure, see Rosenholm and Tor-
legerd (1988).) Usually, three iterations are sufficient.

lnput Dah
The contours of 60 moir6 topograms of the abdominal area
during pregnancy were intially digitized. Body orientation
was loosely controlled. All coordinates were transformed
into a system based on three poorly defined body landmarks
to roughly remove the effect of positioning from the data.
DEMs were subsequently interpolated.

Models of three slope classes (A,B,C), corresponding, re-
spectively, to the third, sixth, and ninth months of preg,-
nancy, were selected (Figure 1). Mean slopes are shown in
Table 1. Ten DEM pairs were employed for each slope class.
Each pair consisted of a DEM of reference and a oEtvt of the
same surface, reconstructed from a different image, which
was to be matched with the former. The DEMs were de-
scribed by 150 to 192 nodes and each covered an area of
about 23 by 32 cmz (DEM grid interval about 2.2 cm).

The joint error of digitization/interpolation was esti-
mated by comparing paired orus based on images digitized
twice. It is expressed as the RMS differences in elevation
(RMsAa shown in Table 1. In fact, matching of nEvs aims at
reaching these error limits, thus freeing DEM data from the
influence of inaccurate orientation,

&ientalbn Resultg
The differences in elevation before and after the matching
adjustment are seen in Table 2 and illustrated in Figure 2.
The nvsAZ values after matching are very close to the esti-
mated digitization and interpolation errors of Table 1. These
results suggest that differences in elevation due to inaccurate
relative orientation within DEM pairs, which are responsible
for the high nusAZ values before matching of Table 2, have
been effectively removed after matching.

Indications for the effects of slope are detected in the
precision of the unknowns (see Table 3). Planimetric param-
eters X" and Y", depending exclusively on slopes as seen
from Equation 3, are less precise for the "flatter" group A.

Table 4 presents the mean and maximum values of the
six orientation parameters. It is seen that, at least for the par-

TABLE 3. OvEnnlr STANDARD DEvrAnoNs or Omeurmolr PnR*.aErens

SIope
Class o16o (mm) oro (mm) oz" (mm) o." oro a*"

(3) .

Slope
Class Slope'

11.
1 8
24

4 2 5 2 0
8 3 2 2 4
c 3 9 3 0

7 .4
1 . 5
1 .5

4 . 7
4.2
5.3

A
B
C

1 . 7
1 .3
1 .5

Trerr 2. RESULTS oF MATcHTNG oF DEM PArRs (RMSAZ rN MM)

Slope
Class

Before Matching
Mean Range

After Matching
Mean Range

7 .74 .7
2.1-8.O
2.8-8.S

0.9-1.8
7.7-1.7
0.7-1.9

after this rigid body transformation, Z" cottld be also approx-
imated on the reference surface F as

Z " : Z + F v A ) ( + F t A Y  ( 2 ) .

F*, F, denote the partial derivatives (i.e., the slopes) of F and
A){, AY arc the differential changes in X, Y.

142|'

A o .7  0 .8  0 .2  0 .2  0 .5  0 .3
B 0.3 0.5 0.2 0.2 0.5 0.3
c o.2 0.4 0.2 0.2 0.4 0.2

before

after

- 3  o r  3

figure 2. Distribution of elevation differences AZ (mm) be-
fore and after orientation. Differences above are mainly
caused by (a) r, a, andYo; (b) p and f"; and (c) X".
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ticular surface types used, the method can recover and cor-
rect differences in nnM orientation which are not necessarily
small (e.9., rotation angles > 5").

For several pairs of parameters, correlations proved to be
significant. In groups A and B, correlation coefficients p were
highest for pairs l",ar (mean p = -O.7O) and {,9 (mean p
: 0.75). This is apparently why DEM matching using only
four parameters (ignoring ar, 9), extracted from the coeffi-
cients of best-fitting elliptical paraboloids, gave relatively
good results for the same type of surfaces (Karras, 1992).

Gdd Interval and Approximation ol Slope
Discrete approximations of slope derived from elevations
(which again are not error-free) are inevitably inaccurate to a
degree depending on surface roughness and nnM grid spac-
ing. Here the topography changed rapidly but smoothly, and
approximations over two grid intervals sufficed. Tests with
varying grid intervals (1.6 to 3.3 cm) indicated only small
improvement with decreasing interval (decrease in nusAZ
< 15 percent) compared to the computational cost involved.

In order to check the effect of onu interval on a rougher
surface, differently spaced osvs of a scoliotic back were
mathematically rotated and translated. In their new posi-
tions, they yielded mismatches of nusAZ = 5 mm when
compared with their initial positions. Matching was per-
formed both without and with added noise, i.e., perturbation
of. AZ differcnces by introducing artificial random errors nor-
mally distributed about zero. Table 5 shows that, for a
rougher surface, matching accuracies depend more strongly
on DEM spacing.

Even for unperturbed elevations, matching is not perfect.
This is clearly seen in the last three rows of Table 5 where
no random errors had been added. i.e. the two DEMs were
identical. There, the RMSAZ values are still not very close to
zero. These results refer to nnv matching not influenced by
digitization, as the one DEM has been simply created through
a rigid transformation of the other. Consequently, the last
three rows of Table 5 point at aspects of the inherent accu-
racy limitations of the method, i.e., regardless of random er-
rors. In general, these limitations are the combined effect of
(a) linearization, (b) surface roughness, (c) DEM spacing and
(d) successive DEM interpolations.

Detection of Deformation
In close-range photogrammetry the detection of changes be-
tween models is often required. If a deformation has to be
localized and estimated, sensitive tests applicable to the in-
dividual residuals (instead of global statistical tests) are nec-
essary.

The vector v of residuals is an indirect expression of the
vector e of observational (random and gross) errors through
the configuration of the adjustment. If no weights are used,

v : -Q,"e (4)

in which Q- is the weight cofactor matrix of residuals. The
data-snooping technique assumes the presence of only one
gross error and tests the standardized residuals

wi = -vJoui : -v/(o"1/r) (S)

whereby oo denotes the precision of observations and ri -- 
eii

is the i-th diagonal element of Q- (always r, < 1). Among
residuals with w,2 > c2, the residual with the largest absolute
ry-value is most likely attributed to a gross error in the corre-
sponding observation. This observation is excluded from the
next iteration. Adjustment is completed when no outlying re-
siduals occur. The critical value c is fixed by the significance
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TISLE 4. Meeru lr.ro MAXMUM or ABsoum Vn-ues or rxe Onterutmolr
PmluEreRs

X" tmm) % [mm) Z.(mm) ao r"9"

Mean
Max

3.8
15.9

4 .7
22.4

7 .2
4.4

2 .O O.7  1 .4
9 .6  2 . r  9 .4

TISLE 5. EFFEcT oF DEM Gnro IMTEFUAL oN MATcHTNG oF loE^rncAL Sunaces
wrH AND wnHour PERTURBAnoN or Elgvalorus

Grid Interval
(mm)

1 . 5
1 . 5

1'

level 1 - a" of the test (here aa, : 0.1 percent and, accord-
ingly, c : 3.3 were used).

The redundancy numbers r, reflect local geometry and
describe the part of gross errors e, revealed in the corre-
sponding residuals. Lower bounds

e; : i"oJ1/r, (6)

for gross enors just detectable with a given probability p"
can be computed (Forstner, 1986; Caspary, 1988). In the
present application, redundancy numbers were indeed large
(r, > 0.80 for all observations) indicating good detectability
of gross errors. With 06 : 0.1 percent and B" : 80 percent,
the value A" -- 4.1 was fixed. For r-", : 0.99 and r-," :
0.84, the least detectable gross errors ranged from e, : 4.7oo
to e, : 4.5o". With oo : 7.4 mm, the range of the lower
bounds would thus be 5.7 mm to 6.3 mm. If error e, reaches
the lower bound e, pertaining to the corresponding observa-
tion, it will be detected with a probability ft; a" is the proba-
bility of rejecting a good observation. In the following, a
gross error e, exceeding the lower bound er of Equation 6 is
characterized as "detectable."

Deleclion of Simulated Defomatkn
One DEM of slope class A, perturbed in Z with oo : 1.4 mm,
was rotated and translated three times with orientation pa-
rameter values of growing magnitude (orientations 07, 02,
and O3). Nine gross errors of the same sign were then intro-
duced in the above three DEMs in two patterns: in a 3 by 3
grid area (pattern P1); and, alternatively, at nodes randomly
scattered over the models (pattern P2). In each case three dif-
ferent error groups of respective error sizes (6o" to 10ao),
(3.6o" to 6o"), (2.ao" to 4.8a") were alternatively used (error
size groups 51, 52, and S3). Groups 52 and 53 included cer-
tain enors e not exceeding the corresponding lower bounds e
(only eight and three errors out of the nine, respectively,
were "detectable"). In group 51, on the contrary, all nine er-
rors were "detectable."

A total of 18 separate gross error detection procedures
were carried out, as the 18 DEMs created through the combi-
nation of three orientations, two error distribution patterns
and three error size groups were matched with the original
netra of reference. In Table 6 O1-P2, for example, represents
the DEMs resulting hom the DEM of reference through orienta-
tion 01 and deformed with errors of the distribution pattern
P2.

Standard Deviation of
Added Random Errors

(mm)

RUSAZ After
Matching

(mrn)

2 .4
1 .9
7 .2
2 .6
0.9
o .7

3 .3
2 .2
1 . 1
3 . 3
2 . 2
1 . 1
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Number of Detected Errors
(Redundancy Numbers r : 0.90 - 0.98; a" = 1.4 mm)

TeeLe6. Dereclol or NrNe Srtruureo Gnoss EnRons observational errors cannot be extracted using Equation 4.
Assuming the presence of only one gross error in each itera-
tion or diagonal prominence in Q*, error size is estimated,
according to Fdrstner (1986), through Equation 4 as follows:

€; = - vi/ ti. (t

Ignoring random errors also inherent in the residuals, the ac-
curacy of such estimates can be assessed here by their differ-
ences Ae; : ei (true) - e' (estimated) from the l.nown
artificial gross errors. Correct estimation should yield a mean
of Ae, differences close to zero.

Despite the marked diagonal prominence of Q*, the
means of the Aer sets were close to zero only for isolated
gross enors (case of pattern P2 used in Table 6). On the con-
trary, the means of the Ae, sets for errors spatially close to
each other (case of pattern P1 used in Table 6) displayed a
mean systematic deviation from zero of about 20 percent. In
the latter case, error estimates were not accurate. This is due
to correlations among residuals being stronger for neighbor-
ing DEM nodes. This means, according to Equation 4,
stronger dependence of residuals % on errors e; (i * fl. Fur-
thermore, the more the gross errors, the more off-diagonal
elements of Q- are involved in "spreading" them over the
residuals.

This problem is more pronounced at the DEM corners,
There, redundancy numbers (ue smallest (these observations
contribute more to the determination of unknowns) and cor-
relations among residuals are highest. In case (a by  )-S1 of
Table 7, for example, the mean of relative differences Ae/e;
of true and estimated gross errors was as large as 32 percent.
As gross errors caused by spatially localized deformation are
expected to have the same sign, their effects are additive.
The use of Equation 7 takes no account of these complica-
tions, i.e., the effects of gross enors not known in advance
and revealed in subsequent steps.

Improved results can be obtained by multiple outlier
testing where the estimates of the errors previously localized
are updated at each step (Kok, 1984). For standard data-
snooping, an improved error estimation suggested here pro-
ceeds as follows. The equation resulting from Equation 4,

v, = -eie

expresses the i-th residual as the product of qr, denoting the
i-th row of Q-, with the error vector. After all errors have
been detected, the ultimate error localized can be estimated
directly from Equation 7 because no further gross errors a-re
assumed in the data. All other errors e& detected previously
can then be estimated through Equation 8, one by one all the
way back to the one detected first, as

(v* + 2qip)lr*

where e, stands for all errors localized by data-snooping after
e1 and estimated from Equation 9 before it.

For errors grouped together, this procedure improved
gross error estimation considerably compared to the use of
Equation 7. In the above-mentioned examples, the mean of
relative differences Ae/e,fell from 20 percent to 4 percent
(cases P1 used in Table 6) and from 32 percent to 6 percent
in case (a by  )-S1 of Table 7.

Eryedmcntd Detectian ol Shape dnnges
Three nru pairs of slope class A, affected by different
amounts and types of deformation, were chosen to test the
method experimentally. The mean RMSAZ : 1.4 mm for
group A (Table 2) was used as oo in data-snooping.

CASE 1. In one image of this pair the body was strongly

Error Group
Error Size (mm)
Total Number of Enors
"Detectable" Errors

S 1
8.4-74.O

I
I

S2
5.0-8.4

I
I

s3
3.44.7

I
3

Case 01-P1
Case O2-P1
Case 03-P1
Case 01-P2
Case o2-P2
Case 03-P2

I
s
I
I
I
I

3
0
0
6 '
3
4 *

8

8
8

I

07, 02, 03 : Orientations with parameters of growing magnitude.
P1 : Nine gross errors distributed in a 3 by 3 grid pattern.
P2 : Nine gross errors randomly scattered over the DEMs.
* More errors are detected than were "detectable."

TneLE 7. DErEcloN or N ev N Srr',luureo Gnoss Ennons

Number of Errors "Detectable"/Detected

Total Number
of Enors

Error Group
s1 s2 S3

Error Pattern 3 by 3
Error Pattern 4 by 4
Error Pattern 5 by 5

e/s 818
76176 7310
25173 2713

Results shown in Table 6 indicate good detectability for
the larger errors (groups 51, S2). Problems are mainly en-
countered with the errors of 53 which, being small, are in
part confused with random errors (cases O2-P7, O3-P1).

The initial relative position of orus also appears to play
a role. Larger values of the orientation parameters (cases in-
volving 02 and 03 in Table 6) seem more flexible (compared
to cases involving 01) in absorbing small errors, thus mask-
ing their presence (see last column of Table 6).

Detection of gross errors also appears to be sensitive to
their spatial distribution pattern. Errors grouped close to-
gether (see cases involving P1), as expected when studying
deformations, appear as more likely to remain undetected
compared to isolated outliers (cases involving P2). This is in-
dicated in the last column of Table 6. It is also noted that in
Table 6 there are instances where more errors have been in
fact correctly detected than were "detectable" (expected to
be detected at the set probability level).

In the case of gross errors grouped tightly together, the
area they cover is also important. The larger orientation pa-
rameters (orientation 03) were used in a simulation with
gross errors alternatively introduced in a 3 by 3, a 4by 4,
and a 5 by 5 grid pattern at one corner of the onu. All three
error groups (S1, 52, 53) were again used. Results for the
nine error detection procedures are given in Table 7.They
indicate that the detectability of gross errors is affected by
their total number. The more extended a deformation, the
more likely it seems that it can be "absorbed" in the adjust-
ment. Even for error group 51, in which the smallest error is
by 30 percent larger than the corresponding least detectable
value, only half of the gross errors were identified in the 5
by 5 case.

Estimation of Deformation
In studies of deformation, its detection may not suffice. Its
actual size is also crucial. Due to the singularity of Q-, the

1422

3t2
310
612

I
1 6
25

(8)

(s)



tilted about its vertical axis (9 > 20'). The DEMs showed a
large difference of nusAZ : 2.5 mm after matching based
on all points (cf. the values for A after matching in Table 2).
It was suspected that Iarge body tilts may possibly be sponta-
neously accompanied by slight torsions of the trunk. The
pattern of detected errors in fact indicated such a deforma-
tion (Figure 3a). The parameter most affected by this defor-
mation was g which changed by 2.2" during error detection.
DEM matching was satisfactory after the exclusion of de-
formed points (nvsAZ : r.0 mm).

CASE 2. This deformation was due to the arms being
stretched once sidewards and once upwards (Y*tsAZ : 2.9
mm after matching based on all points). Changes were ex-
pected mainly around the upper DEM corners. The pattern of
Figure 3b is in agreement with such an assumption (RMSAZ
: 1.7 mm after excluding outliers). Parameters ar and Y"
were strongly affected by the exclusion of deformed points;
they changed by 2.7" and 8.0 mm, respectively. Deformation
estimates from Equations 7 and 9 differed on the average by
L8 percent. Correction of the deformed elevations by means
of Equation 9, rather than their exclusion from the adjust-
ment, also gave RMSAZ : 1,7 mm over the whole DEM.
These estimates of Equation g are considered as more accu-
rate than those from Equation 7 because, for the latter, it was
PJ\ISAZ : 2.0 mm after correction of the deformed eleva-
tions.

CASE 3. Contrary to the above spatially localized defor-
mations, this pair suffered from a deformation spread over
the whole model as the DEMs were reconsbucted from im-
ages taken at different phases of the respiration cycle. Match-
ing using all nodes gave RMSAZ : 2.8 mm. Roger (1980) has
pointed out in this context that, when unsimilarity is pres-
ent, satisfaction of the least-squares criterion means that dif-
fering surface patches are brought closer together while
closely fitting ones are moved farther apart. One of the
models was "flatter" than the other due to breathing. This
was reflected in the parameter value Z" = 78 mm which is
unexpectedly large compared with the Z"-values of Table 4,
i.e., the DEM was shifted considerably in Z to optimize
matching. Error detection (which gave RMSAZ : 2.2 rnrn)
has revealed the deformation of Figure 3c which is not easily
explained. This very large value of ^Z", furthermore, did not
decrease - as expected - throughout the error detection
procedure. This apparently indicates that the two models are
essentially different, i.e., that matching still remains "artifi-
cial." Thus, the "gross enors" detected are not to be neces-
sarily regarded as the actual deformation but rather as simple
statistical outliers within this particular least-squares fit.

I
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Global tests on the o postenori estimations of oo related
directly to data-snooping are not recommended here as re-
dundancy is large (high risk level of the test) and the true
value oo is not known. In general, it seems more meaningful
to regard data as free of further gross errors if the final values
of nusAZ fall within the actual KMSAZ range after matching
of Table 2 (i.e., nusAZ < 1.8 mm) which has been estimated
for pairs of similar nsvs. This was true for Cases 1 and 2
above. In Case 3, the final mismatch of nvsAZ : 2.2 mm
obtained after enor detection suggests that the fit still re-
mains problematic.

Gonclusion and Discussion
For the particular surface types used, matching without con-
trol points was demonstrated to be of good performance.
Model pairs are freed from the influences of faulty mutual
orientation, and matching accuracies :ue very close to the
limits of digitization and interpolation errors. For the cases
studied, slopes were very large (however, Rosenholm and
TorlegArd (19s8) point out that this is often the case in close-
range photogrammetry) and surface shape was near-regular.
Further experiments are necessa-ry with models of smaller re-
lief, more irregular topography, and varying DEM dimensions.

The method discussed lends itself to the introduction of
techniques which allow the localization of deformation. Ex-
periments with one-dimensional data-snooping indicated
that it could efficiently detect deformation. Detection of spa-
tially localized deformations, however, appears to be more
complicated than detection of isolated outliers. The last ex-
ample (Case 3 above) also bears witness to a danger that, in
cases of extended deformations, "blind" numerical manipu-
lation might be misleading. In fact, it might allow a misinter-
pretation of actual unsimilarity between models as owing to
differences in orientation. This important aspect requires fur-
ther investigation.

In all experiments presented here, redundancy numbers
were l.uge. Thus, the effects of the configuration of the ad-
justment, represented by rr in Equation 5, could have been
possibly neglected in the tests. In this sense, the identifica-
tion of a residual 4 as outlying, e.g., simply if lv'l > 3o" (an
approximate test often used in practice) could probably lead
to similar results. This aspect remains to be investigated.
However, data-snooping is more sensitive, especially for re-
dundancies distributed less favorably.

Estimates of deformation from Equation 7 appear as
rather insensitive to the facts that spatially localized defor-
mations of the same sign are generally expected; and that the
neighboring residuals are more strongly inter-conelated.
Thus, residuals may be considerably affected by more than
one gross error, even if error detectability is good in itself
(i.e., large redundancy numbers). This dependence of resid-
uals is taken into account in Equation 9 used in this study
for the estimation of error size.

The approach introduced here for DEM orientation with
the simultaneous detection/estimation of deformation seems
suitable for various tasks of close-range photogrammetry (Ro-
senholm and TorlegArd, 1988; Pilgrim, 1989). In some of
these cases, it could be employed in an interactive mode; for
other applications, further development would allow an inte-
gration of this method in fully automated and real-time envi-
ronments.
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The American Society for Photogrammetry and Remote Sensing will publish a Softcopy Photogrammetry
special issue of PERS in August 1994. This issue will contain commentaries, invited and contributed articles.
Authors are especially encouraged to submit manuscripts on the following topics:

I Definition issues, functional requirements, and design considerations.
I Data issrres, acquisition, volume, compression, visualization, arld reduction.
I Digital orthophotography, production and use.
r Softcopy photogramrnetry, image analysis, and GIS, the all-in-one system concept.
I Conversion of operational production systems into softcopy, requirements and implications.
r Standards, testing procedr[es, acclrracy, performance, and system evaluation.
r Trends in technology, state-of-the-art, and future directions.
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five copies of their manuscript to:

Raad A. Saleh, ERSC, University of Wisconsin-Madison,1225 West Dalon St., Madison, WI 53706; Phone:
(608) 263-6584, fax: (608) 262-5964, internet: raad@cae.wisc.edu.

I All papers should conform to the submission standards in "Instructions to Authors" that appears monthly
in PE&RS.

t Papers should be free from promoting a specific commercial product.
I Papers without funds for color printing may be subject to rejectionby ASPRS Headquarters due to budget

conshaints.
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must be at least 9"X9" in size, and can be prints or transparencies.
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